文档库 最新最全的文档下载
当前位置:文档库 › 专题28 数列求和(教学案)(原卷版)

专题28 数列求和(教学案)(原卷版)

专题28 数列求和(教学案)(原卷版)
专题28 数列求和(教学案)(原卷版)

1.熟练掌握等差、等比数列的前n 项和公式;

2.掌握非等差数列、非等比数列求和的几种常见方法。

1.求数列的前n 项和的方法 (1)公式法

①等差数列的前n 项和公式

S n =n (a 1+a n ) 2 =na 1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;

(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q . (2)分组转化法

把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法

把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法

把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法

主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.

(6)并项求和法

一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解.

例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1.

(2)1(2n -1)(2n +1)=12????1

2n -1-12n +1. (3)1

n +n +1=n +1-n .

高频考点一 分组转化法求和

例1、已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2

a 3,S 6=63. (1)求{a n }的通项公式;

(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.

【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.

(2)若数列{c n }的通项公式为c n =?

????a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.

【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+1

2n ,…的前n 项和S n 的值等于 ( ) A.n 2

+1-1

2n

B.2n 2

-n +1-1

2n

C.n 2

+1-1

2

n -1

D.n 2

-n +1-1

2n

(2)数列{a n }的通项公式a n =n cos n π

2,其前n 项和为S n ,则S 2 016等于( ) A.1 008

B.2 016

C.504

D.0

高频考点二 裂项相消法求和

例2、已知等差数列{a n }的前n 项和为S n ,公差为d ,若d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d

(1)求数列{a n }的通项公式;

(2)若b n =1

a n +1

+a n (n ∈N *),求数列{b n }的前n 项和T n .

【举一反三】[2017·全国卷Ⅲ]设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;

(2)求数列?????

?

a n 2n +1的前n 项和.

【变式探究】正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2

+n )=0.

(1)求数列{a n }的通项公式a n ;

(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <5

64. 【方法技巧】裂项相消法求和问题的常见类型及解题策略 (1)直接考查裂项相消法求和.解决此类问题应注意以下两点:

①抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;

②将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ????1a n -1a n +1,1a n a n +2=12d ????1

a n -1a n +2.

(2)与不等式相结合考查裂项相消法求和.解决此类问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.

高频考点三 错位相减法求和

例3、[2017·山东高考]已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;

(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列?????

?

b n a n 的前n 项和T n .

【特别提醒】用错位相减法求和应注意的问题

(1)要善于识别题目类型,特别是等比数列公比为负数的情形.

(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.

(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 【变式探究】 已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *). (1)求m 的值;

(2)若数列{b n }满足a n

2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 高频考点四 求数列{|a n |}的前n 项和问题

例4、在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;

(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.

【方法技巧】求数列{|a n |}前n 项和的一般步骤 第一步:求数列{a n }的前n 项和;

第二步:令a n≤0(或a n≥0)确定分类标准;

第三步:分两类分别求前n项和;

第四步:用分段函数形式表示结论;

第五步:反思回顾,即查看{|a n|}的前n项和与{a n}的前n项和的关系,以防求错结果.

【变式探究】已知数列{a n}的前n项和S n=12n-n2.

(1)求数列{a n}的通项公式;

(2)求数列{|a n|}的前n项和T n.

1. (2018年天津卷)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.

(Ⅰ)求S n和T n;

(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.

2. (2018年北京卷)设是等差数列,且.

(Ⅰ)求的通项公式;

(Ⅱ)求.

3. (2018年江苏卷)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.

(1)设,若对均成立,求d的取值范围;

(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).

4. (2018年全国卷Ⅱ)记为等差数列的前项和,已知,.

(1)求的通项公式;

(2)求,并求的最小值.

5. (2018年全国I卷)已知数列满足,,设.

(1)求;

(2)判断数列是否为等比数列,并说明理由;

(3)求的通项公式.

6. (2018年全国III 卷)等比数列中,.

(1)求

的通项公式;

(2)记为的前项和.若

,求.

1.[2017·全国卷Ⅲ]等差数列{}a n 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}a n 前6项的和为( )

A .-24

B .-3

C .3

D .8

2.[2017·全国卷Ⅱ]等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1

n

1S k =________.

