文档库 最新最全的文档下载
当前位置:文档库 › 岩土的性质描述

岩土的性质描述

岩土的性质描述
岩土的性质描述

H.1 一般规定

H.1.1 岩石的描述应包括地质年代、地质名称、风化程度、颜色、主要矿物、结构、构造和岩石质量指标RQD。对沉积岩应着重描述沉积物的颗粒大小、形状、胶结物成分和胶结程度;对岩浆岩和变质岩应着重描述矿物结晶大小和结晶程度,根据岩石质量指标RQD,可分为好的(RQD>90)、较好的(RQD=75-90)、较差的(RQD=50-75)、差的(RQD=25-50)和极差的(RQD<25)。

H.1.2 岩体的描述应包括结构面、结构体、岩层厚度和结构类型,并宜符合下列规定:

1 结构面的描述包括类型、性质、产状、组合形式、发育程度、延展情况、闭合程度、粗糙程度、充填情况和充填物性质以及充水性质等,

2 结构体的描述包括类型、形状、大小和结构体在围岩中的受力情况等,

3 岩层厚度分类应按表H.1.2执行。

H.1.3 除按颗粒级配或塑性指数定名外,土的综合定名应符合下列规定:1 对特殊成因和年代的土类应结合其成因和年代特征定名;2 对特殊性土,应结合颗粒级配、塑性指数定名;3 对混合土,应冠以主要含有的土类定名;4 对同一土层中相间呈韵律沉积,当薄层与厚层的厚度比大于1/3时,宜定为“夹层”;厚度比小于1/10的土层,且多次出现时,宜定为“夹薄层”5 当土层厚度大于0.5m时,宜单独分层。

H.1.4 土的鉴定应在现场描述的基础上,结合室内试验的开土记录和试验结果综合确定.土的描述应符合下列规定:

1 碎石土应描述颗粒级配、颗粒形状、颗粒排列、母岩成分、风化程度、充填物的性质和充填程度、密实度等;

2 砂土应描述颜色、矿物组成、颗粒级配、颗粒形状、粘粒含量、湿度、密实度等;

3 粉土应描述颜色、包含物、湿度、密实度、摇震反应、光泽反应、干强度、韧性等;

4 粘性土应描述颜色、状态、包含物、光泽反应、摇震反应、干强度、韧性、土层结构等;

5 特殊性土除应描述上述相应土类规定的内容外,尚应描述其特殊成分和特殊性质;如对淤泥尚需描述嗅味,对填土尚需描述物质成分、堆积年代、密实度和厚度的均匀程度等;

6 对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度和层理特征。

H.2 野外描述

H.2.1 岩、土野外描述的目的是:确定岩、土名称和划分层次、厚度,鉴别成分、状态、湿度、成因类型、地质时代及工程地质特征,为地基的建筑性能和土、石材以及围岩的评价取得基本的第一手资料。

H.2.2 野外编录描述应对地基土进行综合定名。综合定名,除按颗粒级配或塑性指数定名外,尚应符合下列规定:1 对特殊成因和年代的土类应结合其成因和年代特征定名,如新近堆积砂质粉土、残坡积碎石土等;2 对特殊性土,应结合颗粒级配或塑性指数综合定名,如淤泥质粘土、碎石素填土等;3 对同一土层中相间成韵律沉积、薄层厚度大于20厘米的地基土层,当薄层与厚层的厚度比为1/10—1/3时,宜定名为“夹层”,厚的土层写在前面,如粘土夹粉砂层;当厚度比大于1/3时,宜定名为“互层”,如粘土—粉砂互层:厚度比小于1/10的土层且有规律地多次出现时,宜定名为“夹薄层”,如粘土夹薄层粉砂;小于20厘米的一般可不单独分层,在描述中指明即可,但有特殊要求的除外;4 对由坡积、洪积、冰水沉积形成的、颗粒级配呈不连续状、细粒、巨粒混杂的土,应判定为混合土。当碎石土中的粉粒和粘粒含量超过25时,定为Ⅰ类混合土;当细粒土中砾粒、卵石粒、漂石粒含量超过25时定为Ⅱ类混合土;当含量不超过25时,按H.2.3定名。

H.2.3 充填物及包含物的描述,经常用“含”、“混”、“夹”字样,其含意是“含”——系指土中含有的包含物,如含铁锰结核、碎砖块等;“混”——系指某类土中均匀地混有另

一类土;“夹”——系指某一类土不均匀地夹有另一类土,如粘土夹碎石。

H.2.4 为了消除对同一土层认识上的人为差异,在描述工作正式开展前,应由工程(技术)负责人进行现场示范性描述,以统一描述标准。工程负责人应在现场随时处理各种技术问题。

H.2.5 岩、土的结构、构造、成因类型及地质时代等难以确定时,应将直观特征详细描述,由工程(技术)负责人根据区域资料和调查结果综合分析、研究后确定。

H.2.6 野外记录应使用标准的专业术语,术语标准参照《建筑岩土工程勘察基本术语标准》JGJ84—92执行,记录要准确、详细、客观。

H.3 岩石

H.3.1 岩体是指包括各种结构面(如节理裂隙等)的原位岩石。岩石按成因分为岩浆岩、沉积岩及变质岩三大类,当岩石具有特殊成分、结构特征和性质时,应定名为特殊性岩石,一般可分为易溶性岩石、膨胀性岩石、崩解性岩石和盐渍化岩石等。

H.3.2 岩石应描述的内容及顺序是:名称、颜色、结构及构造特征、主要矿物成分、胶结物、坚固性、风化及完整程度,产状要素及岩脉特性等,对特殊性岩石尚应描述其遇酸反应及遇水反应情况等。

H.3.3 描述岩石名称时,应按岩石学定名,指出岩石的具体名称,如闪长岩、花岗岩等。如遇有两种矿物组成的岩石,应以次要矿物在前,主要矿物在后定名,如云母石英片岩等。

H.3.4 岩石的颜色,应分别描述其新鲜面及风化面、天然状态颜色及风干后的颜色。

H.3.5 描述岩石成分时,可只描述主要矿物成分。

H.3.6 应描述岩石的胶结物与沉积岩的胶结类型及岩石的结构构造特征。

H.3.7 岩石风化程度的划分按《岩土工程勘察规范》(GB50021-2001)附录A附表A.0.3的规定执行。

H.3.8 对岩石的完整程度,应描述岩体节理裂隙的性质、张闭情况、充填及联通性等,必要时应量测裂隙的产状,并统计单位面积(或单位长度)的数量。应详细记录各种不连续软弱结构面的类型、间距、延展性、张开度、粗糙度、充填及胶结情况、组合关系、力学属性等,必要时,应做节理裂隙玫瑰花图等。

H.3.9 描述岩石的产状要素,应记录岩层、断裂、节理的走向、倾向和倾角。如岩层走向N60W、倾向NE30°、倾角45°,则可表示为NE30°∠45°。

H.3.10 描述岩脉特征,应着重描述其名称、坚固性、风化程度和穿插、分布形状、宽度、完整性及与围岩的接触、胶结等特征。

H.3.11 描述岩溶特征,应着重描述岩溶发育程度、岩溶形态、规模、空间分布、溶洞顶板厚度及破碎程度、溶洞充填情况等。

H.3.12 对岩溶发育的覆盖型岩溶地段应采用工业CT、地质雷达、浅层地震等综合工程物探方法确定其地下发育形态。

H.4 碎石土

H.4.1 碎石土指粒径大于2mm颗粒质量超过总质量50的土。

H.4.2 碎石土的定名可根据目测或量测颗粒直径,估计重量百分比,按颗粒级配及形状确定。其分类标准可按《岩土工程勘察规范》(GB50021-2001)表3.3.2执行。

