文档库 最新最全的文档下载
当前位置:文档库 › 【能源化工类】中原油田天然气液化工艺研究

【能源化工类】中原油田天然气液化工艺研究

【能源化工类】中原油田天然气液化工艺研究
【能源化工类】中原油田天然气液化工艺研究

(能源化工行业)中原油田天然气液化工艺研究

中原油田天然气液化工艺研究

杨志毅张孔明王志宇陈英烈王保庆叶勇刘江旭中原石油勘探局457001e-mail:b56z7h7@https://www.wendangku.net/doc/047019841.html,摘要:本篇参考了国内外有关液化天然气(LNG)方面大量的技术资料,结合中原石油勘探局天然气应用技术开发处LNG工厂建设过程中的实践经验,简要介绍了目前国内外LNG产业的发展状况和LNG在国内发展的必要性以及发展前景。其中LNG发展状况部分,引用大量较为详实的统计数据,说明了我国目前LNG发展水平同国外水平间的差距和不足,且介绍了我国天然气资源状况,包括已探明的储量。工艺介绍部分,简要介绍了目前国外已用于工业生产的比较成熟的工艺方案,同时以大量篇幅介绍了中原石油勘探局天然气应用技术开发处,针对自身气源特点,设计出的三套液化工艺的技术性能及经济比较,旨在为大家今后从事LNG产业开发、利用提供壹些有益的帮助。同时本篇仍介绍了中原石油勘探局天然气应用技术开发处正在建设中的LNG工厂的工艺路线及部分参数。引言能源是国民经济的主要支柱,能源的可持续发展也是国民经济可持续发展的必不可少的条件。目前,我国能源结构不理想,对环境污染较大的煤碳在壹次能源结构中占75%,石油和天然气只占20%和2%,尤其是做为清洁燃料的天然气,和在世界能源结构中占21.3%的比例相比,相差10倍仍要多。所以发展清洁燃料,加快我国天然气产业的发展,是充分利用现有资源,改善能源结构,减少环境污染的良好途径。从我国天然气资源的分布情况来见,多分布于中西部地区,而东南沿海发达地区是能源消耗最大的地区,所以要合理利用资源,解决利用同运输间的矛盾,发展LNG产业就成了非常行之有效的途径。液化天然气(LNG)的性质及用途:液化天然气(liquefiednaturalgas)简称LNG,是以甲烷为主要组分的低温、液态混合物,其体积仅为气态时的1/625,具有便于经济可靠运输,储存效率高,生产使用安全,有利于环境保护等特点。LNG用途广泛,不仅自身能够做为能源利用,同时可作为LNG汽车及LCNG汽车的燃料,而且它所携带的低温冷量,能够实施多项综合利用,如冷藏、冷冻、空调、低温研磨等。液化天然气(LNG)产业国内外发展情况:1.国外LNG发展情况:液化天然气是天然气资源应用的壹种重要形式,目前LNG占国际天然气贸易量的25%,1997年已达7580万吨,(折合956亿立方米天然气)。LNG主要产地分布在印度尼西亚、马来西亚、澳大利亚、阿尔及利亚、文莱等地,消费国主要是日本、法国、西班牙、美国、韩国和我国台湾省等。LNG自六十年代开始应用以来,年产量平均以20%的速度持续增加,进入90年代后,由于供需基本平衡,海湾战争等因素影响,LNG每年以6~8%的速度递增,这个速度仍高于同期其它能源的增长速度。2.国内LNG概况在我国,液化天然气在天然气工业中的比重几乎为零,这无法满足我国经济发展中对液化天然气的需求,也和世界上液化天然气的高速度、大规模发展的形势相悖,但值得称道的是,我国的科研人员和从事天然气的工程技术人员为我国液化天然气工业做了许多探索性的工作。目前,有三套全部国产化的小型液化天然气生产装置分别在四川绵阳、吉林油田和长庆油田建成,三套装置采用不同的生产工艺,为我国LNG事业发展起到了很好的示范作用。3.我国天然气资源优势我国年产天然气201多亿Nm3,天然气资源量超过38万亿M3,探明储量只有4.3%,而世界平均为37%,这说明我国天然气工业较落后,同时说明了我们大力发展天然气工业是有资源保证的,是有潜力的。目前几种成熟的天然气液化工艺介绍天然气液化过程根据原理能够分这三种。第壹种是无制冷剂的液化工艺,天然气经过压缩,向外界释放热量,再经膨胀(或节流)使天然气压力和温度下降,使天然气部分液化;第二种是只有壹种制冷剂的液化工艺,这包括氮气致冷循环和混合制冷剂循环,这种方法是通过制冷剂的压缩、冷却、节流过程获得低温,通过换热使天然气液化的工艺;第三种是多种制冷剂的液化工艺,这种工艺选用蒸发温度成梯度的壹组制冷剂如丙烷、乙烷(或乙烯)、甲烷,通过多个制冷系统分别和天然气换热,使天然气温度逐渐降低达到液化的目的,这种方法通常称为阶式混和制冷

