文档库 最新最全的文档下载
当前位置:文档库 › 液液萃取气相色谱法测定废水中的三氯甲烷

液液萃取气相色谱法测定废水中的三氯甲烷

液液萃取气相色谱法测定废水中的三氯甲烷
液液萃取气相色谱法测定废水中的三氯甲烷

项目九、目视比色法测定水中微量铬

项目九、目视比色法测定水中微量铬 【概述】 我们知道,许多物质都有颜色,例如高锰酸钾水溶液呈紫红色,重铬酸钾水溶液呈橙色。当含有这些物质的溶液浓度改变时,溶液颜色的深浅度也会随之而发生变化,溶液越浓,颜色愈深,反之亦然。因此可以利用比较溶液颜色深浅的方法来确定溶液中有色物质的含量,这种方法称为比色分析。 用眼睛观察比较溶液颜色深浅来确定物质含量的分析方法称为目视比色法。 经过此专项能力的培养,能使你掌握目视比色法的基本原理和操作方法,学会测定溶液中有色物质的含量。 【学习途径】 〖知识部分〗 1.目视比色法测定金属离子含量的原理及方法 2.影响目视比色的因素 3.标准系列浓度的选择 4.数据处理方法

〖能力部分〗 1.选择、清洗比色管 2.配制铬标准贮备液 3.配制铬标准色列和试样显色溶液 4.对试样进行比色,确定试样中待测离子浓度 参考资料: 《仪器分析技术》黄一石主编化工出版社,2000. 【评价标准】 在1.5h内根据未知样浓度配制标准系列,目视观察比较,完成未知样测定。 【评定方法】 〖应知自测〗 当您通过学习后,应能熟练掌握本专项能力所需的知识要求,并能正确完成学习包中的自测题(也可根据指导教师要求进行测试)。〖应会测试〗(操作考核) 在您参加考试之前,应先检查自己是否完成了下列学习任务:

复习与本专项能力相关的模块。 学习并掌握本专项能力所需的知识,并通过自测。 能熟练使用本专项能力所需的仪器、试剂、设备,并能完成规定的测试任务。 您认为已能达到本专项能力的培训要求,即可参加专项能力的技能操作考核,考核成绩由监考教师认定。 【目视比色法的定义】 用眼睛观察比较溶液颜色深浅来确定物质含量的分析方法称为目视比色法。 【目视比色法测定物质含量的原理及方法】 目视比色法的基本原理是:将有色的标准溶液和被测溶液在相同条件下对颜色进行比较,当溶液液层厚度相同,颜色深度一样时,两者的浓度相等。其依据是:根据朗伯-比尔定律,标准溶液和被测溶液的吸光度分别为 A S=εS.C S.b S A X=εX.C X.b X

酚氯仿法提取DNA的原理

作者: 渭水凡夫(站内联系TA)发布: 2013-04-06 最近在博客上看到的一篇可以作为入门级《分子生物学十万个为什么》 和大家分享一下 用酚抽提细胞DNA时,有什么作用? 使蛋白质变性,同时抑制了DNase的降解作用。用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA 溶于水相。 使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。 缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。2. 不能完全抑制RNase的活性。 氯仿的作用? 氯仿:克服酚的缺点;加速有机相与液相分层。 最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中) 用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么? 异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。 用乙醇沉淀DNA时,为什么加入单价的阳离子? 用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。 原理:动物和植物组织的脱氧核糖核蛋白(DNP)可溶于水或浓盐溶液(如1mol/L氯化钠),但在L氯化钠盐溶液中溶解度最低,而核酸核蛋白(RNP)则在L氯化钠中溶解度最大,利用这一性质可将其分开。 将沉淀物溶解于生理盐水,加入去污剂十二烷基硫酸钠(SDS)溶液,使DNA与蛋白质分离开。加入固体氯化钠使其浓度达到1mol/L,使DNA溶解。加氯仿-异戊醇去除蛋白质,也可重复该步操作得较纯DNA。最后用95%乙醇沉淀DNA。 溶解:将离心后除去RNA的沉淀,用30ml生理盐水溶解,充分搅拌后,匀浆一次。加4毫升10%SDS溶液,使溶液的SDS浓度达到1%左右,边加边搅拌,放置60 ℃水浴保温10 分钟(不停搅拌),冷却。加固体氯化钠,使溶液氯化钠浓度达到1mol/L,充分搅拌10分

活性硅的测定(钼蓝比色法)

活性硅的测定(钼蓝比色法) 1原理 在PH值为1.1~1.3的溶液中,可溶硅与钼酸铵反应生成硅钼黄,再用氯化亚锡还原生成硅钼蓝,此蓝色的色度与水样中可溶性硅的含量有关。磷酸盐对本方法的干扰可用调整酸度及加草酸或酒石酸的方法加以消除。 当水样中可溶性硅含量小于每升0.5mgSiO2 时,可用硅钼蓝光度法或用正丁醇等有机溶剂萃取浓缩,以提高灵敏度,便于比色。 硅的测定范围:10-500μgSiO2/L和0.5-20mgSiO2/L。 2仪器 具有磨口塞的25ml比色管。 3试剂 3.1 5%(m/V)钼酸铵溶液:用除盐水配制,配制后溶液澄清透明。 3.2 1%氯化亚锡溶液:称取1.19g氯化亚锡(SnCl2 2H2O)于烧杯中,加20ml盐酸溶液(1+1),加热溶解后,再加80ml纯甘油(丙三醇),搅匀后将溶液转入塑料瓶中备用。 3.3C(H2SO4)= 5mol/L硫酸溶液:于720ml试剂水中徐徐加入280ml浓硫酸。3.4SiO2储备液的配制 称取0.1000(±0.001)克经700—800℃灼烧过(已研磨细)二氧化硅(优级纯),与(0.7~1.0)克已于270—300℃焙烧过的粉状无水碳酸钠(优级纯)置铂坩埚内混匀,用马弗炉升温至900—950℃,保温20~30min后,把铂坩埚在900—950℃温度下熔融5 min冷却后,将铂坩埚放入硬质烧杯中,用热的超纯水溶解熔融物,放在水浴锅上不断搅拌。待熔融物全部溶解后取出坩埚,以超纯水仔细冲洗坩埚内外壁,待溶液冷却至室温后,移入1L容量瓶中,用超纯水稀