H.4.3 碎石土应描述的项目及描述顺序是:名称、主要成分、磨圆度、球度、一般粒径、最大粒径、坚固性、充填物的名称和性质及其含量的重量百分数、胶结性、密实度等。

H.4.4 碎石土的名称应按H.4.2条确定。当颗粒分选有渐变情况时,应在记录中以箭头表示碎石土间的相互关系。如卵石渐变为圆砾或角砾渐变为碎石,表示为卵石→圆砾或角砾→

碎石。

H.4.5 对碎石土的成分,应描述碎块的岩石名称。当不易鉴别时,可描述为是由结晶岩碎块组成还是由沉积岩碎块组成。

H.4.6 碎块的坚固性应分为坚固的(锤击不易碎)、较坚固的(锤击易碎)、不坚固的(原生矿物大部分已风化,多为次生矿物,手能掰开)。

H.4.7 当碎石土的充填物为砂土时,应描述其粒组及密实度;当充填物为粘性土时,应描述其状态,并均应按充填物的重量估计其百分比。如无充填物时,则应描述颗粒排列、孔隙的大小及颗粒的接触关系等。

H.4.8 对碎石土的胶结性,应描述颗粒之间的胶结物名称及胶结程度.碎石土的胶结程度可按坚固性分为三级:轻微胶结、中等胶结、强胶结。划分标准可按第H.5.8条的规定确定。

H.4.9 碎石土密实度划分为密实、中密、稍密、松散。

H.5 砂土

H.5.1 砂土指粒径大于2mm的颗粒质量不超过总质量的50,且大于0.075mm的颗粒质量超过总质量50的土。

H.5.2紧实度、湿度等。

H 5.3 砂土的分类定名应按颗粒级配或野外鉴别的方法确定。分类标准可按《岩土工程勘察规范》

H 5.4 砂土的成分,应描述其主要矿物名称,如石英质的或石英—长石质的等。

H5.5 对砂土的结构,主要应描述其均匀度和磨圆度。均匀度可分为均粒的和混粒的;磨圆度可分为圆形、亚圆形、亚角形和棱角形。

H.5.6 对砂土的构造,应描述其颗粒大小、成分、颜色和形状不同而显示出来的成层现象。层状构造可分为水平状构造、波状构造、斜层状构造和交错状构造等。

H.5.7 砂土中混粘性土和碎石土时,应描述其分布的均匀性和含量的重量百分比(或以多、少表示)。砂土中有机质超过3时,应标明“含有机质”字样。

H.5.8 对砂土的胶结性,应描述其颗粒之间的胶结物和胶结程度,可分为轻微胶结(呈块状,用手可捏碎,干后捏成粉状);中等胶结(呈块状,用手难以捏碎,干后锤击可碎成带棱角的碎块、碎屑);强胶结(原状砂样似成块状岩石,且一般只能用锤击砸碎,碎块呈棱角状)。

H.5.9 砂土的密实度分为密实、中密、稍密、松散。

H.5.10 砂土的湿度可按饱和度Sr()分为稍湿,很湿,饱和。

H. 6 粉土

H.6.1 粉土指粒径大于0.075mm的颗粒质量不超过总质量的50且塑性指数Ip小于或等于10的土,可分为粘质粉土(粒径小于0.005mm颗粒含量超过全重的10)和砂质粉土(粒径小于0.005mm颗粒含量小于或等于全重的10)。粉土的性质介于砂土与粘性土之间。

H.6.2 粉土应描述的项目及描述顺序是:名称、颜色、颗粒级配、结构、构造、包含物、状态或密实度及湿度等。

H.6.3 粉土的状态或密实度分别划分为坚硬、硬塑、可塑、软塑、流塑和密实、中密、稍密、松散。

H.6.4 粉土的湿度可根据天然含水量W()划分为稍湿、湿、很湿、饱和(极湿)。 H.6.5 粉土的其他项目描述应符合H.7粘性土的有关规定。

H.7 粘性土

H.7.1 粘性土指塑性指数Ip>10的土。可分为粘土(Ip≥17)及粉质粘土(10

H.7.2 粘性土按工程地质特性可分为以下几种:1 新近堆积的粘性土:系指近期堆积的粘性土,一般分布在湖、塘、沟、谷、河漫滩及阶地陡坎下缘、冲沟等地段,厚度不大;堆积年限短,具有高的压缩性和低承载力;有的呈软塑至流塑状态,并有触变现象。2 一般粘性土:第四纪全新世(Q3)及其以前沉积的粘性土, 3特殊性土: (1)淤泥和淤泥质土:指在静水或缓慢的流水中沉积,天然含水量W大于液限WL(IL>1.0)、天然孔隙比e>1.0的粘性土。当e>1.5时为淤泥,当1.0 (2)湿陷性黄土:指在一定压力作用下受水浸湿,土体结构迅速破坏而发生显著附加下沉的土。 (2)陷性黄土分为非自重湿陷性和自重湿陷性两种。非自重湿陷性黄土,在土自重压力下受水浸湿不发生湿陷;自重湿陷性黄土,在自重压力下受水浸湿发生湿陷。 (3)新近堆积黄土属于全新世近期黄土的一部分,堆积年代短,具有高压缩性,承载力低,土的均匀性差;在50—150kPa压力下变形敏感的土称为新近堆积黄土。 (4)红粘土:指碳酸盐类岩石在亚热带温湿气候条件下,经风化后形成的褐红色(或棕红、黄褐等色)高塑性粘土。其液限WL大于50,上硬下软,具有明显的收缩性,裂隙发育。 (5)泥炭和泥炭化土:呈深暗颜色,有半腐朽的动植物残遗物。若土中的有机质及植物残体含量超过60,应定为泥炭,含量在10—60,应定为泥炭化土。

(6)膨胀土:指主要由亲水矿物组成,液限WL一般大于40,并具有吸水后膨胀和失水后收缩两种可塑变形特性的粘性土。

H.7.3 粘性土应描述的内容及描述顺序是:名称、颜色、结构和构造特征、气味、包含物、状态及湿度等。对特殊性土,应描述其水理性质等。

H.7.4 粘性土的名称应先按第H.7.2条的工程地质特征鉴别,然后再按第H.7.2.1条的塑性指数确定,如Q3粉质粘土、淤泥质粘土等。

H.7.5 粘性土的结构和构造特征,是指大孔结构、龟裂、节理、层理或带状构造以及虫孔、土洞等特征。

H.7.7 粘性土的包含物,应重点描述影响土性质的物质,如云母、氧化铁、贝壳、植物根及钙质结核等。粘性土中含(混)碎石和砂土的包裹体时,应描述其重量的百分数、粒径、成份、磨圆度和分布的特征,性土中的有机质含量超过5%又不足10%时,应标明“含有机质”字样,如粘土含有机质。