工艺或复迭式制冷工艺。中原油田天然气液化工艺研究天然气液化工艺包括净化单元和液化单元俩大部分,净化单元脱除原料气中的水、重烃、酸性气体(H2S,CO2)、汞等不利于液化单元正常工作的有害物质;液化单元主要是利用外加冷源和自身压力能使气态天然气转化为液态的工艺过程。1.中原油田天然气及气质情况:中原油田年产天然气13亿立方米,文23块气田是全国有名的整装气田,以压力高且稳定,气质好、产量高而闻名全国。根据资料分析,文23块气田的压力在12MPa能够维持十年之上,该气田的天然气中甲烷含量达95%之上,CO2和C5之上组分含量很低,不含H2S和Hg。另外中原油田拥有丰富的中压和低压输气管网,为低成本运行的部分液化工艺提供了较优越的条件。2.净化工艺:脱水常用的方法是分子筛吸附法,这种方法可使天然气中水蒸气脱至1PPM,我们拟采用分子筛吸附法脱水,天然气中的酸性气体CO2和H2S的脱除常采用分子筛吸附法和溶剂吸收法,中原天然气中不含H2S,CO2含量在1.1%,我们采用溶剂(DEA)吸收法脱除CO2,C5之上重烃脱除常用的方法也有俩种,就是活性碳吸附法和制冷分离法,根据中原天然气中C5之上的组分含量和天然气的压力、温度、流量等参数,采用低温分离法较合适。3。预选的液化工艺:工艺方案壹:丙烷预冷+节流工艺(图1)净化后的原料气进液化装置压力为12Mpa、40℃,首先经过丙烷预冷至-35℃左右,再经尾气冷却后进行壹次节流至1MPa,此时得到1Mpa的LNG和1Mpa不凝气,不凝气回流预冷天然气后进入1Mpa的外输管网,LNG再次节流至0.3Mpa,此时得到-146LC、0.3Mpa的LNG和不凝气,不凝气回流预冷壹次节流前的天然气以回收冷量,降低能耗。LNG进入低温储罐储存。图1(略)工艺方案二:丙烷预冷+双膨胀机+节流(图2)净化后的高压天然气首先节流至8Mpa(考虑到国产膨胀机最大工作压力为8Mpa),经过丙烷或氨预冷至-30LC进入高压膨胀机,膨胀至3.2Mpa后进入壹级分离器,气相再经过低温尾气预冷后进入中压膨胀机,膨胀至0.6Mpa,再进入二级分离器,气相的低温尾气回流预冷二级膨胀机前的天然气,液相经过节流至0.3Mpa进入LNG储罐,0.3Mpa 低温尾气回流冷却原料气。0.3Mpa的LNG进入储罐。图2(略)工艺方案三:丙烷预冷+乙烯预冷+节流(图3)在充分吸取国外先进工艺技术的基础上,结合国内、国外有关设备的情况,我们又研究出第三套LNG工艺技术方案。图3(略)净化后的高压天然气,先经过丙烷预冷至-30LC再经过乙烯制冷系统冷却至-90LC,再经过壹级节流产生1Mpa的LNG和低温尾气,然后进行二次节流至0.3Mpa,产生0.3Mpa的LNG和低温尾气,中低压低温尾气均回流预冷和过冷丙烷和乙烯俩种制冷介质。丙烷制冷和乙烯制冷系统是俩个相对独立又相互联系的系统,俩个系统通过调节制冷剂温度和流量来控制天然气的温度,且设尾气冷量回收系统回收尾气的冷量,高压节流产生的冷量在装置中被充分利用。4。液化工艺方案技术经济比较方案壹方案二方案三原料气量30×104m3/d30×104m3/d30×104m3/d能耗0.1Kwh/Nm30.08Kwh/Nm30.13Kwh/Nm3收率18%37.80%≥50%工艺优点工艺流程短,设备少装置可靠,能耗低。能耗较低,工艺流程简单收率较高收率高,各制冷系统相对独立,可靠性。、灵活性好。收率低,经济效益不装置高速转动部件工艺相对较复杂,须理想。多,操作复杂,极限俩种制冷介质和循工艺缺点液化率37.8%。设备投资高。环。设备投资高。中原油田LNG 工厂工艺方案简介从之上技术经济比较中,方案三虽然能耗较大,但其收率较其它俩种方案高的多,且比较适合中原油田气源特点,故我们选择了方案三作为设计基础,且加以改进,形成了独特、合理的天然气液化工艺流程。该工艺流程如下图所示,120bar/27℃高压天然气进装置后,经高压分离罐分液,然后进入天然气脱CO2单元,本单元采用以壹乙醇胺为吸收剂的溶剂吸收法脱除CO2,再用吸附效果较理想的分子筛脱水;净化后的高压原料气由丙烷预冷至-30℃左右,节流膨胀至53bar/-60℃左右,分离脱除重烃,再经乙烯冷凝,节流至10bar/-123℃,分离得中压尾气和中压LNG,中压LNG再经节流,得到3bar/-145℃左右的低压LNG,低压尾气同中压尾气壹起经回收冷量后分别进入低压和中压管网,低z压LNG 作为产品储存于储罐内。其收率达到51.4%,能耗为0.13Kwh/Nm3。七.结论本篇所研究的工