释至刻度,混匀后移入塑料瓶中储存。此液应完全透明,如有浑浊须重新配制。 3.5 SiO2工作液的配制 3.5.11ug/ml的SiO2工作溶液: 吸取100ug/ml的SiO2储备液1.0ml,于100ml的容量瓶中.用高纯水稀释至刻度。 注:SiO2工作溶液应在使用时配制,且储存时间不宜过长。 3.5.20.02mg/ml的SiO2工作溶液: 吸取10ml的SiO2储备液,于50ml的容量瓶中,用高纯水稀释至刻度。 3.6正丁醇(或异戊醇) 4分析步骤 4.1活性硅含量大于每升0.5mgSiO2时,测定方法如下: 4.1.1于一组比色管中分别注入二氧化硅工作液(1ml含0.02mgSiO2)0.25、0.5、1.0、1. 5......ml,用无硅水稀释到10ml。 4.1.2在另一支比色管中注入适量水样并用无硅水补足到10ml。 4.1.3往上述比色管中各加0.2ml 5mol/L硫酸溶液,摇匀。 4.1.4用滴定管分别加入1ml钼酸铵溶液,摇匀。 4.1.5静置5min后,用滴定管分别加入5ml 5mol/L硫酸溶液,摇匀,静置1min。 4.1.6再分别加入2滴氯化亚锡溶液,摇匀。 4.1.7静置5min后进行比色。

气相色谱法检测时色谱柱的选择

气相色谱法检测时色谱柱的选择 气相色谱柱是样品中残留溶剂测定的理论与物质基础,所以对色谱柱的选择也是最关键的步骤。气相色谱柱可分为填充柱和毛细管柱两大类,其中填充柱又分玻璃柱和不锈钢柱;毛细管柱按柱__口直径一般又有0153mm和0132mm两种规格,前者又叫大口径毛细管柱,柱容量大,在残留溶剂测定中应用较多。由于毛细管柱造价高,中国药典2000年版结合中国国情,用填充柱测定,美国药典24版(USPXXIV)和英国药典2000年版(BP2000)要求用毛细管柱。从填料来分,填充柱一般选用高分子多孔小球系列(GDX101,GDX102,GDX103,GDX301,GDX401)直接测定。GDX的表面积大(1~500m2/g),有一定的机械强度,可在250℃以下应用。无论极性还是非极性物质,在这种固定相上的拖尾现象都降到最低限度;它和羟基的化合物亲和力极小,可使水、醇类物质大大提前流出柱子;氧化氮、HCN、NH3、SO2、COS等活泼气体可以很快流出,不干扰测定,这些优点对残留溶剂测定来说是比较理想的。 这类填料的应用约占填充柱测定残留溶剂的文献的90%。GDX既是性能优良的吸附剂,能直接作为气相色谱的固定相,直接用于气固分析,也能作为担体涂布 PEG系(PEG20M,PEG2M,PEG10000,PGE5000),DEGS(丁二酸二乙二醇酯),DG (缩二甘油),丙二醇乙二酸聚酯,OV- 225,SE52(苯基甲基硅酮)等固定液,用于残留溶剂测定,当然担体的选择也有多种,如6201、硅藻土、PoraparkQ等。在柱子的选择上,一般选用GDX系列就能解决问题,但对于某些样品,就需要用某些固定液来进行分离才能满足要求,如二甲基甲酰胺26。选择原则是相似相溶,对于醇、胺等能形成氢键的物质,除上面介绍的GDX外,也可选择极性固定液。另外也可将不同极性的固定液混合涂布在担体上进行分离27。 毛细管柱的种类也很多,如 OV-101,SE-54,CP-Sil-5CB28,AC-20,SE-30,HP-5,HP-20M,100%二甲基硅氧 烷,AT- 624,TFAP等,一般长10~30m不等。填充柱价格便宜,易得,一直占据溶剂残留量检测的主导地位,只是柱效较低,只有500~1000左右,分离复杂样品的能力差。杨绍英、陈志华在测定心痛定中两种残留溶剂时就分别用两种色谱条件,比较麻烦29。但填充柱仍然是我们的首要选择。张咏梅、洪铮在紫杉醇原料药中有机溶剂残留量的气相色谱分析中,应用GDX401填充柱同时检测甲醇、乙酸乙酯、二氯甲烷,方法准确可靠30。王卫、高立勤在测定盐酸莫索尼定有机溶剂残留量时以正丙醇为内标,用GDX-401填充柱测定乙醚和异丙醇的残留量,方法灵敏、准确、可信31。 邓湘昱也用GDX-401填充柱测定盐酸土霉素中残留甲醇,结果证明方法简单可靠32。黄剑英、顾以振用GDX-401填充柱、用恒温条件建立同时测定中国药典规定的7种溶剂的测定方法,方法分离度较好,准确可靠33。这些均说明填充柱在测定残留溶剂中的重要作用。近年来,毛细管柱应用越来越多,有取而代之的趋势。特别是近两年,文献报道关于残留溶剂测定的文章中,用毛细管柱测定的约占总数的90%,填充柱只占10%,由此可见其趋势。毛细管柱的理论塔板数约为10万左右,与填充柱相比柱效和灵敏度均要高的多,对复杂和微量残留溶剂的分析能力有极大的提高,所以选择毛细管柱一般都能解决分离问题。其中柱口直径为0153mm的大口径毛细管柱因其柱容量大尤其应用广泛。姚倩、李章万、张