H.7.8 粘性土的状态既可根据液性指数IL划分为坚硬、硬塑、可塑、软流塑。

4 岩土工程性质

第四章岩土体工程性质 一、名词解释(6) 1.岩石风化作用p74 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 2.物理风化作用p74 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 3.化学风化作用p74 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 4.生物风化作用p75 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 5.风化程度p76 岩石风化后工程性质改变的程度。 6.饱和重度p77 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 7.岩石吸水率p79 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 8.液性指数p82 黏性土的天然含水率和塑限的差值与塑性指数之比。 9.弹性模量p85 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 10.岩体p86 岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 11.结构面P87 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选(22) 1.冰劈作用是()。p74 A.物理风化B.生物风化C.化学风化D.差异风化 2.因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做()。P74 A.热胀冷缩作用B.盐类结晶作用C.冰劈作用D.碳酸化作用 3.黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于()。P75

全球大学岩土工程排名

全球大学岩土工程排名 https://www.wendangku.net/doc/076929620.html,/lrm_article/a9/58559.html 本人通过ISI在国际著名岩土期刊英国Geotechnique, 美国Journal of geotechnical and geoenvironmental engineering, 加拿大Canadian geotechnical journal, 日本Soils and foundations上检索2001年至2008年发表的论文,按机构排序如下。(括号内为论 文数)。 1. 香港科技大学, 2. 西澳大学, 3.伦敦帝国, 4.南洋理工, 5.剑桥, 6.东京大学, 7.香港大学, 8.西安大略大学, 9.印度理工, 10.昆士大学,31.香港理工, 45.河海大学, 83.同济大学 综合考虑文章水平,以Geotechnique文章水平为1,其他为0.75。 则综合考虑文章质量和数量(不考虑引用率)的排名应为。 1.香港科技大学, 2.西澳大学, 3.伦敦帝国, 4.剑桥, 5.南洋理工, 6.东京大学, 7.香港大学, 8.印度理工, 9.西安大略大学,10.昆士 大学,32.香港理工,46.河海大学。 1 HONG KONG UNIV SCI & TECHNOL (98) 2 UNIV WESTERN AUSTRALIA (79) 3 UNIV LONDON IMPERIAL COLL SCI (73) 4 NANYANG TECHNOL UNIV (69) 5 UNIV CAMBRIDGE (68)

6 UNIV TOKYO (67) 7 UNIV HONG KONG (62) 8 UNIV WESTERN ONTARIO (61) 9 INDIAN INST SCI (60) 10 QUEENS UNIV (56) 11 UNIV BRITISH COLUMBIA (55) 12 KYOTO UNIV (50) 13 NATL UNIV SINGAPORE (50) 14 UNIV CALIF BERKELEY (50) 15 INDIAN INST TECHNOL (48) 16 UNIV LAVAL (48) 17 GEORGIA INST TECHNOL (45) 18 UNIV ALBERTA (44) 19 ECOLE POLYTECH (36) 20 PURDUE UNIV (36) 21 UNIV ILLINOIS (36) 22 UNIV SASKATCHEWAN (36) 23 UNIV TEXAS (34) 24 UNIV CALIF DAVIS (32) 25 UNIV SOUTHAMPTON (32) 26 UNIV WOLLONGONG (32) 27 UNIV OXFORD (31)

岩土的性质描述

H.1 一般规定 H.1.1 岩石的描述应包括地质年代、地质名称、风化程度、颜色、主要矿物、结构、构造和岩石质量指标RQD。对沉积岩应着重描述沉积物的颗粒大小、形状、胶结物成分和胶结程度;对岩浆岩和变质岩应着重描述矿物结晶大小和结晶程度,根据岩石质量指标RQD,可分为好的(RQD>90)、较好的(RQD=75-90)、较差的(RQD=50-75)、差的(RQD=25-50)和极差的(RQD<25)。 H.1.2 岩体的描述应包括结构面、结构体、岩层厚度和结构类型,并宜符合下列规定: 1 结构面的描述包括类型、性质、产状、组合形式、发育程度、延展情况、闭合程度、粗糙程度、充填情况和充填物性质以及充水性质等, 2 结构体的描述包括类型、形状、大小和结构体在围岩中的受力情况等, 3 岩层厚度分类应按表H.1.2执行。 H.1.3 除按颗粒级配或塑性指数定名外,土的综合定名应符合下列规定:1 对特殊成因和年代的土类应结合其成因和年代特征定名;2 对特殊性土,应结合颗粒级配、塑性指数定名;3 对混合土,应冠以主要含有的土类定名;4 对同一土层中相间呈韵律沉积,当薄层与厚层的厚度比大于1/3时,宜定为“夹层”;厚度比小于1/10的土层,且多次出现时,宜定为“夹薄层”5 当土层厚度大于0.5m时,宜单独分层。 H.1.4 土的鉴定应在现场描述的基础上,结合室内试验的开土记录和试验结果综合确定.土的描述应符合下列规定: 1 碎石土应描述颗粒级配、颗粒形状、颗粒排列、母岩成分、风化程度、充填物的性质和充填程度、密实度等; 2 砂土应描述颜色、矿物组成、颗粒级配、颗粒形状、粘粒含量、湿度、密实度等; 3 粉土应描述颜色、包含物、湿度、密实度、摇震反应、光泽反应、干强度、韧性等; 4 粘性土应描述颜色、状态、包含物、光泽反应、摇震反应、干强度、韧性、土层结构等; 5 特殊性土除应描述上述相应土类规定的内容外,尚应描述其特殊成分和特殊性质;如对淤泥尚需描述嗅味,对填土尚需描述物质成分、堆积年代、密实度和厚度的均匀程度等; 6 对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度和层理特征。 H.2 野外描述 H.2.1 岩、土野外描述的目的是:确定岩、土名称和划分层次、厚度,鉴别成分、状态、湿度、成因类型、地质时代及工程地质特征,为地基的建筑性能和土、石材以及围岩的评价取得基本的第一手资料。 H.2.2 野外编录描述应对地基土进行综合定名。综合定名,除按颗粒级配或塑性指数定名外,尚应符合下列规定:1 对特殊成因和年代的土类应结合其成因和年代特征定名,如新近堆积砂质粉土、残坡积碎石土等;2 对特殊性土,应结合颗粒级配或塑性指数综合定名,如淤泥质粘土、碎石素填土等;3 对同一土层中相间成韵律沉积、薄层厚度大于20厘米的地基土层,当薄层与厚层的厚度比为1/10—1/3时,宜定名为“夹层”,厚的土层写在前面,如粘土夹粉砂层;当厚度比大于1/3时,宜定名为“互层”,如粘土—粉砂互层:厚度比小于1/10的土层且有规律地多次出现时,宜定名为“夹薄层”,如粘土夹薄层粉砂;小于20厘米的一般可不单独分层,在描述中指明即可,但有特殊要求的除外;4 对由坡积、洪积、冰水沉积形成的、颗粒级配呈不连续状、细粒、巨粒混杂的土,应判定为混合土。当碎石土中的粉粒和粘粒含量超过25时,定为Ⅰ类混合土;当细粒土中砾粒、卵石粒、漂石粒含量超过25时定为Ⅱ类混合土;当含量不超过25时,按H.2.3定名。 H.2.3 充填物及包含物的描述,经常用“含”、“混”、“夹”字样,其含意是“含”——系指土中含有的包含物,如含铁锰结核、碎砖块等;“混”——系指某类土中均匀地混有另