3.[2017·天津高考]已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.

(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).

4.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,

11221,1,2a b a b =-=+=

(1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S .

5.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ??

?

?+??

的前n 项和.

6.【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且

121236,a a a a a +==.

(I)求数列{a n }通项公式;

(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ??

????

的前n 项和n T .

7.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;

(Ⅱ)求和:13521n b b b b -++++K .

1.【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足

12111

==3

n n n n b b a b b nb +++=1,,,.

(I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.

2.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;

(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 3.【2016高考北京文数】(本小题13分)

已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;

(2)设n n n b a c +=,求数列}{n c 的前n 项和. 4.【2016高考山东文数】(本小题满分12分)

已知数列{}n a 的前n 项和2

38n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.

(I )求数列{}n b 的通项公式;

(II )令1

(1)(2)

n n n n n a c b ++=+.求数列{}n c 的前n 项和n

T . 5.【2016高考浙江文数】(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.

(I )求通项公式n a ;

(II )求数列{2n a n --}的前n 项和.

【2015高考福建,文17】等差数列{}n a 中,24a =,4715a a +=.

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2

2

n a n b n -=+,求12310b b b b +++???+的值.

【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;

(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【2015高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设n S 为数列{}n a 的前n 项和,1

1

n n n n a b S S ++=

,求数列{}n b 的前n 项和n T .

【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +??

?????

的前n 项和为

21

n

n +. (I )求数列{}n a 的通项公式;

(II )设()12n a

n n b a =+?,求数列{}n b 的前n 项和n T .

【2015高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =92

. (Ⅰ)求{}n a 的通项公式,

(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

数列求和—裂项相消专题

数列求和—裂项相消专题 裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111 (1)1n a n n n n ==- ++ 1111 ()(2)22n a n n n n = =-++ ┈┈ 1111 () ()n a n n k k n n k = =-++ 2 n p a An Bn C ?= ++(分母可分解为n 的系数相同的两个因式) 2. 1111 ()(21)(21)22121n a n n n n ==--+-+ 1111 ()(21)(23)22123n a n n n n ==-++++ 1111 ()(65)(61)66561 n a n n n n = =--+-+ 3. 1111 (1)(2)2(1)(1)(2)n a n n n n n n n ??==-??+++++?? 4. 111211 (21)(21)2121 n n n n n n a ---==- ++++ +1+1211(21)(21)2121 n n n n n n a ==-++++ 122(1)111 (1)2(1)22(1)2n n n n n n n n a n n n n n n -++-= =?=- ++?+ ┈┈ 1 2 = 1 k =

1.在数列{}n a 中,11211++ ???++++=n n n n a n ,且1 2+?=n n n a a b ,求数列{}n b 的前n 项的和. 2.已知数列{}n a 是首相为1,公差为1的等差数列,2 1 n n n b a a += ?,n S 为{}n b 的前n 项 和,证明:1334 n S ≤<.

数列求和专题

1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=+++L ,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=? ?+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()231234222n n T n n =-?+-?++?L ,① ()()23+1231234222n n T n n =-?+-?++?L ,② -②①得 ()()()()123124213123222222312321 n n n n n T n n -++-∴=--?+++++?=--?+? -L ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 数列求和专题

例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()() 21n n n n b c b b = --,求数列{}n c 的前n 项和n T . 【答案】(1)63n a n =-+,12n n b +=;(2)11121 n n T +=- -. 【解析】(1)2n ≥时,()22 133163n n n a S S n n n -??=-=----=-+?? , 当1n =时,113a S ==-符合上式,63n a n ∴=-+, ∵{}n b 为等比数列3 1232 512b b b b ∴==,28b ∴=, 设{}n b 的公比为q ,则21328 ,8b b b b q q q q ====,而315a =-, 113383158a b a b q q ∴+=+?-+ =-+,解得2q =或12 q =-, ∵{}n b 单调递增,2q ∴=,21222n n n b b -+∴=?=. (2)()()()()()()111112211 222121212121n n n n n n n n n c +++++===-------, 11223111111 1212121212121n n n n T c c +??????∴=++=-+-++- ? ? ?------?????? L L 1 111111212121 n n ++=-=----. 一、单选题 1.已知等差数列{}n a 中918S =,240n S =,()4309n a n -=>,则项数为( ) A .10 B .14 C .15 D .17 【答案】C 对点增分集训