FHZHJDQ0148 环境空气 五氧化二磷的测定 钼蓝分光光度法

FHZHJDQ0148 环境空气 五氧化二磷的测定 钼蓝分光光度法 F-HZ-HJ-DQ-0148 环境空气—五氧化二磷的测定—钼蓝分光光度法 1 范围 本法为测定环境空气中五氧化二磷的钼蓝比色法。检出限为0.5μg/10mL ,测定范围为1~20μg/10mL 。如果采样体积为100L ,可测浓度范围为0.01~0.2mg/m 3。 2 原理 空气中五氧化二磷气溶胶被采集在滤料上,与水作用生成磷酸,再与钼酸按形成磷钼酸,在还原剂作用下,磷钼酸被还原成蓝色的化合物。根据颜色深浅,分光光度法定量。 3 试剂 3.1 采样滤纸:取直径40mm 定量滤纸,浸泡在0.5%硫酸溶液中,在60~70℃水浴上加热30min ,取出后用水洗至中性,然后于60~80℃烘干,备用。或者用直径40mm 聚氯乙烯滤膜。 3.2 (1+4)硫酸溶液。 3.3 钼酸铵溶液:称量1g 钼酸铵溶于 10mL 水,再加 50mL (1+4)硫酸溶液。 3.4 10g/L 抗坏血酸溶液,临用现配。 3.5 标准溶液:准确称量0.2454g 经105℃烘干2h 的磷酸氢二钾(优级纯),加水溶解,移入100mL 容量瓶中,并稀释至刻度。此溶液 1.00mL 含 1mg 五氧化二磷。临用时,用水稀释成 1.00mL 含 10μg 五氧化二磷的标准溶液。 4 仪器 4.1 滤料采样夹:采样夹的滤料有效直径为35mm ,进口为敞开式,进口直径为30mm ,用O 形橡胶圈密封,尺寸规格见图1。Ⅰ、Ⅱ为滤料夹,Ⅲ为尾座。一个尾座应配备几套滤料夹备用。每套滤料采样夹使用时需作密封性能质量检查:方法是装上滤料后以10~15L/min 流量抽气,当密封进气口时,流量计应无指示。 4.2 空气采样器:流量范围1~15L/min ,流量稳定。使用时,用皂膜流量计校正采样系列在采样前和采样后的流量,流量误差小于5%。 4.3 具塞比色管:10mL ,刻度应校正。 4.4 分光光度计:用10mm 比色皿,在波长840nm 下,测吸光度。 5 采样 将采样滤纸安装在滤料采样夹上,夹紧。以5L/min 流量,采气100L 。记录采样时的温度和大气压力。 6 操作步骤 6.1 绘制标准曲线 取8支10mL 比色管,按下表制备标准色列管。 0 1 2 3 4 5 6 7 标准溶液V/mL 0.00 0.10 0.20 0.40 0.70 1.00 1.50 2.00 水V/mL 10.0 9.9 9.8 9.6 9.3 9.0 8.5 8.0 五氧化二磷含量m/μg 0 1 2 4 7 10 15 20 各管加入1mL 钼酸铵溶液及0.5mL 10g/L 抗坏血酸,混匀,置于沸水浴中准确加热3min ,取出后冷却。用10mm 比色皿,以水作参比,在波长840nm 或680nm 处测定吸光度。以五氧化二磷含量(μg )为横坐标,吸光度为纵坐标,绘制标准曲线,并计算回归线的斜率。以斜 率的倒数作为样品测定的计算因子B S (μg ) 。 中国分析网

金属铬 钒含量的测定 钽试剂三氯甲烷萃取分光光度法(标准状态:现行)

I C S77.100 H11 中华人民共和国国家标准 G B/T4702.18 2020 金属铬钒含量的测定 钽试剂三氯甲烷萃取分光光度法 C h r o m i u nm e t a l D e t e r m i n a t i o no f v a n a d i u mc o n t e n t T a n t a l u mr e a g e n t t r i c h l o r o m e t h a n e e x t r a c t i o n s p e c t r o p h t o m e t r y m e t h o d 2020-03-06发布2020-07-01实施 国家市场监督管理总局

前言 G B/T4702分为以下部分: G B/T4702.1金属铬铬含量的测定硫酸亚铁铵滴定法; G B/T4702.2金属铬硅含量的测定高氯酸重量法; G B/T4702.3金属铬磷的测定铋磷钼蓝分光光度法; G B/T4702.4金属铬铁含量的测定乙二胺四乙酸二钠滴定法和火焰原子吸收光谱法; G B/T4702.5金属铬铝含量的测定乙二胺四乙酸二钠滴定法和火焰原子吸收光谱法; G B/T4702.6金属铬铁二铝二硅和铜含量的测定电感耦合等离子体原子发射光谱法; G B/T4702.7金属铬氮含量的测定蒸馏分离-奈斯勒试剂分光光度法; G B/T4702.8金属铬化学分析方法蒸馏-钼蓝分光光度法测定砷量; G B/T4702.9金属铬化学分析方法结晶紫分光光度法测定锑量; G B/T4702.10金属铬化学分析方法铜试剂分光光度法测定铜量; G B/T4702.11金属铬化学分析方法茜素紫分光光度法测定锡量; G B/T4702.14金属铬化学分析方法红外线吸收法测定碳量; G B/T4702.15金属铬铅二锡二铋二锑二砷含量的测定等离子体质谱法; G B/T4702.16金属铬硫含量的测定红外线吸收法和燃烧中和滴定法; G B/T4702.17金属铬氧二氮二氢含量的测定惰性气体熔融红外吸收法和热导法; G B/T4702.18金属铬钒含量的测定钽试剂三氯甲烷萃取分光光度法三 本部分为G B/T4702的第18部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分由中国钢铁工业协会提出三 本部分由全国生铁及铁合金标准化技术委员会(S A C/T C318)归口三 本部分起草单位:中信锦州金属股份有限公司二青岛博正检验技术有限公司二马鞍山钢铁股份有限公司二安徽长江钢铁股份有限公司二江苏省沙钢钢铁研究院有限公司二鞍钢股份有限公司二青岛思文科检测技术有限公司二冶金工业信息标准研究院三 本部分主要起草人:王亮二吴银军二张纪君二宋祖峰二陈荣二李亚光二张珂二张杰二范玉二卢春生三

