文档库 最新最全的文档下载
当前位置:文档库 › 集成运放LM324的应用

集成运放LM324的应用

集成运放LM324的应用
集成运放LM324的应用

集成运算放大器LM324的应用

(2011年全国大学生电子设计竞赛综合测评题)

使用一片通用四运放芯片LM324组成电路框图见图1(a),实现下述功能:

使用低频信号源产生,的正弦波信号,

加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号uo1,uo1如图1(b)所示,T1=0.5ms,允许T1有±5%的误差。

图中要求加法器的输出电压ui2=10ui1+uo1。ui2经选频滤波器滤除uo1频率分量,选出f0信号为uo2,uo2为峰峰值等于9V的正弦信号,用示波器观察无明

显失真。uo2信号再经比较器后在1kΩ负载上得到峰峰值为2V的输出电压uo3。

电源只能选用+12V和+5V两种单电源,由稳压电源供给。不得使用额外电源

和其它型号运算放大器。

要求预留ui1、ui2、uo1、uo2和uo3的测试端子。

方案论证

(1)三角波发生电路

因为只提供了一片LM324,然而后面的加法器,滤波,比较器必定会用掉三个运放,因此三角波的产生电路不能用掉两个运放,本课设采用一片LM324的中一个运放接成滞回比较器,三角波由滞回比较器的反相端输出。

(2)加法器电路

采用LM324中的一个运放,在反相端按照课题要求连接相应阻值的电阻。

(单电源时注意输入信号的抬高)。

(3)滤波电路

采用LM324中的一个运放,在积分运算电路的基础上用电阻和电容组成压控电压源二阶滤波电路。也可以采用带通滤波器。

(4)比较器电路

采用LM324中的一个运放,使其工作在开环状态,接成比较器。

(5)不同的部分用电容耦合减轻级与级之间的影响。

主要电路设计及分析

1.三角波发生电路

设计时要求反相端输出频率为2000HZ的三角波,可根据T=2R5*C1*ln(1+2R3/R1)计算出。电阻,电容值去市场买到的最接近的值,并且接入电位器R5,便于三角波的产生及调试。

2.加法器电路

输出波形Ui2=R6(Ui1/R4+Uo1/R2) 3.滤波器电路

fo=1/(2π√C3*C4*R8*R9) 4.比较器电路

电路图及其说明

说明:x OUT代表:(1为三角波产生器,2为加法器,3为滤波器,4为比较器)的输出

x LAST(x=2为加法器,3为滤波器,4为比较器)输入上一级产生的波形

4FIRST代表:比较器输入1产生的三角波

2SIN代表:输入正弦波

电路检测:

1.三角波发生电路检测

将示波器接入LM324的2脚上,观察示波器上的现象如图

经过实验确实能得到上述波形,因为三角波发生电路没有问题。

2.加法器电路检测

正弦信号和三角波信号由运放的3脚输入,7脚输出连示波器观察波形如图

经过实验确实能得到上述波形,因为加法器电路没有问题。

3.滤波电路检测

7脚输出的合成波经10脚输入,8脚输出滤波后的信号接入示波器,观察波形如图

经过实验得到的波形和仿真结果有偏差,波形有失真,分析原因是因为三角波与正弦波频率成整数倍且大小相近,实际波形符合题目要求,在误差范围内。

4.比较器电路检测

将滤波后的正弦波输入12脚,三角波输入13脚,有14脚输出矩形波,接入示波器波行如下图。

经过实验得到的波形峰峰值为2V,频率为500HZ,波形有少许毛刺,在误差范围内。

LM324及其常用应用电路,用法

LM324 lm124、lm224和lm324引脚功能及内部电路完全一致。324 系列运算放大器是价格便宜的带差动输入功能的四运算放大器。可工作在单电源下,电压范 围是3.0V-32V或+16V. LM324的特点: 1.短跑保护输出 2.真差动输入级 3.可单电源工作:3V-32V 4.低偏置电流:最大100nA(LM324A) 5.每封装含四个运算放大器。 6.具有内部补偿的功能。 7.共模范围扩展到负电源 8.行业标准的引脚排列 9.输入端具有静电保护功能 LM324引脚图(管脚图)