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

数列求和专题(学生版)

数列求和专题 讲点1.公式法:用于等差与等比数列,必须记住数列前n项和公式 ; 例1.(2014福建卷)在等比数列中,a2=3,a5=81. (1)求a n; (2)设,求数列的前n项和S n. 讲点2.分组求和 (等差+等比) 把一组需要求和的数列拆分成两组或两组以上的特殊数列来求和 例2.(2014·北京卷)已知是等差数列,满足a1=3,a4=12,数列满足b1=4,b4=20,且{b n-a n}为等比数列. (1)求数列和的通项公式; (2)求数列的前n项和. 变式1.求和 变式2.求数列的前n项和:,… 变式3.在数列中,,其前项的和=__________ 变式4.等差数列中, (1)求数列的通项公式;

(2)设数列是首项为,公比为的等比数列,求数列的前项和. 讲点3.错位相减 (等差×等比) 例3.(2014·全国新课标卷Ⅰ)已知是递增的等差数列,a2,a4是方程x2-5x+6=0的根. (1)求的通项公式; (2)求数列的前n项和. 变式1.设数列满足 (1) 求的通项公式; (2) 设,求数列的前n项和. 变式2.已知正项数列满足:(),且 (1)求得通项公式; (2)设,求数列的前项和

讲点4.裂项相消 (分式型) 常用的裂项公式有 例4.(2014-2015武汉中学期中)等比数列的各项均为正数,且,(Ⅰ)求数列的通项公式; (Ⅱ)若,求的前项和. 变式1. 在数列中,,又,求数列的前项和. 变式2.求和 变式3. .求数列的前n项和. 变式4.求数列的前n项和. 例5.(襄阳四中2011-2012高一下期中)数列的通项公式是 ,前项和为9,则等于. 变式5.求数列的前项和. 讲点5.倒序相加 前后对应项的和为定值 例6. 已知函数当时,,则 =_________. 变式1.设求的值.

专题28 数列求和(教学案)(原卷版)

1.熟练掌握等差、等比数列的前n 项和公式; 2.掌握非等差数列、非等比数列求和的几种常见方法。 1.求数列的前n 项和的方法 (1)公式法 ①等差数列的前n 项和公式 S n =n (a 1+a n ) 2 =na 1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1; (ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q . (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1.

(2)1(2n -1)(2n +1)=12????1 2n -1-12n +1. (3)1 n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2 a 3,S 6=63. (1)求{a n }的通项公式; (2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. (2)若数列{c n }的通项公式为c n =? ????a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和. 【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+1 2n ,…的前n 项和S n 的值等于 ( ) A.n 2 +1-1 2n B.2n 2 -n +1-1 2n C.n 2 +1-1 2 n -1 D.n 2 -n +1-1 2n (2)数列{a n }的通项公式a n =n cos n π 2,其前n 项和为S n ,则S 2 016等于( ) A.1 008 B.2 016 C.504 D.0 高频考点二 裂项相消法求和 例2、已知等差数列{a n }的前n 项和为S n ,公差为d ,若d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d

数列导学案

数列求和 教学目标: 熟练运用求和公式对等差、等比数列求和,能运用分组的方法将一些特殊数列转化为等差、等比数列来求和。 一、导入: 我们主要研究了两类特殊的数列——等差数列、等比数列。其中一项重要的内容就是数列的求和,它是数列知识的综合体现。求和题在高考试题中很常见,它主要考查我们有关数列的基础知识,分析问题和解决问题的能力。这节课我们将进一步研究数列的求和问题。 二、知识回顾: 1、等差数列和等比数列的前n 项和公式分别是什么? (1)等差数列的前n 项和公式:___________________; (2)等比数列的前n 项和公式:①___________________; ②___________________ 三、探究 公式法 例1:(1)等比数列{n a }各项都是正数,且187465=+a a a a ,则=+++1032313log ......log log a a a A 、12 B 、10 C 、8 D 、2 (2) 等差数列{n a }中,3a =6,6a =3,则8S = 以上运用了公式法直接求和。运用公式时要注意以下问题:1、公式熟悉。2、明确首项和项数。3、等比数列中要特别注意使用条件。 错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例2] 求和:132)12(7531--+???++++=n n x n x x x S ………(0x ≠)