[方案]酚氯仿法提取DNA主要步骤和原理

[方案]酚氯仿法提取DNA主要步骤和原理酚氯仿法提取DNA主要步骤: 1.将动物组织放在1.5ml的离心管中,分别用75%、50%酒精和纯水梯度脱酒精。每个梯度脱水时间为5-10min 2.将组织放入研钵中,加入适量DNA裂解液(300μl),研磨后再加入 300μlDNA裂解液冲洗研磨棒。 3.将研磨好的组织液用移液枪加到1.5ml离心管,在管中加10μl蛋白酶K, 用封口带将离心管封口,放入摇床(56?,5h)。 4.加入等体积的Tris饱和酚(500μl),摇匀(10min)。 5.离心:12000R, 7min,4?。离心后分成上中下三层,上层为DNA,中层为蛋白质,下层为有机质。 6.吸取上层液体加入新的离心管。 7.配制Tris饱和酚:氯仿:异戊醇=25:24:1。 8.在含有上清液的离心管中加入Tris饱和酚、氯仿和异戊醇混合液450μl, 摇匀10min。 9.离心:12000R,7min,4?。 10.吸取上清液加到新的离心管,加入等体积的氯仿和异戊醇混合液400μl(氯仿:异戊醇=24:1)。 11.离心:12000R,7min,4?。 12.吸取上清液加入新的离心管,加入2.5倍经过-20?冷冻的100%的酒精。-20?过夜。 13.将样品取出,12000R,7min,4?离心。 14.弃上清,留白色沉淀(DNA),加400μl的75%的经过-20?冷冻的酒精,反复吹打溶解。

15.重复第14步骤2次(用75%酒精洗三次)。 16.提取DNA完成。 溴氯仿法提取DNA的原理: 用酚抽提细胞DNA时,有什么作用, 使蛋白质变性,同时抑制了DNase的降解作用。用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶于水相。 使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。2. 不能完全抑制RNase的活性。 氯仿的作用, 氯仿:克服酚的缺点;加速有机相与液相分层。 最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中) 用酚,氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么, 异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。 用乙醇沉淀DNA时,为什么加入单价的阳离子, 用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。 原理:动物和植物组织的脱氧核糖核蛋白(DNP)可溶于水或浓盐溶液(如1mol/L 氯化钠),但在0.14mol/L氯化钠盐溶液中溶解度最低,而核酸核蛋白(RNP)则在0.14mol/L氯化钠中溶解度最大,利用这一性质可将其分开。

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

化学毕业论文 岩黄连氯仿萃取部分药物活性成分的提取与结构解析

目录 摘要 (Ⅰ) Abstract (Ⅱ) 1 引言 (1) 1.1岩黄连简介 (1) 1.2岩黄连化学成分研究 (1) 1.3岩黄连药理作用 (1) 1.3.1抗肿瘤作用 (1) 1.3.2增进食欲作用 (1) 1.3.3提高免疫功能 (2) 1.4临床应用 (2) 1.4.1民间利用 (2) 1.4.2治疗肝炎 (2) 1.4.3利胆作用 (2) 1.5引种栽培研究 (2) 1.6小结 (3) 1.7研究前景 (3) 2 实验部分 (3) 2.1材料与仪器 (4) 2.1.1主要仪器 (4) 2.1.2试剂 (4) 2.2提取与分离 (4) 2.2.1提取 (4) 2.2.2硅胶柱层析 (5) 2.3分离工艺 (5) 2.3.1氯仿萃取工艺 (5)

2.3.2样品预处理 (5) 2.3.3干法装柱 (5) 2.3.4梯度洗脱 (5) 2.4馏分部位柱层析 (5) 2.4.1系统洗脱 (5) 2.4.2取样 (5) 2.4.3湿法装柱 (6) 2.4.4梯度洗脱 (6) 2.5结果与讨论 (7) 2.6结论 (7) 参考文献 (7) 附录 (8) 致谢 (10)

岩黄连氯仿萃取部分药物活性成分的提取与结构解析 1 引言 岩黄连(Corydalis saxicola Bunting),又名石生黄堇,为紫堇科紫堇属多年生草本植物,是黔桂高寒山区珍贵的中草药材,全草含脱氢卡维汀(岩黄连碱)等活性成分。因其功效近似黄连且生长于石缝中或岩石旁而得名。系罂粟科(Papaveraceae)紫堇属(Corydalis)植物石生黄堇(Corydalis saxicola Bunting)的全草及肥大的根茎部[1]。 本论文主要对岩黄连氯仿萃取部分药物活性成分的提取进行了研究。 1.1 岩黄连简介 岩黄连为多年生无毛直立草本[2],高10-40cm。主根黄色,木质,近圆柱形。具有显著的抗菌、消炎、镇痛和强安定作用,并有抑制肿瘤细胞作用;主治流行性热毒病、瘟疫、毒痢、痈肿疮毒、急慢性肝炎、乙型肝炎、丙型肝炎、丁型肝炎,肝硬化、肝脓疡、肝腹水、胆囊炎、肝癌等症[3]。目前己研制出相关的注射液和片剂等中成制剂和产品,主治肝炎特别是乙型肝炎、肝硬化、肝癌等,疗效显著,产品供不应求。到目前为止,国内有关学者对岩黄连在植物形态与分化学成分、药理作用、临床应用、引种栽培研究等方面已有一系列研究报道,国外学者还没有涉及相关研究。 1.2岩黄连化学成分研究 柯珉珉[4]应用pH梯度分离,在强碱性部位分得小聚碱及脱氢卡维丁,弱碱性部位经硅胶低压柱层析及制备性薄层层析分得7个纯净物,经物理常数及波谱鉴定,分别为卡维丁、3-基刺婴粟碱、延胡索甲素、四氢非洲防己胺、白屈菜红碱、(一)斯库来碱、原阿片碱。文献[5]还发现岩黄连中含有白蓬叶碱、berberine、dehydrocavidine、还含有沙明碱、黄连碱optisine、非洲防己碱等。从紫堇属植物岩黄连中获得的生物碱,按化学结构大致可分为9种类型即:原托品碱类(protopines)、原小檗碱类(protoberberines)、苯酞异喹啉类(phthalideisoquinolines)、苯骈菲啶类[benzo(c)phenanthridines]、阿朴碱类(aporphines)、苄基异喹啉类(benzylisoquinolines)、螺苄异喹啉类(spirobenzylisoquinolines)、枯拉灵类(cularines)、其它生物碱类。 对岩黄连进行化学成分研究,不仅有助于发现岩黄连的有效和特征成分,而且对该类中药的质量分析具有一定意义。 1.3 岩黄连药理作用 1.3.1抗肿瘤作用 利用半体内法试验证明:岩黄连总生物碱在1∶300浓度下,艾氏腹水癌(EAC)对小鼠肉瘤(S180)、大鼠Walker-256癌及EAC实体瘤均有一定的抑制作用[6];并能较快产生抗体,增进小鼠巨噬细胞吞噬功能,起到杀灭病毒作用[7]。文献[8]报道岩黄连中的主要成分脱氢卡维丁