LM324应用电路图: 1.LM324电压参考电路图 2.LM324多路反馈带通滤波器电路图

3.LM324高阻抗差动放大器电路图

4.LM324函数发生器电路图 5.LM324双四级滤波器

6.LM324维思电桥振荡器电路图

7.LM324滞后比较器电路图 LM324引脚图资料与电路应用 LM324引脚图资料与电路应用 LM324资料: LM324为四运放集成电路,采用14脚双列直插塑料封装。,内部有四个运算放大器,有相位补偿电路。电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。它的输入电压可低到地电位,而输出电压范围为O~Vcc。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。 LM324引脚排列见图1。2。 lm124、lm224和lm324引脚功能及内部电路完全一致。lm124是军品;lm224为工业品;而lm324为民品。由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点, 因此他被非常广泛的应用在各种电路中。《lm324引脚图》

LM324应用电路

LM324应用电路——自制镍氢电池充电器 本文介绍的自制充电器用LM324的4个运算放大器作为比较器,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进 行充电,其原理电路见图1。其特点是电路简单、工作可靠、无需调整、元器件容易购买等,下面分几个部分进行介绍。 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vr ef,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用

导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

lm324中文资料详解

LM324中文资料大全 LM324系列器件带有真差动输入的四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。 LM324系列由四个独立的,高增益,内部频率补偿运算放大器,其中专为从单电源供电的电压范围经营。从分裂电源的操作也有可能和低电源电流消耗是独立的电源电压的幅度。 应用领域包括传感器放大器,直流增益模块和所有传统的运算放大器现在可以更容易地在单电源系统中实现的电路。例如,可直接操作的LM324系列,这是用来在数字系统中,轻松地将提供所需的接口电路,而无需额外的±15V电源标准的5V电源电压。 运放类型:低功率 放大器数目:4 带宽:1.2MHz 针脚数:14 工作温度范围:0°C to +70°C 封装类型:SOIC 3dB带宽增益乘积:1.2MHz 变化斜率:0.5V/μs 器件标号:324 器件标记:LM324AD 增益带宽:1.2MHz 工作温度最低:0°C 工作温度最高:70°C 放大器类型:低功耗 温度范围:商用 电源电压最大:32V 电源电压最小:3V 芯片标号:324 表面安装器件:表面安装 输入偏移电压最大:7mV 运放特点:高增益频率补偿运算 逻辑功能号:324 额定电源电压, +:15V 1.短路保护输出 2.真差动输入级 3.可单电源工作:3V-32V 4.低偏置电流:最大100nA

LM324的波形变换电路(DIY)

集成运放LM324的波形变换电路设计 一、设计目的 1、掌握LM324的应用 2、掌握三角波产生器、加法器、滤波器、比较器的设计 二、设计原理 1、原理:LM324内部包括有四个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 2、LM324的特点: 1、内部频率补偿 2、直流电压增益高(约100dB) 3、单位增益频带宽(约1MHz) 4、电源电压范围宽:单电源(3—32V)、双电源(±1.5—±16V) 5、低功耗电流,适合于电池供电 6、低输入偏流、低输入失调电压和失调电流 7、共模输入电压范围宽,包括接地 8、差模输入电压范围宽,等于电源电压范围 9、输出电压摆幅大(0至VCC-1.5V) 3、LM324引脚图 4、LM324内部电路图

三、实验设备与器件 1、基本元件清单 LM324芯片、导线若干、铁丝、14脚插槽、二极管(IN4700A) 电阻: 680、1K 、2K 、3K 、10K 、47K 、20K 、30K 、100K 、1M 电位器 :2K 、10K 、20K 、50K 电容:0.3uF 、0.001uF 、0.1uF 、10uF 电路板 1块 2、实验仪器 直流电源、双踪示波器、数字万用表、信号发生器。 四、设计要求 使用一片通用四运放芯片 LM324组成电路框图见图1(a),实 现下述功能: 使用低频信号源产生)V (2sin 1.001t f u i π=,z f H 5000=的正弦波信号,加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号1o u ,1o u 如图1(b)所示,ms T 5.01=,允许1T 有±5%的误差。

LM324四运放集成电路图文详解

LM324四运放集成电路图文详解 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2。 图 1 图 2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用, 价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 1.反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大 等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是 消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。

2.同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 3.交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同

LM324应用电路设计..