土的物理性质指标

第一章 土的物理性质及工程分类 第一节 土的组成与结构 一、 土的组成 天然状态下的土的组成(一般分为三相) ⑴ 固相:土颗粒—构成土的骨架决定 土的性质—大小 、形状、 成分、组成、排列 ⑵ 液相:水和溶解于水中物质 ⑶ 气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相 (一)、土的矿物成分和土中的有机质。 土粒的矿物成分不同、粗细不同、形状不同、土的性质也不同 矿物成分取决于(1)成土母岩的成分 (2)所经受的风化作用①物理风化——原生矿物(化学成分无变化) ②化学风化——次生胯矿物(化学成分变化) 次生矿物(1)三大黏土矿物①高岭石(土) ②伊利石(土) ③蒙脱石(土) (2)水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO4.2H2O ③易溶:NaCl kcl CaCl2 K Na 的 SoO42- CO 3 2- 2.各粒组中所含的主要矿物成分 土颗粒据粒组范围划分不同的粒组名称 石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性 (1) 蒙脱石——透水性小多个晶体层——结构不稳定、颗粒最小、亲水性 (2) 伊利石——介于两者之间,较接近蒙脱石 (3) 高岭石——颗粒相对较大——亲水性较弱晶体结构较稳定 ρd 粘土中的水溶盐 3.土中的有机质——亲水性强,压缩性大,强度低 (二)土的粒组划分 (三)土的颗粒级配 1. 颗粒大小分析试验——颗分试验 方法(1)筛分法:适用60—0.075mm 的粗粒土 (2)密度计法:适用小于0.075mm 的细粒土 2. 颗粒级配曲线——半对数坐标系 3. 级配良好与否的判别 (一) 定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (4) 曲线形状平缓——粒径变化范围大——不均匀——良好 (5) 曲线形状较陡——变化范围小——均匀——不良 (二) 定量判别 (1)不均匀系数 10 60d d C u

中国土木各院校的排名、硕士、博士点。

排名基本就是这样: 清华大学有结构工程、防灾减灾与防护工程、材料学博士点,并有土木工程一级学科博士学位授予权,结构工程(联合防灾减灾与防护工程)是国家重点学科。中国工程院院士2人,教授23人,副教授24人,讲师8人,目前在校本科生300多名,研究生200多名。 同济大学中国科学院院士和中国工程院院士5人、博士生导师55人、硕士生导师105人、正高级职称98人、副高级职称135人。设有10个硕士点、7个博士点,设有土木工程博士后流动站。桥梁工程学科为上海市“重中之重”重点学科, 结构工程、岩土工程学科为上海市重点学科;桥梁与隧道工程、结构工程、岩土工程三个二级学科为全国重点学科。 浙江大学岩土工程学科为国家重点学科;结构工程学科为浙江省重点学科;土木工程博士后流动站;土木工程一级学科博士点(涵盖结构工程,岩土工程,市政工程,桥梁与隧道工程,防灾减灾与防护工程,供热、供燃气、通风及空调工程等6个二级学科博士点) 哈尔滨工业大学结构工程、防灾减灾工程与防护工程硕士点学科,结构工程、防灾减灾工程与防护工程和岩土工程博士点学科;土木工程一级学科博士后流动站;结构工程学科设有“长江学者奖励计划”特聘教授岗位。 重庆大学土木工程一级学科博士点及所覆盖的结构工程、岩土工程、防灾减灾与防护工程、桥梁与隧道工程、土木水利施工二级学科博士学位授予点,现有博士导师12人。并设有土木工程一级学科博士后科研流动站。结构工程和岩土工程为建设部及重庆市重点学科,防灾减灾工程为重庆市重点学科。 西安建筑科技大学教授28人,副教授,高级工程师43人,土木工程学院所属的实验室有结构与抗震实验室和岩土工程实验室,其中结构与抗震实验室为陕西省和原冶金部重点实验室,结构工程国家重点学科,土木工程一级学科博士后科研流动站。 天津大学结构工程、防灾减灾与防护工程、桥梁与隧道工程、岩土工程有博士学位授予权 东南大学结构工程国家重点学科、防灾减灾工程及防护工程学科为江苏省重点学科、中国工程院院士1名,教授29名,博士生导师17名 太原理工大学结构工程、岩土工程博士点,防灾减灾工程及防护工程硕士点。结构工程、岩土工程为省重点学科 上海交通大学结构工程博士点,岩土工程、防灾减灾工程及防护工程硕士点

7岩土描述

1岩石的鉴定与描述 岩石描述的内容有: 地质年代、风化程度、岩石名称、颜色、结构、构造和岩石质量指标RQD; 对岩浆岩和变质岩应着重描述矿物结晶大小和结晶程度。 岩石风化程度划分表 风化程度野外特征波速比K v风化系数K f 未风化岩质新鲜,偶见风化迹象0.9~1.0 0.9~1.0 微风化结构构造基本未变,仅节理面有渲染或略有变色,有少量风化裂隙0.8~0.9 0.8~0.9 结构部分破坏,沿节理面可见次生矿物。风化裂隙发育,岩体被切割成 中风化 0.6~0.8 0.4~0.8 岩块。用镐难挖,岩芯钻方可钻进。 结构大部分破坏,矿物成分已显著变化,风化裂隙很发育,岩体破碎, 0.4~0.6 <0.4 强风化 用镐可挖,干钻不易钻进。 全风化结构基本破坏,但尚可辨认,有残余结构强度,用镐可挖,干钻可钻进0.2~0.4 注:1.波速比K v为风化岩石与新鲜岩石压缩波速度之比; 2.风化系数K f为风化岩石与新鲜岩石饱和单轴抗压强度之比; 3.花岗岩类岩石可用标贯击数划分:N≥50为强风化;50>N≥30为全风化;N<30为残积土。 岩石质量指标RQD: 用75mm口径金刚石钻头,每回次钻进所取岩芯中,长度大于或等于10cm 的岩芯段之和与该回次进尺的比值,用百分数表示。 该项指标在现场取芯后用尺实际量测计算得出,量测时必须严格区别岩石自然断裂和由钻进及取芯操作引起的断裂,新鲜的不规则的断裂面应忽略不计,断块纳入完整岩芯的长度中计数。 根据岩石质量指标RQD,可分为好的(RQD>90)、较好的(RQD=75~90)、较差的(RQD=50~75)、差的(RQD=25~50)和极差的(RQD<25)。 2碎石土