(八)-气相色谱法(环境监测岗位专业考试)

(八)氯苯类化合物 分类号:W12-7 一、填空题 1.《水质氯苯的测定气相色谱法》(HJ/T74--2001)规定,水中一氯苯用溶剂萃取,检测器测定。① 答案:二硫化碳氢火焰离子化(FID) 2.《水质1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定气相色谱法》(GB/T 17131-1997)中,填充柱用80—100目101白色硅烷化担体做载体,以和为固定相。②答案:3%有机皂土3%DC-200 3.萃取水中氯苯类化合物出现乳化现象时,可采用加浓硫酸或采取及等方法进行破乳。①②③ 答案:离心冰冻 二、判断题 1.测定水中一氯苯的二硫化碳萃取气相色谱法选择性较好,未发现干扰物质。( )① 答案:正确 2.气相色谱法测定氯苯时,萃取溶剂二硫化碳中若含有杂质,需经纯化处理。( )① 答案:正确 3.气相色谱法测定氯苯时,氯苯标准工作液需临用现配。( )① 答案:正确 4.氯苯在水中较稳定,所以采集后的水样可以长时间保存。( )①② 答案:错误 正确答案为:氯苯在水中不很稳定,应在低温2—5℃冰箱中保存,不得超过7d。5.气相色谱法测定水中氯苯类化合物时,为检验氯苯类化合物可能存在的干扰,可采用两根极性不同的色谱柱进行分离鉴定。( )①② 答案:正确 6.用气相色谱法测定氯苯类化合物时,六六六、滴滴涕和PCB等有机氯化合物在色谱柱上的保留时间与氯苯类化合物不同,而不会干扰氯苯类的测定。( )①② 答案:正确 7.气相色谱法测定氯苯类化合物时,所有氯苯类化合物最好都用ECD检测器测定。( )①②③ 答案:错误 正确答案为:测定一氯苯用FID检测器。 8.气相色谱法测定氯苯类化合物时,若水样中氯苯含量较高,萃取后可以不浓缩直接上机测定。( )①②③

循环水中磷酸根的测定——磷钼蓝比色法

循环水中磷酸根的测定——磷钼蓝比色法 1.范围 本标准适用于循环冷中磷酸根的测定,测定范围为0.1mg/L~50mg/L。 2.方法概要 在0.45~0.55的硫酸介质中磷酸盐与钼酸钠生成磷钼杂多酸,然后被氯化亚锡还原成磷钼蓝,其蓝色深浅与水中正磷酸根含量成正比关系,在波长690nm处以比色法测定磷酸根的含量,磷酸根在2 ~25μg/mL范围内符合吸收定律。 有机磷酸(盐)可在0.05~0.20M的硫酸介质中用过硫酸铵加热分解为正磷酸盐后再用本方法测定。 回收率:90~110%。 3.仪器 3.1分光光度计 3.2电炉2KW 3.3水浴锅 4.试剂 4.1 钼酸钠—硫酸:将100mL浓硫酸(分析纯,比重1.84)慢慢地加到900mL 蒸馏水中,冷却后加入10g钼酸钠(分析纯),溶解后混匀。 4.2 氯化亚锡—甘油溶液:称取2.5g无水氯化亚锡(分析纯)于250mL烧杯中, 加入约0.5 mL浓盐酸加热溶解,然后加入100 mL甘油(丙三醇、分析纯)搅匀。 转入棕色滴瓶中,可长期使用。 4.3 硫酸:分析纯,配成1M的水溶液。 4.4 过硫酸铵:分析纯,配成0.4%的水溶液。 4.5 磷酸根标准溶液:准确称取0.7165g经105~110℃干燥过的分析纯磷酸二氢 钾(KH2PO4)溶于100mL蒸馏水中,然后转入500mL容量瓶中,用蒸馏水稀释至刻度,摇匀。每毫升此溶液含PO4 3-1.00mg。 用移液管移取10mL上述标准溶液于500mL容量瓶中,用蒸馏水稀释至刻度,摇匀,每毫升此溶液含PO4 3-20.0μg。