电网络实验报告 ——基于运放LM324的波形发生器 指导教师:邵定国 学 生:袁同浩 学 号: 13721244 2013-10-13 上海大学

目录 摘要 (2) 一三角波发生电路 (3) 二正弦信号 (5) 三正弦波和三角波的叠加。 (6) 四滤波环节 (8) 五比较环节 (10) 小结 (12) 附录 (13)

摘要 本文使用LM324芯片的4个集成运算放大器实现了三角波发生电路、同相加法器、二阶RC网络有源滤波器和滞回比较器。每个子电路分别使用一个运放。 首先搭建出三角波发生电路,发出频率为2K HZ峰峰值为4V的三角波,记为;然后用信号发生器发出频率为500HZ、最大值为0.1V的正弦波信号;随后将两个信号送到同相加法器得到信号;再将送入滤波器,将三角波信号滤除,得到正弦信号记为;最后将和三角波信号分别送到滞回比较器的反相端和同相端,进行比较同时输出方波信号。

一 三角波发生电路 三角波发生电路如图1所示。电阻R1和R3构成正反馈,C1和R2构成负反馈。输出电压由5.1V 的稳压管钳位。 R3 图4 三角波发生电路 记运放的同相端和反相端电压分别为:、 。当 大于 时,放大器输出端输出 , 是稳压管电压,实际在5.6V 左右。此时电容C1被充电,电容C1上电压线性增大。反之,电容C1上的电压线性减小。所以可以从C1上取出三角波。 三角波的频率 三角波幅值

其中,是稳压管V1和V2的稳压值。按照要求,f为2kHZ。三角波幅值为2V。 取,R3=10K,R1=5.5K,C1=0.1uF。则可计算得到R2的值: 实际仿真时,进行了微调,最终R2取值4k。仿真结果如图2所示。 图 2 三角波波形

通用四运放的原理LM324

通用四运放的原理与应用(LM324为例) 本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器

见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。 LM324作有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的 多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。

lm324运放的运用实验

电子技术课程综合设计 实验报告 一、实验目的 1、熟练掌握各种常用实验仪器的使用方法。 2、熟悉LM324运放的典型参数及应用。 3、掌握PDF 资料的查询与阅读方法。 4、掌握电子设计与调试的基本流程及方法。 二、实验内容 设计要求: 使用一片通用四运放芯片LM324组成电路框图见图1,实现下述功能: 图1 1. 使用低频信号源产生U i1p-p = 0.2V ,f 0 = 100Hz 的正弦波信号,加至加法器输入端。 2. 自制三角波产生器产生T=0.5ms (±5%),V p-p =4V 的类似三角波信号1o u ,并加至加法器的另一输入端。 3. 自制加法器,使其输出电压U i2 = 10U i1+U o1。 4. 自制选频滤波器,滤除1o u 频率分量,得到峰峰值等于9V 的正弦信号2o u ,2 o u 用示波器观察无明显失真。 5. 将1o u 和2o u 送入自制比较器,其输出在1K Ω负载上得到峰峰值为2V 的输出电

压 u。 3o 方案论证与数值计算: 三角波发生部分:(徐伟骏负责) 方案一: 三角波发生器电路按照由方波经过窗比较器得到,需要两个放大器,不满足实验要求。 方案二: 利用RC充放电模拟三角波,通过电位器来调节周期至实验要求的值。达到合理利用现有资源高效达到要求的目的。 因此我们采用方案二。 题目要求三角波发生器产生的周期为T=0.5ms,Vpp=4V的类似三角波。我们采用两个电位器对电路第一部分要求的周期和峰峰值进行调节。R取值范围为0-20K,由公式T=1/(RC);选取电容为较常见的473(0.047uf),峰峰值由公式:计算得R1=2R2;R2=0-20K,所以取R1为20K-30K; 带通滤波器:(留君侠负责)

LM324运放应用电路大全

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

lm324典型电路

LM324四运放的应用 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组 运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。LM324的引脚排列见图2。 图 1 图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 ●反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 ●同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 ●交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形 ●有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率 ,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB 带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。

LM324四运放的应用大全

LM324四运放的应用大全 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相 同。LM324的引脚排列见图2。 图1 图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广 泛应用在各种电路中。下面介绍其应用实例。 反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进

行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。 测温电路 见附图。感温探头采用一只硅三极管3DG6,把它接成二极管形式。硅晶体管发射结电压的温度系数约为-2.5mV/℃,即温度每上升1度,发射结电压变会下降2.5mV。运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低。 这是一个线性放大过程。在A1输出端接上测量或处理电路,便可对温度进行指示或进行其它自动控制有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率fo处的电