浅谈岩土工程施工技术

浅谈岩土工程施工技术 发表时间:2016-08-30T14:49:15.543Z 来源:《建筑建材装饰》2015年8月下作者:顾浩 [导读] 随着我国社会经济的发展与城市工程建设规模的扩大,岩土工程施工技术越来越受到人们的关注。 顾浩 (江苏省安捷岩土工程有限公司,江苏徐州221000) 摘要:岩土工程对于城市建设以及经济发展都有着重要的意义,提高岩土工程施工技术,是经济发展和建设的要求。本文从岩土施工技术的方法以及未来发展进行了分析探讨。 关键词:岩土工程;施工技术 前言 随着我国社会经济的发展与城市工程建设规模的扩大,岩土工程施工技术越来越受到人们的关注。在岩土工程施工的过程中,坚持实事求是、以人为本的施工原则,并严格按照施工要点的要求进行施工,将有助于提升岩土工程的施工质量与施工进度。因此,加快对岩土工程施工技术要点的研究,是当前摆在人们面前的一项重大而又紧迫任务。 1岩土工程施工技术的一些原则 1.1实用性原则 由于岩土工程在施工的过程中受很多条件的限制,而技术成熟与否只是岩土工程非常小的因素,而施工人员的技术成熟度以及施工过程中的天气和施工的资金是否到位都是施工中的重要因素。因此在实际施工的过程中,施工单位往往不使用最先进的技术,而是使用最适合当地的施工技术。 1.2经济性原则 岩土工程在施工的过程中由于目前的技术还不是非常完善,而施工过程中的地质条件也千差万别,因此难以制定固定的施工方案,但是无论如何,在施工的过程中,要讲究经济性,在资金预算范围内进行施工,要符合我国的国情。 1.3实践性原则 目前岩土施工已经存在的技术形式非常多,在众多的技术中,有些是通过模拟以及实验室中计算出来的,在实践上还是存在差距,因此对于岩土的施工技术要建立在实际的运用上。然而目前很多设备以及机械都是建立在实际的实践基础上,给岩土的施工带来了很多的方便,同时对于岩土工程成本控制也有非常大的帮助。 2我国城市岩土工程施工技术方法 2.1深层搅拌桩支护 深层搅拌桩支护是采用深层搅拌机就地将软土固化剂(水泥、石灰等材料)强行搅拌,利用固化剂与软土间产生的系列物理化学反应,使软土硬结成具有整体性、水稳定性及一定强度的桩体(水泥土柱状加固体挡墙),以作为深基坑的支护结构。该支护方法常适用于基坑深度不大和(或)需要采用重力式挡墙结构形式的基坑;另外,搅拌桩支护通常厚度较大,只有在建筑红线位置和周围环境允许时方能使用,施工过程中应注意防止影响周围环境。 2.2排桩支护 排桩按照排桩的材料划分分为钢板桩支护、钢筋混凝土板桩支护、钻孔灌注桩支护及人工挖孔桩支护等;按照排桩的结构可分为柱列式排桩支护、连续排桩支护及组合式排桩支护。其中,柱列式排桩支护适用于边坡土质较好、地下水位较低的区域;连续排桩支护适用于软土或软粘土的支护;组合式排桩支护常用于地下水位较高的软土地区;排桩支护由于占用场地面积较小,当施工现场面积受限时极其适用。 2.3土钉墙支护 土钉墙支护具有主动嵌固作用,可增加边坡的稳定性。该支护方式适用于土质较好、开挖深度不大、周围建筑或地下管线对沉降及位移要求不高的基坑支护,多出现在我国华北以及华东北部。 2.4预应力锚杆(索)支护 预应力锚杆(索)支护操作起来简单,产生的效率高,同时施工费用经济性高。此技术是在土体周围放入抗拨性质、有效锚固长度的杆体,以此增强土体的抗剪能力,增加土体周围的强度,在进行此施工技术时,需要注意地下水位的变化,如果高于锚杆之上,要进行降水。 2.5地下连续墙支护 地下连续墙一般会在软土层中基坑开挖深度不小于十米、周围建筑或是对地下管线沉降或位移高的范围。地下连续墙具有三个优点:一是刚度大;二是止水效果好;三是结构与地基变形较小;这种方式适用于各种地质条件,但是地下连续墙的造价高,对于施工设备的要求也高,因此,没有大范围的推广使用。 2.6支承柱施工逆作法 逆作法是一种基坑支护技术,也是近几年才发展起来的,是高层地下室或是多层地下结构使用最为广泛的技术。支承柱施工逆作法是其中应用较为普遍技术方法。施工原理:在建筑物地下室内部进行桩基施工并在中间完成支承柱工作,同时顺着沿地下室轴线或周围施工地下连续墙或其他支护结构,作为建筑围护结构外墙。然后开挖土方至负一层地下室底面标高,进行负层柱墙、顶板、梁的施工,以及上下各层结构的施工,直至工程结束。 3岩土工程施工新技术应用 3.1岩土工程泥浆护壁钻孔灌注桩施工技术 泥浆护壁钻孔灌注桩施工技术是现代岩土工程常用施工技术,随着施工设备与工艺材料的不断发展,其自身衍生出的新技术在桩基工程中也得到了广泛的应用。其具有无噪音、无振动、无积压等优点,是为了在地下水位较浅的地层中施工而采取的一种施工方法。泥浆护壁钻孔灌注桩施工技术原理是将钻渣利用泥浆带出,并保护孔壁不致坍塌。再使用水下混凝土浇筑的方法将泥浆置换出来,从而完成钻孔灌注桩的施工。具体施工工序为定桩位、护简埋设、钻机就位、钻孔、终孔、第一次清孔、下放钢筋笼、接人导管、第二次清孔、灌注混

浅谈岩土工程技术及其发展现状

浅谈岩土工程技术及其发展前景 本次讲座内容围绕岩土工程技术展开。通过学习,让我们对岩土工程专业,岩土工程技术及其发展前景有了一个感性认识。 岩土工程,是指在工程建设中有关岩石或土的利用、整治或改造的科学技术,以求解岩体与土体工程问题,包括地基与基础、边坡和地下工程等问题,作为自己的研究对象。 岩土工程专业是土木工程的分支,是以岩体、土体为对象,一工程地质学、岩土力学、基础工程学基本理论和方法的综合为指导,研究岩土体的工程利用,整治和改造的一门综合性的技术学科。 按照工程建设阶段划分,岩土工程工作内容可以分为:岩土工程勘察、岩土工程设计、岩土工程施工、岩土工程监测、岩土工程管理。 岩土工程勘测要服务于评价、论证和检验场地的稳定性、建筑的适宜性和环境的演化性,以及设计施工基本资料的可靠性与原则建议的合理性。 岩土工程设计应注意它对自然条件的依赖性,岩土工程性质的变异性,建筑经验、试验测试与建筑法规的重要性,地基、基础结构的整体性以及工程的适用性、安全性、耐久性与经济性。 岩土工程施工要根据它施工条件差,工期长、费用高、风险大、变化多、更改难的特点,十分注意吃透设计意图,组织人力、物力、财力和智力,抓质量、抓效率、抓安全、抓环境,把完成设计要求与及时发现新情况,解决新问题结合起来。 岩土工程检测要把检测勘察成果、评价建议和施工质量与监测岩土反应、结构性状和环境演变相结合,强调计划性、及时性、准确性、系统性和经济性,既立足于工程对象,又放眼于经验总结与理论发展。 岩土工程管理体制要努力使指挥服务系统与技术决策系统间建立灵活、有序、有效、协调的运行机制和激励机制,以调动一切积极因素,推动工程整体质量的全面优化。 岩土工程按工程类型为线索,又可分为岩土地基工程,岩土边坡工程,岩土洞室工程,岩土支护工程和岩土环境工程。 岩土地基工程应将地基、基础和上部结构视为一个共同作用的体系,根据变形稳定、强度稳定和渗透稳定的总要求,针对地基的土质类型(如软土、