用移液管移取5mL 1.00mg/mL的标准溶液于1L容量瓶中,用蒸馏水稀释至刻度,摇匀,每毫升此溶液含PO4 3-5.00μg。 5.分析步骤 5.1标准曲线的绘制 5.1.1分别移取0、1、2、3、4、5mL 5.00μg/mL的PO4 3-标准溶液(即加 入的PO4 3-分别为0、5.00、10.0、15.0、20.0、25.0μg)于6个25mL比 色管中分别加入蒸馏水至约20mL,摇匀。 5.1.2分别加入3.5mL钼酸钠—硫酸溶液,并用蒸馏水稀释至刻度,摇匀。 5.1.3分别加入2滴氯化亚锡—甘油溶液,摇匀,放置15分钟。 5.1.4将溶液转入3cm比色皿中,在分光光度计上,以试剂空白为参比液, 于波长690nm处测量消光值E,以消光值E对PO4 3- 含量(μg)绘制标准 曲线。 5.2 样品分析 5.2.1 移取0.5mL~20mL过滤后的水样(含PO4 3- 2μg~25μg)于25mL 比色管中,加入蒸馏水至约20mL,摇匀。 5.2.2 以下操作同标准曲线的绘制5.1.2~5.1.4,测得消光值E,从标准曲 线上查出相应PO4 3- 的微克数。 6. 结果计算 水样的磷酸盐含量以mg/L计,按式(1)计算: PO4 3- =W / V =( K× E ) / V ( mg/L) (1) 式中: W——标准曲线查得PO4 3- 的含量(μg) V——取样体积(mL) K——标准曲线的斜率(PO4 3- ——E曲线) E——测得的消光值 取平行测定两结果的算术平均值作为水样的磷酸盐含量和总磷酸盐含量。

三氯甲烷的危害

三氯甲烷的危害 1、物质的理化常数 国标编号61553 CAS号67-66-3 中文名称三氯甲烷 英文名称trichloromethane;chloroform 别名氯仿 分子式CHCl3 外观与性状无色透明重质液体,极易挥发,有特殊气味 分子量119.39 蒸汽压21.28kPa(20℃) 熔点-63.5℃沸点:61.2℃溶解性不溶于水,溶于醇、醚、苯 密度相对密度(水=1)1.50;相对密度(空气=1)4.12 稳定性在贮存时,如果露置在日光、氧气或湿空气中,特别是和铁接触时容易被氧气氧化分解生成氯化氢和有毒的光气。 危险标记14(有毒品) 主要用途用于有机合成及麻醉剂等 2、对环境的影响 该物质对环境有危害,在地下水中有蓄积作用。其污染行为主要体现在空气和水中,但对食品及蔬菜也能造成污染。在水环境中很难被生物降解。 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。吸入或经皮肤吸收引起急性中毒,初期有头痛、头晕、恶心、呕吐、兴奋、皮肤粘膜有刺激症状,以后呈现精神紊乱、呼吸表浅、反向消失、昏迷等,重者发生呼吸麻痹、心室纤维性颤动、并可有肝、肾损害。误服中毒时,胃有烧灼感、伴恶心、呕吐、腹痛、腹泻以后出现麻醉症状。慢性中毒:主要引起肝脏损害,此外还有消化不良、乏力、头痛、失眠等症状,少数有肾损害。 二、毒理学资料及环境行为 毒性:属中等毒性。 急性毒性:LD50908mg/kg(大鼠经口);LC5047702mg/m3,4小时(大鼠吸入);人吸入120g/m3,吸入5~10分钟死亡;人吸入30~40g/m3,呕吐,眩晕的感觉;人吸入10g/m3,15分钟后眩晕和轻度恶心;人吸入1.9g/m3,能耐受30分钟,无不适。 亚急性慢性毒性:动物慢性毒性主要表现为肝肾损害。人长期职业接触三氯甲烷的慢性中毒症状主要是呕吐、消化不良、食欲减退、神经过敏、失眠、抑郁,直到神经错乱。血液中三氯甲烷浓度增高是三氯甲烷中毒的确证。 致癌性:IARC致癌性评论:对人可能致癌。 致畸:三氯甲烷对哺乳动物引起DNA损伤,对人淋巴姐妹染色体发生变化;三氯甲烷能引起肌肉、骨骼、肠胃系统及颅面部发育不正常;三氯甲烷有高度的胎毒,但是显然还不是强的致畸物质。

酚氯仿法提取DNA的原理

荧光原位杂交(FISH)探针的制备及其应用 概述 1、克隆性染色体异常是肿瘤的特征 2、染色体异常常见的类型 3、染色体异常的检测方法 二、荧光原位杂交及其探针 1、荧光原位杂交的原理 2、荧光原位杂交的探针 三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍) 一、概述 1、克隆性染色体异常是肿瘤的特征 1914年德国遗传学家Boveri就提出染色体畸变与肿瘤起源相关,然而这还仅仅只是一个假说;1960年Nowell和Hungerford在7例慢性髓系白血病(chronic myeloid leukemia,CML)的患者中发现后来被称为费城染色体(Philadelphia chromosome)的微小染色体;1973年Rowley证实了Ph染色体是9号和22号染色体易位所致,这是人们在肿瘤中认识到的第一个染色体易位;目前,已经有11,500篇文献报道了55,600多种克隆性细胞遗传学异常。这些染色体畸变,尤其是染色体易位及其相应的融合基因在肿瘤致病的起始阶段有着重要的作用,无不说明克隆性细胞遗传学异常是肿瘤的特征,在肿瘤起源中起重要作用。

下图是各种疾病报告的克隆性染色体异常病例数

2、染色体异常的常见类型 染色体异常指数目异常和结构异常两类:前者包括整条染色体数目的扩增和缺失;后者包括染色体易位、插入、倒置、区带的缺失或扩增等。 下图是染色体数目异常

染色体结构异常 3、染色体异常的检测方法 染色体异常的识别得益于二十世纪六十年代后发展起来的胰蛋白酶-姬姆萨染色和常规显带技术,使得常规筛查全基因组染色体异常和检测染色体核型改变成为可能。染色体显带是细胞遗传学分析技术中标准和常用的方法,但耗时且依赖于获得良好的分裂相,还难于分析复杂和隐匿的异常。