LM324运算放大器应用电路

LM324运算放大器应用电路全集 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324 pdf:https://www.wendangku.net/doc/096839993.html,/soft/39/2008/200805053498.html LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。

四运放LM324的实用电路设计及电路原理

本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的 引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。 下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。

运放LM324中文资料

LM324引脚图资料 LM324为四运放集成电路,采用14脚双列直插塑料封装。,内部有四个运算放大器,有相位补偿电路。电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。它的输入电压可低到地电位,而输出电压范围为O~Vcc。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。 LM324引脚排列见图1。2。 lm124、lm224和lm324引脚功能及内部电路完全一致。lm124是军品;lm224为工业品;而lm324为民品。由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。 《lm324引脚图》 《lm324管脚图》 《lm324原理图》

《lm324工作电压》 .LM324应用电路图

LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。可工作在单电源下,电压范围是3.0V-32V或+16V. LM324的特点: 1.短跑保护输出 2.真差动输入级 3.可单电源工作:3V-32V 4.低偏置电流:最大100nA(LM324A) 5.每封装含四个运算放大器。 6.具有内部补偿的功能。 7.共模范围扩展到负电源 8.行业标准的引脚排列 9.输入端具有静电保护功能 2.LM324多路反馈带通滤波器电路图 3.LM324高阻抗差动放大器电路图

LM324集成运算放大器

ORDERING INFORMATION QUAD OPERATION AMPLIFIERS LM324 is consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. Operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts voltage. Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single power supply systems. EQUIMMENT CIRCUIT 2008 - Ver. 1.0 HTC Device Package LM324D 14 SOP LM324N 14 DIP

ABSOLUTE MAXIMUM RATINGS CHARACTERISTIC Power Supply Voltage Differential Input Voltage Input Voltage Output Short Circuit to GND V CC ≤15V T A =25℃ (One Amp)Power Dissipation Operating Temperature Range Storage Temperature Range Electrical characterisitics at specified free-air temperature, V CC =5V(unless otherwise noted) V IO V CC =5V to MAX, Input Offset Voltage V IC =V ICR MIN, V O =1.4V αV IO Average Temperature Coefficient of Input Offset Voltage I IO Input Offset Current αllo Average Temperature Coefficient of Input Offset Current I IB Input Bias Current V ICR Common-Mode Input Voltage Range R L ≥2? V OH V CC =MAX, R L =2? High-Level Output Voltage V CC =MAX, R L ≥10? V OL Low-Level Output Voltage A VD V CC =15V, Large-Signal Differential V O =1V to 11V, Voltage Amplification R L ≥2? CMRR V CC =5V to MAX, Common-Mode Rejection Ratio VIC=VICR MIN, K SVR Supply Voltage Rejection Ratio(ΔV CC /ΔV IO ) V 01/V 02 Crosstalk Attenuation V CC =15V, V ID =1V, V O =0 I O V CC =15V, Output Current V ID =1V, V O =15V V ID =1V, V O =200? I OS V CC at 5V, Short-Circuit Output Current GND at -5V, V O =0 I CC V O -2.5V, No Load Supply Current (Four Amplifiers) V CC =MAX, V O =0.5V CC , No load * All characteristics are measured under open loop conditions with zero common-mode input voltage unless otherwise specified <> V CC for testing purpose is 30V. Full range is 0℃ to 70℃. HTC V Continuous SYMBOL VALUE UNIT V V CC ±18 or 32 V V I -0.3 to +32V I(DIFF)32 T OPR 0~+70℃P D 570?T STG -65 to +150 ℃ PARAMETER *TEST CONDITIONS LM324D UNIT MIN TYP MAX ? Full Range 9 25℃3 7Full Range 7?/℃ V O =1.4V 25℃2 50?Full Range 150 Full Range 10?/℃ V O =1.4V 25℃-20 -250?Full Range -500 V CC =5V to MAX 25℃0toV CC -1.5Full Range 0toV CC -2V V 2825℃ R L ≥10?Full Range Full Range 27 V CC -1.5 Full Range 26520 ?25℃25100 V/? Full Range 1525℃6580? V CC =5V to MAX 25℃65 100? f=1 kHz to 20kHz 25℃ 120? 25℃-20 -30?Full Range -1025℃1020Full Range 525℃12 3025℃ ±40±60?Full Range 0.7 1.2?Full Range 1.1 3