艺方案均是部分液化工艺,充分利用了气源的高压力能,具有能耗低,成本低的特点,对全国有类似气源的油气田有壹定的借鉴意义。天然气液化技术使得中、西部地区丰富的天然气资源低成本地走向东、南发达地区成为可能,缓解了我国天然气资源分布不均的矛盾;天然气作为汽车燃料和城市民用清洁燃料,减小了对大气的污染,对城市环境污染问题的解决十分有利;天然气液化技术的发展,给中、老油区寻找新的经济增长点,解决资源不足问题提供了新的思路;天然气液化工艺技术的发展,将促进我国低温技术、低温设备制造、化工生产行业的发展,给我国经济的高速快速发展注入壹份新的生机。

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

港华燃气技术员手册

一、燃气管网工(户内) 1、居民生活中使用的燃气,哪三种最常用? 答:液化气、天然气、人工煤气 2、常用燃气中哪一种热值最高? 答:液化石油气 3、天然气的主要成分就是什么? 答:甲烷 4、纯天然气的爆炸极限就是多少? 答:5-15% 5、浓度单位“PPM”含义就是什么? 答:表示百万分比。一般常用的气体检测仪器测得的气体浓度都就是体积浓度(百分比浓度%或百万分比浓度ppm)。 6、简述天然气、人工煤气、液化石油气的相对密度、热值与爆炸范围? 7、天然气有什么优点?(要求:请举例说明,优点不少于3项) 答:天然气具有: (1)安全性,天然气主要成分为甲烷,不含一氧化碳,无色、无臭、无毒,密度比空 气轻,如有泄漏容易扩散与察觉; (2)环保性,天然气经净化处理后,不含硫与其它杂质,排放的烟气中CO、SOx

NOx 与颗粒的含量比柴油、重油、煤、秸秆、木柴要低得多; (3)经济性,折算为同等热值,天然气价格比其她大部分燃料低,并且价格相对稳 定; (4)便捷性,天然气适宜于管网统一规划与经营管理,可提高城市燃气的整体服务 水平与城市现代化水平,方便客户使用。 8、燃烧应具备的基本条件有哪些? 答:燃烧应具备的条件有: (1)可燃物质,如木柴、汽油、丙烷等; (2)助燃物质,常见为空气或氧气; (3)火源,常见的有明火、摩擦、电气火、静电火花等。 9、燃气的高热值与低热值的区别就是什么? 答:燃气的高热值就是单位数量的燃气完全燃烧后,其燃烧产物与周围环境恢复到原始温度,其中水蒸汽以凝结水状态排除时所放出的全部热量。 燃气的低热值就是单位数量的燃气完全燃烧后,其燃烧产物与周围环境恢复到原始温度,其中水蒸汽仍为气体状态所放出的全部热量。 高热值与低热值之差,即为烟气中水的汽化潜热。 10、什么情况会造成不完全燃烧?其有何危害?(要求:请简述造成不完全燃烧的情况,并说明其危害性) 答:燃气燃烧时,环境未能提供足够助燃空气或混合不良时,会造成不完全燃烧,除产生二氧化碳与水分外,还产生一氧化碳及未燃烧的甲烷、氢气与碳氢化合物等可燃组分。一氧化碳就是无色无味,有毒性及不易察觉,对人体有害。 11、港华燃气的企业使命就是什么?(要求:请准确表达企业的使命) 答:为客户供应安全可靠的燃气,并提供亲切、专业与高效率的服务,同时致力保护及改善环境。 12、港华对外承诺的服务目标就是什么?(要求:请说明公司对外的服务目标内