第一章土的物理性质及工程分类及答案

第一章土的物理性质及工程分类 一、思考题 1、土是由哪几部分组成的? 2、建筑地基土分哪几类?各类土的工程性质如何? 3、土的颗粒级配是通过土的颗粒分析试验测定的,常用的方法有哪些?如何判断土的级配情况? 4、土的试验指标有几个?它们是如何测定的?其他指标如何换算? 5、粘性土的含水率对土的工程性质影响很大,为什么?如何确定粘性土的状态? 6、无粘性土的密实度对其工程性质有重要影响,反映无粘性土密实度的指标有哪些? 二、选择题 1、土的三项基本物理性质指标是() A、孔隙比、天然含水率和饱和度 B、孔隙比、相对密度和密度 C、天然重度、天然含水率和相对密度 D、相对密度、饱和度和密度 2、砂土和碎石土的主要结构形式是() A、单粒结构 B、蜂窝结构 C、絮状结构 D、层状结构 3、对粘性土性质影响最大的是土中的( ) A、强结合水 B、弱结合水 C、自由水 D、毛细水 4、无粘性土的相对密实度愈小,土愈() A、密实 B、松散 C、居中 D、难确定 5、土的不均匀系数C u 越大,表示土的级配() A、土粒大小不均匀,级配不良 B、土粒大小均匀,级配良好 C、土粒大小不均匀,级配良好 6、若某砂土的天然孔隙比与其能达到的最大孔隙比相等,则该土() A、处于最疏松状态 B、处于中等密实状态 C、处于最密实状态 D、无法确定其状态 7、无粘性土的分类是按() A、颗粒级配 B、矿物成分 C、液性指数 D、塑性指数 8、下列哪个物理性质指标可直接通过土工试验测定() A、孔隙比 e B、孔隙率 n C、饱和度S r D、土粒比重 d s 9、在击实试验中,下面说法正确的是() A、土的干密度随着含水率的增加而增加 B、土的干密度随着含水率的增加而减少 C、土的干密度在某一含水率下达到最大值,其它含水率对应干密度都较小 10、土粒级配曲线越平缓,说明()

岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向 展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。 岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。 岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。 岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。 土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾

结构工程排名

结构工程排名1 同济大学 2 清华大学 3 浙江大学 4 哈尔滨工业大学 5 重庆大学 6 东南大学 7 西安建筑科技大学 8 大连理工大学 9 北京工业大学 10 天津大学 11 华南理工大学 12 湖南大学 13 广西大学 14 中南大学15 武汉理工大学 16 太原理工大学 17 北京交通大学 18 上海交通大学 19 西南交通大学20 福州大学 21 华中科技大学 22 郑州大学 23 长安大学 24 华侨大学 25 东北大学 26 中国矿业大学 27 沈阳建筑大学 28 合肥工业大学 29 山东科技大学 中国各大学土木工程专业简介 全国共有188所大学开设土木工程专业,92所大学招收土木工程研究生,70所大学有结构工程硕士以上学位授予权,51所大学有岩土工程硕士以上学位授予权,30所大学有防灾减灾与防护工程硕士以上学位授予权,23所大学有桥梁与隧道工程硕士以上学位授予权。

清华大学有结构工程、防灾减灾与防护工程、材料学博士点,并有土木工程一级学科博士学位授予权,结构工程(联合防灾减灾与防护工程)是国家重点学科。中国工程院院士2人,教授23人,副教授24人,讲师8人,目前在校本科生300多名,研究生200多名。 同济大学中国科学院院士和中国工程院院士5人、博士生导师55人、硕士生导师105人、正高级职称98人、副高级职称135人。设有10个硕士点、7个博士点,设有土木工程博士后流动站。桥梁工程学科为上海市“重中之重”重点学科, 结构工程、岩土工程学科为上海市重点学科;桥梁与隧道工程、结构工程、岩土工程三个二级学科为全国重点学科。 浙江大学岩土工程学科为国家重点学科;结构工程学科为浙江省重点学科;土木工程博士后流动站;土木工程一级学科博士点(涵盖结构工程,岩土工程,市政工程,桥梁与隧道工程,防灾减灾与防护工程,供热、供燃气、通风及空调工程等6个二级学科博士点) 哈尔滨工业大学结构工程、防灾减灾工程与防护工程硕士点学科,结构工程、防灾减灾工程与防护工程和岩土工程博士点学科;土木工程患堆Э撇┦亢罅鞫 荆唤峁构こ萄Э粕栌小俺そ д呓崩 苹 碧仄附淌诟谖弧? 重庆大学土木工程一级学科博士点及所覆盖的结构工程、岩土工程、防灾减灾与防护工程、桥梁与隧道工程、土木水利施工二级学科博士学位授予点,现有博士导师12人。并设有土木工程一级学科博士后科研流动站。结构工程和岩土工程为建设部及重庆市重点学科,防灾减灾工程为重庆市重点学科。 西安建筑科技大学教授28人,副教授,高级工程师43人,土木工程学院所属的实验室有结构与抗震实验室和岩土工程实验室,其中结构与抗震实验室为陕西省和原冶金部重点实验室,结构工程国家重点学科,土木工程一级学科博士后科研流动站。 天津大学结构工程、防灾减灾与防护工程、桥梁与隧道工程、岩土工程有博士学位授予权 东南大学结构工程国家重点学科、防灾减灾工程及防护工程学科为江苏省重点学科、中国工程院院士1名,教授29名,博士生导师17名 太原理工大学结构工程、岩土工程博士点,防灾减灾工程及防护工程硕士点。结构工程、岩土工程为省重点学科

浅谈对岩土工程的认识

浅谈对岩土工程的认识 摘要:从不确定性及系统性来看待岩土工程,并提出了自己对岩土工程的几点认识。 关键词:不确定性系统性 岩土工程学科属土木工程一级学科,服务于建筑工程、水利工程、交通工程和地下工程等领域。岩土工程学科以研究水利水电工程和交通工程中的岩土工程问题为特色,包括高土石坝、高边坡、地下洞室中的应力、变形、渗流、稳定、流变、抗震以及高速公路与铁路、城市地铁与轻轨工程中的软基加固、深基础、盾构施工技术等内容。研究方向涉及到岩土体基本特性及土与结构相互作用、土动力学与工程抗震、软基处理与基础工程、岩石力学与岩体工程和岩土渗流理论与测试技术等内容。通过这几年的工作情况,我对岩土工程勘察初步形成了以下几点认识。1,岩土工程具有很强的不确定性。2,岩土工程是一个系统性很强的学科。3,岩土工程是一门不断发展和改善的技术。分述如下: 一,岩土工程的不确定性 岩土工程的研究对象是岩土介质。岩和土最大特点是不确定性、经验性、地域性。由于岩土工程的这种特点,决定了岩土工程是创造性的劳动,不可能批量生产,不会有标准图。岩土体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,有着复杂的结构和地应力场环境。而不同地区的不同类型的岩土体,经历的地质过程不同,工程性质也差别很大。因此,岩土体不仅工程性质复杂而且区域性、个性均很强。 面对这样一个复杂多变的研究对象,我们目前能认识的、掌握的都还很不全面,也不够完善。原因就在于岩土介质长期受到各种自然力的作用和影响,形成了极其复杂的结构和构造特征,其本构造关系至今无法用理论作精确描述,加之考虑工程结构与岩土介质的相互作用,问题更加复杂化。譬如说经典土力学对于沉降计算的假设,是在假设土体是理想的弹性体的前提下进行的。而实际上,土体并非弹性体,它有塑性,有非线性,也有弹性。所以,在应用经典土力学进行沉降计算时应首先明白这一点。再比如土体稳定性分析,无论是库伦土压力理论,还是朗肯土压力理论,都是在一定的前提条件下才能成立的。库伦土压力假设墙后填土时理想的散粒体,粘聚力为0,且滑动破坏面是一平面。现实中基本不存在这种理想情况。所以,无论我们的计算多么准确,最后的计算结构都会与实际情况有或多或少的差别。这就是岩土工程的不确定性主要体现之一。 其次,我们对岩土体本身的认识也存在不确定性。根据不确定性原理,我们对岩土体颗粒某些物理量也不可能同时具有确定的数值。因为岩土体也是每时每刻都在变化的,从微观的角度上来看,每个颗粒,甚至比颗粒更小的单元,它们在某一时刻确定的状态,我们没有办法完全准确掌握。我们所能看到的,或者认识到的都是岩土体过去某一时刻某一个物理量。在看待岩土工程本身时,应充分的认识到不确定性,并尽可能的多角度的去认识它。