练习:求数列??????,22,,26,24, 2232n n 前n 项的和. 分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:{}n n a b ±的形式,其中{ a n }、{ b n }是等差数列、等比数列或常见的数列. [例3] 求数列的前n 项和:231,,71,41, 1112-+???+++-n a a a n 基本求和公式总结: (1)=++++n ......321_______ ____________; (2)=-++++)12(......531n __________ ___ (3)=+++++)12(......531n (4)=++++n 2 (842) (5)=++++n 2 (421) (6)=++++n a a a a (32)

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

数列求和知识点总结(学案)

数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式②等比数列的前n 项和公式 (2)分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (5)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广

2.常见的裂项公式 (1)1n (n +1)=1n -1n +1 . (2)1(2n -1)(2n +1)=12? ?? ???12n -1-12n +1. (3)1n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知数列{a n }的前n 项和S n = n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{ b n }的前2n 项和. 【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列{a n }的通项公式是a n =2·3n

-1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 高频考点二 错位相减法求和 例2、(2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式; (2) 当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n . 【感悟提升】用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

数列求和专题(完美归纳难度二级)

专题一 数列求和 一、公式法 将数列转化为等差或等比数列,直接运用等差或等比数列的前n 项和公式求得. ①等差数列求和公式:()() 11122 n n n a a n n S na d +-= =+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=? =-?-=≠? --?(切记:公比含字母时一定 要讨论) 常见数列求和 1 1+2+3+=(1)2 n n +…n 21+3+5+=n …+(2n-1) 2+4+6+=(1)n n +…2n 2222(1)(21)1236n n n n ++++++=L 2 3333(1)1232n n n +??++++=????L 例1、 设数列2 2 1 1,(12),(122)122++n -+++++…( …2)…的前n 项和n S . 变式训练: (2017高考山东18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++, ,构成等差数列. (1)求数列{}n a 的通项公式. (2)令31ln 12n n b a n +==L ,,,,求数列{}n b 的前n 项和T .

二、错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n a b g 的前n 项和n S 求解,可用乘公比错位相减法求和。 若n n n a b c =?,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令 112211n n n n n S b c b c b c b c --=++++L 则n qS =122311n n n n b c b c b c b c -+++++L 两式相减并整理即得 例1、 求和:(1){n 2}n n g 求数列的前项和. 23123(2)n n n S a a a a =++++… 变式训练1:(07高考全国Ⅱ21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ?? ???? 的前n 项和n S .

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

数列求和公开课学案

数列求和专题 学习目标:①掌握数列求和的三种方法:公式法、分组求和法及错位相减法; ②能正确运用等差与等比数列求和公式求和; ③能把一般数列转化成特殊数列求和. 【课前预习区】 1等差数列的前n 项和为_____________________________________________________ 2等比数列的前n 项和为_____________________________________________________ 题型一 公式法求和 1求=-++++12531n _________________________________________ 2求=++++n 2421 ____________________________________________ 3若,0≠a 则=++++n a a a a 32_________________________________ 【课堂交流区】 1.公式法求和小结: 题型二 分组求和 例1 若n a n n +=2,求数列}{n a 的前n 项和n S . 方法小结: 变式练习: 1.若,0≠a 且1≠a 则___________543215 432=-+-+-+-+-a a a a a 2.求和__________ )432()434()432(2 1 =?-++?-+?-n n 题型三 错位相减法

例2 求和:n n n S 333323132?++?+?+?= 方法小结: 变式1. 若n n n a 2?=,求数列}{n a 的前n 项和n S . 例3 n n n a 3)12(-=若,求数列}{n a 的前n 项和n S . 变式2 若n n n a 2)12(-=,求数列}{n a 的前n 项和n S . 【课堂小结】 【课后巩固区】