LM324应用原理

LM324应用原理 LM124/LM224/LM324四运算放大器芯片的中文应用资料 LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM124/LM224/LM324的引脚排列见图2。 图一图二 lm324功能引脚图 图3 LM324/LM124/LM224集成电路内部电路图 1/4 主要参数:

参数名称测试条件最小典型最大单位输入失调电压 U0?1.4V RS=0 - 2.0 7.0 mV 输入失调电流 - - 5.0 50 nA 输入偏置电流 - - 45250 nA 大信号电压增益 U+=15V,RL=5kΩ 88k 100k -- 电源电流 U+=30V,Uo=0,RL=? 1.5 3.0 - mA 共模抑制比Rs?10kΩ 6570 - dB 极限参数:LM124为陶瓷封装 符号参数单位 LM124 LM224 LM324 Supply Voltage 电源电压 Vcc ?16 or 32 V Input Voltage 输入电压 Vi -0.3 to +32 V Differential Input Voltage -(*) 差分输入Vid +32 +32 +32 V 电压 Power 后缀N Suffix 500 500 500 Dissipation功Ptot mW 后缀D Suffix 耗 - 400 400 - - Output Short-circuit Duration -(note 1) Infinite Input Current (note 6) 输入电流 Iin 50 50 50 mA Operating Free Air Temperature Range -55 to -40 to ? Toper 0 to +70 工作温度 +125 +105 Storage Temperature Range 储存温度范-65 to -65 to ? Tstg -65 to +150 围 +150 +150 由于LM124/LM224/LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 应用电路

LM324应用电路图

. LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。可工作在单电源下,电压范围是3.0V-32V或+16V. LM324的特点: 1.短跑保护输出 2.真差动输入级 3.可单电源工作:3V-32V 4.低偏置电流:最大100nA(LM324A) 5.每封装含四个运算放大器。 6.具有内部补偿的功能。 7.共模范围扩展到负电源 8.行业标准的引脚排列 9.输入端具有静电保护功能 LM324引脚图(管脚图) ;. . LM324应用电路图: 1.LM324电压参考电路图

;. . 2.LM324多路反馈带通滤波器电路图 3.LM324高阻抗差动放大器电路图;. .

4.LM324函数发生器电路图 5.LM324双四级滤波器 ;. .

6.LM324维思电桥振荡器电路图 7.LM324滞后比较器电路图 ;. . 恒流源

运算放大器LM324的D单元构成恒流源,使用中为保证恒流源的线性度,应充分保证电阻R16与R17阻值不小于R14与 R15的10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波的线性度,调试时有时测得的锯齿波为下凹的,这是由于R14与R15或R16与R17两个电阻之间本文就高性能集成四运放LM324的参数,进行实用电路阻值有较大的差值造成的。设计,论述电路原理。 ;. . LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它 的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 价,,可单电源使用由于LM324四运放电路具有电源电压范围宽,静态功耗小 下面介绍其应用实例。 ,因此被广泛应用在各种电路中。格低廉等优点 作反相交流放大器LM324 可用于扩音机前置放大电路见附图。此放大器可代替晶体管进行交流放大, 是消,C1组成R21/2V+偏置等。电路无需调试。放大器采用单电源供电, 由R1、振电容。

LM324四运放集成电路图文详解

LM324四运放集成电路图文详解 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。 它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独 立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“ +”、 “-”为两个信号输入端,“ V+”、“V - ”为正、负电源端,“ Vo”为输出端。 两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端 Vo 的信号与该输 入端的位相反;Vi+ ( +)为同相输入端,表示运放输出端 Vo 的信号与该输入端 的相位相同。LM324的引脚排列见图2。 图1图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用, 价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 1. 反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大, 可用于扩音机前置放大 等。电路无需调试。放大器采用单电源供电,由 R1、R2组成1/2V+偏置,C1是 消振电容。 放大器电压放大倍数Av 仅由外接电阻Ri 、Rf 决定:Av=-Rf/Ri 。负号表示 输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为 Ri 。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定 Rf Co 和Ci 为耦合电容。 (同相输入端〉 V o 13 12 11 19 9 S 10 14 13 12 1 4 1 2

2. 同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为Rd R4的阻值范围为几千欧姆到几十千欧姆。 3. 交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、 分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均 把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1 ,与分立元件组成的射极跟随器作用相同 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输 出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤 波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同 频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这

相关文档