磷钼蓝比色法测量磷含量

发酵液中含有大量的微生物和有机物,首先必须将发酵液进行硝化,使其完全转化成无机物,然后取硝化液,用磷钼蓝比色方法测量消化液中的磷含量。其详细 或者用HPLC法选用“氮磷检测器” 不过,你的样品需要前处理,我看用楼上的方法就行 其他的按我说的做就行 水分完全蒸发至干,然后加入少量浓硫酸和硫酸钾以及极少量的硫酸铜加热至烧瓶内的有机物完全转变成无机物,溶液变澄清为止。将溶液转移定容后就可以按 可以用比色法,但要注意PH的控制;如果含量高,可以考虑用奎钼柠酮沉淀, 1.原理 食物中的有机物经酸氧化分解,使磷在酸性条件下与钼酸铵结合生成磷钼酸铵。此化合物经对苯二酚、亚硫酸钠还原成兰色化合物--钼蓝。用分光光度计在波长660nm处测定钼蓝的吸光值,以测定磷的含量。反应式为: H3PO4+12(NH4)3MoO4+21HNO3→(NH4)3PO4·12MoO3+21NH4NO3+12H2O 2.适用范围 依据中华人民共和国国家标准:GB12393-90,此方法适用于所有食品及保健品中磷元素含量的测定。 3.仪器 722可见分光光度计 4.试剂 (1)硝酸(G.R),高氯酸(G.R) 硫酸(A.R) (2)混合酸消化液:硝酸+高氯酸按4+1混合 (3) 15%(V/V)硫酸溶液:取15ml硫酸缓慢加入到80ml水中,并定容至100ml。(4) 5%(W/V)钼酸铵溶液:取5g钼酸铵,用15%硫酸溶液稀释至100ml。(5)对苯二酚溶液:取0.5g对苯二酚于100ml水中,溶解后加一滴浓硫酸。(6) 20%(W/V)亚硫酸钠溶液(注:此溶液需在每次实验前临时配制):称取一定量的亚硫酸钠,用蒸馏水溶解即可。 (7)标准质控物:猪肝粉(国家标准物质研究中心提供),质控物需室温干燥保存。 (8)国家标准物质中心提供:磷标准储备溶液,浓度为1000μg/mL (9)标准中间液的配制:吸取1ml磷标准储备溶液,然后移入100ml容量瓶中,

三氯甲烷

1、物质的理化常数 2、对环境的影响 该物质对环境有危害,在地下水中有蓄积作用。其污染行为主要体现在空气和水中,但对食品及蔬菜也能造成污染。在水环境中很难被生物降解。 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。吸入或经皮肤吸收引起急性中毒,初期有头痛、头晕、恶心、呕吐、兴奋、皮肤粘膜有刺激症状,以后呈现精神紊乱、呼吸表浅、反向消失、昏迷等,重者发生呼吸麻痹、心室纤维性颤动、并可有肝、肾损害。误服中毒时,胃有烧灼感、伴恶心、呕吐、腹痛、腹泻以后出现麻醉症状。 慢性中毒:主要引起肝脏损害,此外还有消化不良、乏力、头痛、失眠等症状,少数有肾损害。

二、毒理学资料及环境行为 毒性:属中等毒性。 急性毒性:LD50908mg/kg(大鼠经口);LC5047702mg/m3,4小时(大鼠吸入);人吸入120g/m3,吸入5~10分钟死亡;人吸入30~40g/m3,呕吐,眩晕的感觉;人吸入10g/m3,15分钟后眩晕和轻度恶心;人吸入1.9g/m3,能耐受30分钟,无不适。 亚急性慢性毒性:动物慢性毒性主要表现为肝肾损害。人长期职业接触三氯甲烷的慢性中毒症状主要是呕吐、消化不良、食欲减退、神经过敏、失眠、抑郁,直到神经错乱。血液中三氯甲烷浓度增高是三氯甲烷中毒的确证。 致癌性:IARC致癌性评论:对人可能致癌。 致畸:三氯甲烷对哺乳动物引起DNA损伤,对人淋巴姐妹染色体发生变化;三氯甲烷能引起肌肉、骨骼、肠胃系统及颅面部发育不正常;三氯甲烷有高度的胎毒,但是显然还不是强的致畸物质。 污染来源:三氯甲烷是有机合成的重要原料,用于制作氟里昂、脂类、树脂、橡胶、油漆、磷和碘的溶剂。也用于合成纤维、塑料、干洗剂、杀虫剂、地板蜡、氟代烃冷冻剂、氟代烃塑料等的制造。医药行业还用作溶剂和萃取剂提取抗生素。在以上提及的行业中生产或使用三氯甲烷或在贮运三氯甲烷时的意外事故均可能造成三氯甲烷对环境的污染。 代谢和降解:人体吸入三氯甲烷蒸气后,若60%~80%进入体内,血中三氯甲烷浓度与大脑中浓度相同,而在脂肪组织中的浓度则高出近10倍,这是由于三氯甲烷在小鼠、大鼠和人体中可迅速被吸收,主要分布于全身的脂肪储库和组织中。被吸收的三氯甲烷大部分被肝脏解毒,随尿排泄的极少。人体内的三氯甲烷约30%~50%可被代谢为二氯化碳和二氯甲烷。一般认为,存在于水环境中的三氯甲烷很难被生物所降解。 残留与蓄积:生产甲烷系氯化烃的企业是三氯甲烷进入环境的经常性污染源。使用氯消毒的饮水中存在的某些有机氯化合物(主要为三氯甲烷),其含量可达到对人们的健康产生危害。饮用水氯化后能在水中形成卤素化合物,这是游离氯与天然有机化合物(腐植酸、蛋白质、氨基酸、碳氢化合物、多糖等),或人造有机物(如高分子聚合物、凝结剂)作用的结果。有人经过对照试验后指出,当水中含有腐植质时,过滤后加氯处理比混凝前加氯能减少三氯甲烷的产生。因此,自来水厂进行水处理时,先除去水中的悬浮物,再加氯处理能直接减少三氯甲烷的生成。根据美国环保局调查结果发现,加氯处理后的饮用水95%~100%含有三氯甲烷,平均浓度为20μg/L,最高达311μg/L。对病人(检查33例病人的205个血样)行外科手术时,麻醉“昏睡”期的静脉血三氯甲烷浓度为40~48mg/L,兴奋期