4 岩土工程性质

第四章岩土体工程性质 一、名词解释 .岩石风化作用 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 .物理风化作用 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 .化学风化作用 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 .生物风化作用 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 .风化程度 岩石风化后工程性质改变的程度。 .饱和重度 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 .岩石吸水率 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 .液性指数 黏性土的天然含水率和塑限的差值与塑性指数之比。 .弹性模量 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 .岩体

岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 .结构面 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选 .冰劈作用是( )。 .物理风化 .生物风化 .化学风化 .差异风化 .因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做( )。 .热胀冷缩作用 .盐类结晶作用 .冰劈作用 .碳酸化作用 .黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .硬石膏转变成石膏体积增大 倍,使岩石破坏,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .生物物理风化的主要类型是( )。 .冰劈作用 .热胀冷缩作用 .盐类结晶作用 .根劈作用 .抗风化能力最强的矿物是( )。 .正长石 .斜长石 .石英 .方解石 .影响岩石风化的内部因素是( )。 ~ .湿度和压力 .化学活泼性流体 .岩石性质和地质构造 .矿物的联结力 .岩石浸水后强度降低的性能叫做岩石的( )。 .吸水性 .软化性 .可溶性 .崩解性 .土的含水率是指( )。 .土中水的质量与土粒质量之比 .土中水的质量与土体总重量之比 .土中水的体积与土粒体积之比 .土中水的体积与土体总体积之比 .判别黏性土软硬状态的指标是( )。 .塑性指数 .液限 .液性指数 .塑限 .岩石的强度指标,通常是用岩石的( )来表示。 .抗压强度 .抗拉强度 .抗剪强度 .抗扭强度

土木工程专业大学排名

土木工程专业大学排名 土木工程专业,是大学的一种工程学科。所谓的土木工程,是指一切和水、土、文化有关的基础建设的计划、建造和维修。一般的土木工作项目包括:道路、水务、渠务、防洪工程及交通等。 土木工程专业大学排名 序号学校名称评估结果 1同济大学A+ 2东南大学A+ 3清华大学A 4北京工业大学A 5哈尔滨工业大学A 6浙江大学A 7天津大学A- 8大连理工大学A- 9河海大学A- 10湖南大学A- 11中南大学A- 12西南交通大学A- 13解放军理工大学A- 14北京交通大学B+ 15石家庄铁道大学B+ 16沈阳建筑大学B+ 17上海交通大学B+ 18中国矿业大学B+ 19山东大学B+ 20武汉大学B+ 21华中科技大学B+ 22长沙理工大学B+ 23华南理工大学B+ 24重庆大学B+ 25西安建筑科技大学B+ 26广州大学B+ 27北京科技大学B 28北京建筑大学B

29南京工业大学B 30合肥工业大学B 31福州大学B 32青岛理工大学B 33郑州大学B 34中国地质大学B 35武汉理工大学B 36四川大学B 37重庆交通大学B 38长安大学B 39兰州理工大学B 40兰州交通大学B 41太原理工大学B-42东北大学B-43上海大学B-44苏州科技大学B-45安徽理工大学B-46华侨大学B-47山东科技大学B-48山东建筑大学B-49广西大学B-50成都理工大学B-51西安理工大学B-52西安科技大学B-53三峡大学B-54北京航空航天大学C+ 55河北工业大学C+ 56辽宁工程技术大学C+ 57东华大学C+ 58浙江工业大学C+ 59华东交通大学C+ 60湖北工业大学C+ 61湖南科技大学C+ 62深圳大学C+ 63昆明理工大学C+ 64西安交通大学C+

浅谈岩土工程的专业特点

浅谈岩土工程的专业特点 顾宝和 (建设综合勘察研究设计院) 摘 要 本文阐述了岩土工程的定义、范围、岩土工程与相邻专业之间的关系,指出了岩土工程对自然条件的依赖性、条件的不确知性、参数的不确定性、测试方法的多样性、注重系统分析、注重概念设计等特点。最后,就岩土工程的技术控制和注册岩土工程师的执业谈了自己的看法。 关键词 岩土工程 前言 岩土工程是一门既古老又新近的专业技术。上古时代,人类修道路、挖渠道、建居室,就与岩石和土打交道。近代工业化过程中,建厂房、开矿山、修铁路、兴水利等土木工程实践中,涉及到许多与岩土有关的问题,如地基的承载能力、边坡的稳定、地下水的控制、岩土材料的利用等等。但岩土工程真正成为一门独立的专业,则不到半个世纪,传入我国只二十几年。对岩土工程的涵义,岩土工程师的执业范围,至今还有不同认识。本文拟谈一些自己的看法,与同行们探讨。 1 岩土工程的内涵 对岩土工程的定义有几种不完全相同的表述: 《岩土工程基本术语标准》定义为:"土木工程中涉及岩石和土的利用、处理和改良的科学技术。"中国大百科全书定义为:"土木工程的一个分支,以工程地质学、岩石力学、土力学与基础工程为理论基础,涉及岩石和土的利用、整治和改造的一门技术科学。"也有专家定义为:"土木工程的一个分支,研究岩土体(包括其中的水)作为支承体、荷载、介质或材料,必要时对其改良或治理的一门工程技术。" 以上表述方法虽不完全一致,但主要方面是相似或相同的:第一、岩土工程是土木工程的一个分支;第二、研究对象是岩石和土,包括岩土中的水;第三、是一门技术科学或工程技术。 2 岩土工程的外延 岩土工程的实践性很强,从工程实践角度,包括下列范围: (1) 岩土作为支承体 房屋建筑、道路、桥梁、堆场、大型设备等等,都建造在岩土上,岩土作为地基,作为支承体,研究的主要问题是承载力和变形问题。 (2) 岩土作为荷载或自承体 边坡工程、基坑工程、露天矿等地面开挖,隧道、地下洞室等地下开挖,面临的是另一类稳定和变形问题。这时,岩土体担任的角色,既可能是荷载,也可能是自承体。同时,地下水的控制常常具有举足轻重的影响。 (3) 岩土作为材料 填方工程,特别是大面积高填方、填海造陆,要用大量岩土作为材料;围堰、水坝、路堤等也用岩土为材料。这些工程除了研究其稳定和变形外,岩土材料的选用和质量控制是主要问题。 (4) 地质灾害的防治 岩溶、塌陷、崩塌、滑坡、泥石流、地面沉降等地质灾害,对工程构成严重威胁,防治工程必须针对具体条件和地质演化规律进行设计和施工。场地和地基的地震效应也是岩土工程的一部分。 (5) 环境岩土工程 地质和水文地质环境的评估、废弃物的卫生填埋、土石文物的保护等等,都涉及复杂的环境岩土工程问题。随着人们对环境保护的重视,人地和谐的认知,可持续发展方针的贯彻,环境岩土工程正日益受到加大的重视。 还可以举出一些,但主要是以上五大类。 以上各类工程,不仅涉及天然岩土,还包括各种人工土。包括对天然土的加固和改良,利用排水、压 19