【能源化工类】中原油田天然气液化工艺研究

(能源化工行业)中原油田天然气液化工艺研究

中原油田天然气液化工艺研究 杨志毅张孔明王志宇陈英烈王保庆叶勇刘江旭中原石油勘探局457001e-mail:b56z7h7@https://www.wendangku.net/doc/047019841.html,摘要:本篇参考了国内外有关液化天然气(LNG)方面大量的技术资料,结合中原石油勘探局天然气应用技术开发处LNG工厂建设过程中的实践经验,简要介绍了目前国内外LNG产业的发展状况和LNG在国内发展的必要性以及发展前景。其中LNG发展状况部分,引用大量较为详实的统计数据,说明了我国目前LNG发展水平同国外水平间的差距和不足,且介绍了我国天然气资源状况,包括已探明的储量。工艺介绍部分,简要介绍了目前国外已用于工业生产的比较成熟的工艺方案,同时以大量篇幅介绍了中原石油勘探局天然气应用技术开发处,针对自身气源特点,设计出的三套液化工艺的技术性能及经济比较,旨在为大家今后从事LNG产业开发、利用提供壹些有益的帮助。同时本篇仍介绍了中原石油勘探局天然气应用技术开发处正在建设中的LNG工厂的工艺路线及部分参数。引言能源是国民经济的主要支柱,能源的可持续发展也是国民经济可持续发展的必不可少的条件。目前,我国能源结构不理想,对环境污染较大的煤碳在壹次能源结构中占75%,石油和天然气只占20%和2%,尤其是做为清洁燃料的天然气,和在世界能源结构中占21.3%的比例相比,相差10倍仍要多。所以发展清洁燃料,加快我国天然气产业的发展,是充分利用现有资源,改善能源结构,减少环境污染的良好途径。从我国天然气资源的分布情况来见,多分布于中西部地区,而东南沿海发达地区是能源消耗最大的地区,所以要合理利用资源,解决利用同运输间的矛盾,发展LNG产业就成了非常行之有效的途径。液化天然气(LNG)的性质及用途:液化天然气(liquefiednaturalgas)简称LNG,是以甲烷为主要组分的低温、液态混合物,其体积仅为气态时的1/625,具有便于经济可靠运输,储存效率高,生产使用安全,有利于环境保护等特点。LNG用途广泛,不仅自身能够做为能源利用,同时可作为LNG汽车及LCNG汽车的燃料,而且它所携带的低温冷量,能够实施多项综合利用,如冷藏、冷冻、空调、低温研磨等。液化天然气(LNG)产业国内外发展情况:1.国外LNG发展情况:液化天然气是天然气资源应用的壹种重要形式,目前LNG占国际天然气贸易量的25%,1997年已达7580万吨,(折合956亿立方米天然气)。LNG主要产地分布在印度尼西亚、马来西亚、澳大利亚、阿尔及利亚、文莱等地,消费国主要是日本、法国、西班牙、美国、韩国和我国台湾省等。LNG自六十年代开始应用以来,年产量平均以20%的速度持续增加,进入90年代后,由于供需基本平衡,海湾战争等因素影响,LNG每年以6~8%的速度递增,这个速度仍高于同期其它能源的增长速度。2.国内LNG概况在我国,液化天然气在天然气工业中的比重几乎为零,这无法满足我国经济发展中对液化天然气的需求,也和世界上液化天然气的高速度、大规模发展的形势相悖,但值得称道的是,我国的科研人员和从事天然气的工程技术人员为我国液化天然气工业做了许多探索性的工作。目前,有三套全部国产化的小型液化天然气生产装置分别在四川绵阳、吉林油田和长庆油田建成,三套装置采用不同的生产工艺,为我国LNG事业发展起到了很好的示范作用。3.我国天然气资源优势我国年产天然气201多亿Nm3,天然气资源量超过38万亿M3,探明储量只有4.3%,而世界平均为37%,这说明我国天然气工业较落后,同时说明了我们大力发展天然气工业是有资源保证的,是有潜力的。目前几种成熟的天然气液化工艺介绍天然气液化过程根据原理能够分这三种。第壹种是无制冷剂的液化工艺,天然气经过压缩,向外界释放热量,再经膨胀(或节流)使天然气压力和温度下降,使天然气部分液化;第二种是只有壹种制冷剂的液化工艺,这包括氮气致冷循环和混合制冷剂循环,这种方法是通过制冷剂的压缩、冷却、节流过程获得低温,通过换热使天然气液化的工艺;第三种是多种制冷剂的液化工艺,这种工艺选用蒸发温度成梯度的壹组制冷剂如丙烷、乙烷(或乙烯)、甲烷,通过多个制冷系统分别和天然气换热,使天然气温度逐渐降低达到液化的目的,这种方法通常称为阶式混和制冷

天然气液化工艺部分技术方案(MRC)..