氯仿萃取乳化和破乳

1. 安全 氯仿有毒,长时间加热会使氯仿挥发,同时也会使氯仿分解产生光气,具有很大的致癌毒性,因此以下所有操作必须在通风厨或其它安全场所进行。 2. 预防乳化 不发生乳化总比乳化后再处理要好的多,试试下面的方法,或许在萃取过程中就不会发生乳化了。 (1)用事先配制的、用水饱和的氯仿代替直接使用氯仿,可以避免或减少乳化现象。也有人推荐使用NaCl水溶液饱和过的氯仿。 (2)萃取过程只需轻轻的颠倒7~8次就好了,没有必要象作鸡尾酒一样用力,否则自讨苦吃。轻摇,少量多次加入氯仿,是有效减少乳化现象的良策。 (3)在对于水相物质无影响的前提下,可以适当提高水相的pH值,以减少乳化。 (4)在实验中,为了保证萃取效率,可以在一张垫子上,水平滚动分液漏斗,每次振摇3分钟,静置几分钟后再振摇第二次,每次萃取振摇三次就差不多了,萃取效率可以保证,乳化也不会太严重。 3. 破乳方法 如果用上面的方法还是产生了乳化,试试下面的方法来破乳。 (1)加入低分子溶剂,如乙醇,甲醇都可以。沿着管壁加入几滴无水乙醇,具体的量在1~2ml/100ml就可以,先让其从一边开始破乳,慢慢就会分层了!(2)加热:快速,容易实现,一般将混合液加热到60~7℃,能够很好分层。(3)如果乳化层在水相和氯仿层中间,还可以将分液漏斗平放,小心超声振荡一会儿,会有较好的效果。 (4)也可以用离心,一般转速3000~5000,5~10min。 (5)可将乳化层分出,再加入新的氯仿进行萃取,这样不断萃取几次即可达到目的。 (6)抽虑。 (7)热回流。 (8)如果样品中有不稳定物质,可以尝试用冷冻法,方法是:将乳化液倒到烧杯中,在乳化液中加一些水后,放入冰箱的冷冻室过夜,水被冷冻后,取出慢慢融化,就破乳分层了,基夲上无须手忙脚乱。另外也可在乳化液中加含水的氯仿和二氯甲烷混合液后,再深冷冻,如上述方法处理。 (9)乳化不严重的话:拿块热的布包裹一下分液漏斗,很快乳化造成的小泡泡就不见了。 (10)先分离出未乳化的氯仿层,乳化层可以稍摇晃一下,静置几分钟,又会有氯仿层沉积下来,再把这少部分氯仿层分离出来,然后再静置、再分离就可以了。

烃油指数 溶剂萃取气相色谱法

FHZHJSZISO0008 水质烃油指数的测定溶剂萃取气相色谱法 F-HZ-HJ-SZ-ISO-008 水质—烃油指数的测定—溶剂萃取气相色谱法 1 适用范围 本方法适用于地表水、废水和污水处理厂的水中浓度大于0.1mg/L的烃油指数的测定。 2 原理概要 水样用萃取剂萃取。极性物质经佛罗里土的吸收被除去,纯化的部分用配有非极性柱和火焰离子化检测器的毛细管气相色谱分析。测量正癸烷和正四十烷之间的总峰面积。矿物油的浓度通过包含两种特定矿物油的外标法定量,烃油指数(hydrocarbon oil index)即可计算。 3 主要仪器和试剂 3.1 仪器 常规实验室玻璃仪器。气相色谱装置,气相色谱柱(可用的固定相包括:非极性的固定化了的100%的二甲基聚硅氧烷或95%二甲基聚硅氧烷/5%二苯基聚硅氧烷或改良的硅氧烷聚合物),色谱数据处理系统,采样瓶,离心机,离心管,微分离器,吸收柱,Kuderna Danish 仪器,带棒的磁力搅拌器。 3.2 主要试剂 所有试剂为试剂纯。水是蒸馏过的水或用纯化水发生器的水,这种发生器能除去痕量的有机物。萃取剂,无水硫酸钠,七水硫酸镁,无机酸(如12mol/L盐酸),丙酮,佛罗里土,矿物油混合物,直链烷烃标准混合物,参比物质(正癸烷,正四十烷,正十二烯),含参比物质的萃取剂,硬脂酰盐。 4 过程简述 4.1 采样 样品的采集和保存参考ISO 5667-3。 4.2 样品制备 将样品充入采样瓶的90%体积,密封,称重,使试样在4℃下保存,尽快萃取。 4.3 测试 4.3.1 空白实验 4.3.2 测定回收率 4.3.3 萃取 将样品冷却到10℃,加入无机酸酸化样品至pH值为2,在每900mL样品中加入80g硫酸镁以防止乳化。加入50mL萃取剂标准溶液和一个磁力搅拌棒,盖好瓶子,在磁力搅拌器中剧烈搅拌30min。拿掉塞子换上微分离器,加入足量的水以取出微分离器中的萃取剂层,把它转移到吸收柱中。 4.3.4 萃取 把萃取剂层转移到一个小柱子里,(柱子装填了2g佛罗里土,涂抹了一层2g的硫酸钠),经过柱子到一个浓缩装置中,用10mL萃取剂洗柱子。 4.3.5 浓缩 用浓缩装置将萃取物浓缩至6mL,进一步浓缩至稍小于1mL,用萃取剂补至体积为1mL 或通过称重计算浓缩后的萃取物的确切体积。把最后的萃取物转移到一个隔膜上待气相色谱分析。 4.3.6 佛罗里土适用性的测试 4.3.7 气相色谱测定 气相色谱条件: 程序升温汽化进样,进样温度50℃~300℃;进样体积1μL;柱长30m,柱内径0.25μm;

相关文档
相关文档 最新文档