岩土工程复习题及答案

1.简述采矿工程中岩体力学的特点。 ①采矿工程多处于地下较深处,而其它地下工程多在距地表较近(几十米)的范围内; ②对矿山工程,只要求在开采期间不破坏,在采后能维持平衡状态不影响地表安全即可,故其计算精度、安全系数及加固等方面均低于国防、水利工程的标准;③矿山地质条件复杂,又受矿床赋存条件限制,故采矿工程的位置选择性不大,同时采掘工作面不断变化,因而采矿工程岩石力学具有复杂性的特点 2.绘图并说明岩石的应力-应变全过程曲线。 3. 3、简述岩石在三向压力作用下的变形规律。 1、裂隙压密阶段(OA)。曲线上凹,体积缩小;A点: 压密极限 2、线弹性变形阶段(AB)。呈直线,体积仍缩小;B 点:弹性极限 3、微裂隙稳定发展阶段(BC)。近似线弹性,体积变 形由缩小转为增大,发生“扩容”;C点:屈服极限 屈服点:岩石从弹性变为塑性的转折点 4、非稳定发展阶段(CD) 5、裂隙扩展、新裂隙产生,体积膨胀加剧,显示 宏观破坏迹象,岩石承载能力达到极限;D点:峰值强度/强度极限,即单轴抗压强度 6、残余强度阶段(DE)岩石全面破坏,承载能力下 降,但尚有承载力,此为岩石材料特点之一 岩石三向压力(σ1>σ2=σ3)作用下变形规律 1随着围压(σ2=σ3)增大,岩石抗压强度显著增加; 2随着围压(σ2=σ3)增大,岩石变形显著增大; 3随着围压(σ2=σ3)增大,岩石弹性极限显著增大; 4随着围压(σ2=σ3)增大,岩石性质发生变化:由弹性→塑性

4. 解释岩石的不稳定蠕变曲线,试述如何利用它进行岩体工程破坏的预报? 5. 绘图并说明岩石力学介质常用的理论模型。 ①岩石自身性质 ⑴ 虎克体——弹簧元件 理想弹性元件,呈线弹性,完全服从虎克定律,其力学关系为 由于弹性模量E 为常量,故变形与时间无关,有 dt d E dt d ε σ= ⑴ 过渡蠕变阶段(Ⅰ) 在加载瞬间有一弹性变形ε0,继而以较快的速度增长,随后蠕变速度逐渐降低,并过渡到等速蠕变阶段。 若在此阶段内卸载,则会出现瞬间弹性变形(PQ 段),和通过一段时间才能恢复的变形(QR 段) ⑵ 稳定蠕变阶段(Ⅱ) 变形缓慢,应变与时间近于线性关系,变形速度保持恒定 若在此阶段卸载,则不仅出现瞬间的弹性恢复(TU 段)和弹性后效(UV 段),还会有不可恢复的永久变形残留 ⑶加速蠕变阶段(Ⅲ) 蠕变速度加快,内部裂隙迅速发展,促使变形加剧,直到破坏 * 利用蠕变曲线进行岩石工程破坏预报。若发现岩体某部分位移速度开始由等速转入加速发展时,表明即将发生破坏;若给出加速蠕变起始点时间,及时撤离,可避免灾难发生 ⑶ 牛顿体——阻尼元件 是一种理想的粘性流体,其流动性质服从牛顿粘性定律,即粘性体的流动速度(或应变速度)与应力成比例关系: η——液体粘性系数 ⑵ 库仑体——摩擦元件 理想塑性体,其力学关系为: ???≥∞ →<=) () (000σσσσε σ0——屈服极限

岩土工程勘察土层岩层描述

1、填土(Q4del):黄褐色,松散,山体表层残坡积物,主要由碎石和粉土组成,碎石含量不均,一般40%左右,棱角状,石英质,粒径一般2-8cm,混有植被根系 2、含碎石粉质粘土(Q3al+pl):红褐色,可塑,韧性干强度中等,其中混有石英岩碎石,含量20%~30%,粒径20~140mm,呈次棱角状,局部含量较高 2、粉砂(Q4al):黄褐色,主要成分为长石和石英,粒度均等,粘粒含量较高,饱和,松散,局部夹有粉土透镜体。 3、淤泥(Q4m):灰黑色,流塑状,局部软塑,干强度低,摇震反应迅速,微有腥臭味,砂含量较高,混有少量贝壳碎屑,钻进时有掉钻现象。 4、碎石(Q4al+pl):灰黑色,饱和,稍密,碎石含量50%左右,次棱角状,主要成份为石英质,粒径一般2~10cm,空隙由中粗砂及砾石充填 5、粉质粘土(Q3al+pl):褐红色,可塑,局部硬塑,干强度中等,韧性中等,无摇震反应,局部混有20%左右的圆砾,亚圆状,主要成分为石英质,粒径一般2-10mm。 6、淤泥质粉质粘土(Q4al+m):灰黑色~黄褐色,软塑~可塑,稍具腥臭味,湿~饱和,砂砾含量30%左右,亚圆状为主,粒径0.5~2mm,个别达到碎石级别,母岩成份主要为强风化石英岩,混有贝壳碎片,局部可见黄褐色砂砾透镜体。 7、强风化石英岩夹板岩(Q nq):灰白-黄褐色,变晶结构,层状构造,

结构大部分破坏,矿物成分显著变化,节理裂隙发育强烈,结构面普遍染红,板岩夹层厚度0.5-2cm,岩芯呈碎块状,锤击声哑,无回弹,较易击碎,为软岩,破碎,岩体基本质量等级为Ⅴ级 8、中风化石英岩夹板岩(Q nq):灰白色,变晶结构,层状构造,结构部分破坏,板岩夹层厚度0.5-2cm,岩芯呈短柱状,锤击较清脆,不易击碎,属于较硬岩,较破碎,岩体基本质量等级为Ⅳ级 9、强风化板岩夹石英岩(Q bq):黄褐色、灰褐色,岩体呈散体~碎裂状结构,节理裂隙发育,岩芯呈碎片状,给水钻进较快,为软岩,岩体破碎,岩石基本质量等级为Ⅴ级。 10、中风化石英岩夹板岩(Q bq):石英岩,灰白色,灰褐色,变晶结构,块状构造;板岩,灰褐色,灰黄色,变余结构,板理状构造,节理裂隙较发育,节理面光滑平直,呈锈黄色,裂隙多为闭合,裂隙无充填,岩石为较软岩,岩体较破碎,岩石基本质量等级为Ⅳ级,给水钻进困难。 11、全风化辉绿岩:黄褐色,稍湿,结构构造不清晰,岩芯呈砂土状,干钻可以钻进。 12、强风化辉绿岩(β):黄褐色,辉绿结构,块状构造,结构大部分破坏,矿物成分显著变化,岩芯呈碎块状,锤击声哑,有凹痕,无回弹,易击碎,为软岩,较破碎,岩体基本质量等级为Ⅴ级 13、中风化辉绿岩:暗绿色,辉绿结构,块状构造,岩芯呈柱状,柱长一般5~15cm,属较软岩,较破碎,岩体基本质量等级为Ⅳ级全风化板岩(Q nq):黄褐色,原岩结构基本破坏,岩芯呈土柱状,稍具可塑性,

相关文档