江苏省宿迁市高中数学第20课时数列的求和导学案无答案苏教版必修5

数列的求和第20课时【学习目标】. 进一步熟练数列求和的各 种方法【问题情境】 n项和熟练运用各种方法求数列的前 【合作探究】项和的常用方法:求数列前n )分组求和;(1)公式法;(2. )倒序相加)拆(并)项法;(4)错位相减;(5(3 【展示点拨】2n22aas?2??1a??. 的前例1:数列n项和,求}a{n2n1n 111,,,,;:(1) 1,项和例2:求下列数列的前n s n n?1?1?22?1?2?33?11112,3,(n?), . , (2) 1n2284 【学以致用】 1.数列中,,,则这个数列的前n项和等于__________________. 4{a?a}a2a?1n n?n1 2.数列3,5,7,9,11,…的前n项和是120,则n=____________. a?_____________. 中,在等差数列3.,则}{a110s?6n111 1111????=__________________. 求和:4. 1)2)(310n1?4?(3n4?7?7? 3ns?a?a?aa?a?=________________. 项和,则 5. 数列的前 n73654n22222232100??34???599?1?26?=____________________. 6. 求和:333=_____________________. .求和:3+33+333+…+7个n n23xx,xx,,,___________________. n项和为8. 数列的前x2007421.9. )?)?f((,求和:S?f)?xf()?f( x2008?2200820084

浙江专版2018年高考数学第1部分重点强化专题专题2数列突破点5数列求和及其综合应用教学案

突破点5 数列求和及其综合应用 (对应学生用书第19页) [核心知识提炼] 提炼1 a n 和S n 的关系 若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =??? ? ? S 1,n =1,S n -S n -1,n ≥2. 在使用这个关系 式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法 (1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如 a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列. (2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如 a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1 ,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q 1-p ,再转化为等比数列求解. (5)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1 ,得 a n +1q n +1=p q ·a n q n +1q ,构造新数列{ b n }? ? ???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. (6)取对数法:形如a n +1=pa m n (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和 数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题 数列综合问题的考查方式主要有三种: (1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小. (2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题.

2018届高考数学第二轮考点梳理导学案23(45数列求和)

45数列求和 姓名 一、学习内容: 必修四68~72 二、课标要求: 能在具体的问题情景中识别数列的等差关系或等比关系,并能用有关知识解决相应 的问题(数列求和). 三、基础知识: 数列求和的常见方法有: 1、 公式法:⑴ 等差数列的求和公式____________n S =,等比数列的求和公式 ____________n S = 2、分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项” 先合并在一起,再运用公式法求和 (常见:等差+等比型或多个特殊数列混合在一起) 即:将原来的数列分拆成两个或两个以上的数列,然后利用公式法求和。 3、倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项 之和,则可用把正着写和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法。特征:a n +a 1=a n-1+a 2通常,当数列的通项与组合数相关联时,那么常可考虑选用倒序相加法,(等差数列求和公式)将一个数列倒过来排列与原数列相加.主要用于倒序相加后对应项之和有公因子可提的数列求和. 4、错位相减法:适用于: “等差?等比”型 的数列求和. 特征:适应于数列{}n n a b 的前n 向求和,其中{}n a 成等差数列,{}n b 成等比数列。 方法:给12n n S a a a =++ +各边同乘以一个适当的数或式,然后把所得的等式 和原等式相减,对应项相互抵消,最后得出前n 项和S n . 5、裂项相消法:把一个数列的各项拆成两项之差,即数列的每一项均可按此法 拆成两项之差,在求和时一些正负项相互抵消,于是前n 项之和变成首尾若干少数项之和,这一求和方法称为裂项相消法。把一个数列分成几个可直接求和的数列. 常见的拆项公式:

数列求和精选难题、易错题(含答案)

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。 解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增

由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值;(Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ), ∴ , ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列, 即 由已知条件得,∴, ∴, ∴上式可化为,

∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立, ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15 (1)求{an},{bn}的通项公式。 (2)若数列{cn}满足求数列{cn}的前n项和Wn。 设等差数列{an}的公差为d,等比数列{bn}的公比为q ∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ① 由T3-S3=15得3(q2+q+1)-(3+3d)=15 ② 化简①②∴消去d得q2+4q-12=0 ∴q=2或q=-6 ∵q>0∴q=2则d=1∴an=n bn=3·2n-1 ⑵∵an=n∴① 当时,…② 由①-②得∴cn=3n+3 又由⑴得c1=7 ∴ ∴{an}的前n项和…

公开课学案(高三数列求和)

学习目标 学习过程 高考链接: 1.(2013年第三题)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= ( ) 2.(2013年第十六题)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 3. (2012年第五题)已知{} n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) ()A 7 ()B 5 ()C -5 ()D -7 4.(2012年第十六题)数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为 5.(2011年第十七题) 等比数列{}n a 的各项均为正数,且2 12326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前n 项和. 6.(2010年第十七题) 典型例题: 例1 求 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2 ++???+ ++的值 . 变式训练:(1(2)2 21f(x)+= x ,则_________)6()5(......)4()5(=+++-+-f f f f \ 总结:适用于____________________________________的数列求和 例1 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2, a 3(1)求数列{a n }的通项公式; (2)若数列{ b n }满足:b n =a n +ln ( 12 a n ),求数列{ b n }的前n 项和S n . 总结:适用于____________________________________的数列求和 例3 已知当x =5时,二次函数bx ax x f +=2 )(取得最小值,等差数列{}n a 的前n 项和n S =f(n),2a =-7.(1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n T ,且n n a 2 b n = ,

等差数列前n项和1-导学案(公开课)

§2.3等差数列的前n 项和导学案(第一课时) 知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题. 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美. 重点:等差数列前n 项和公式及其应用. 难点:等差数列前n 项和公式的推导思路的获得. 复习回顾 1.数列{}n a 的前n 项和的概念: 一般地,称 为数列{}n a 的前n 项的和, 用n S 表示,即=n S 2.n S 与n a 的关系:(1)(2) n n a n =?=?≥? 3.等差数列}{n a 中,若m+n=p+q,(m,n,p,q 为常数)则有: ; 一般地,1n a a += = ...... 问题一:一个堆放铅笔的V 形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。 这个V 形架上共放着多少支铅笔? 思考: (1)问题转化求什么?能用最短时间算出来吗? (2) (3)如果换成1+2+3+…+200=?我们能否快速求和?

问题二:?n 321S n =+?+++=(小组讨论,总结方法) 高斯算法: 倒序相加法: 探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗? 问题三:已知等差数列}{n a 中,首项为1a ,公差为d ,第n 项为n a ,如何计算前n 项和n S ? 新知:等差数列前n 项和公式: 公式一: 公式二: 问题四 :比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗? 公式一: 公式二: 问题五:两个求和公式有何异同点?能够解决什么问题?

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

数列求和优秀教案设计

题组教学:“探索—研究—综合运用”模式 ——“数列的裂差消项求和法解题课”教学设计 【课例解析】 1 教材的地位和作用 本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。 2 学情分析 在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。本节课的容和方处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。【方法阐释】 本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节. 本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。 【目标定位】

1 知识与技能目标 掌握裂项相消法解决数列求和问题的基本思路、方法和适用围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂差消项求和法的探究过程、深化过程和推广过程。培养学生发现问题、分析问题和解决问题的能力。体会知识的发生、发展过程,培养学生的学习能力。 3 情感与价值观目标 通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。 4教学的重点和难点 本节课的教学重点为裂项相消求和的方法和形式。能将一些特殊数列的求和问题转化为裂项相消求和问题。 本节课的教学难点为用裂项相消的思维过程,不同的数列采用不同的方法,运用转化与化归思想分析问题和解决问题。 【课堂设计】 一、创设情景、导入新课 教师:请同学们回忆一下,我们在推导数列求和公式时,先后发现了哪几种数列求和的方法? 学生1:在等差数列求和公式的推导时我们用到了倒序相加法。在等比数列求和公式的推导中我们发现了错位相减法、裂差消项求和法。 学生2:在学习求和过程中,我们还发现了分组求和法和通项转换法。

相关文档 最新文档