天然气液化工艺部分技术方案(MRC) 一、 天然气液化属流程工业,具有深冷、高压,易燃、易爆等特征,在生产中具有极高的危险性,既有比较高的温度(280℃)和压力(50Bar),也有低温(-170℃),这些单元之间紧密相连,中间缓冲地带比较小,对参数的变化要求严格,这对LNG液化装置连续生产自动化提出了很高的要求。 LNG装置的制冷剂配比与产量和收率直接相关,因此LNG生产过程中控制品质占有非常突出的位置。整个生产过程需要很多自动化硬件和配套的软件来实现。以保证生产装置的安全、稳定、高效运行,不仅是提高效益的关键,而且对生产人员、生产设备,以及整个厂区安全都十分重要。 二、工艺过程简述 LNG工艺流程图参见P&ID图 1、原料气压缩单元 来自界区外的天然气经过过滤器除去部分碳氢化合物、水和其它的液体及颗粒。35MPa(G)的原料气进入脱CO2单元。 3、脱水脱酸气单元 原料气进入2台切换的干燥器,在这里原料气所含有的所有水分和CO2被脱除,干燥器出口原料气中水的露点在操作压力下低于-100℃。经过分子筛干燥单元,在这里原料气再经过两个过滤器中的一个进行脱粉尘过滤。 4、液化单元 进入冷箱的天然气在中被冷却至-35℃,在这个温度点冷箱分离罐中,脱除大部分重烃;天然气继续冷却至-70℃,在这个温度点,天然气在冷箱分离器中,脱除全部重烃,出口的天然气中C5+重烃含量降至70ppm以下;甲烷气继续冷却至-155℃,节流后进入冷箱分离罐中分离,液体部分即为液化天然气被送至液化天然气储罐中储存,气相部分返回冷箱复温后用作分子筛干燥单元的再生气。 5、储运单元 来自液化单元的液化天然气进入液化天然气储罐中储存,产量为420m3,储罐容量为4500 m3,储存能力为10天。 6、制冷剂压缩单元 按一定比例配比的制冷剂,经过制冷压缩机增压至1.3MPa(G)后经中间冷

LNG加气站液化天然气化站操作手册

LNG 气化站液化天然气化站操作手册

目录 1 设计参数 (4) 2 工艺流程简述 (5) 3 控制及安全报警系统 (6) 3.1 压力测量点一览表 (6) 3.2 液位测量点一览表 (7) 3.3 温度测量点一览表 (7) 3.4 紧急切断阀设臵一览表 (7) 3.5 可燃气体泄漏报警检测器设臵一览表 (8) 3.6 安全阀设臵一览表 (8) 3.7 远传报警控制系统 (8) 4 岗位操作 (9) 4.1 LNG液体装卸操作 (10) 4.2 LNG气化操作 (12) 4.3 主要设备及辅助系统 (13) 5 安全管理制度 (15) 5.1 LNG站操作人员值班制度 (15) 5.2 站长岗位责任制 (15) 5.3 操作人员岗位责任制 (16) 5.4 液化天然气站安全规程 (16) 5.5 LNG站防火安全制度 (17) 5.6 安全用火规定 (17) 5.7 消防队员岗位工作职责 (19) 5.8 LNG站储罐、设备及输送管道安全附件定期检验要求 (20) 5.9 罐车装卸液监护制度 (21) 5.10 罐车安全操作规程 (21) 5.11 站区火险应急方案 (23) 6. 设备巡检 (24) 7. 故障处理 (25) 7.1 储罐压力过高 (25) 7.2 罐体出现冒汗结霜现象 (25) 7.3 安全阀起跳 (25) 7.4 低温部位法兰发生泄漏处理 (26) 7.5 低温阀门泄漏处理 (26) 7.6 气动阀门打不开 (26) 8. 安全须知 (27)

8.1 液化天然气的安全知识 (27) 8.2 安全操作注意事项 (31) 9. 附件 (32) 9.1 工艺管道及仪表流程图 (32) 9.2 工艺图例及符号说明 (32) 9.3 仪表控制点图例及符号说明 (32) 9.4 汽车罐车泄液记录 (32)

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

LNG液化天然气车 专用件 使用说明

LNG液化天然气车专用件使用说明 液化天然气车型专用件包括车用天然气储气瓶、汽化器、燃料加注系统。现就以上专用件的使用说明如下: 一、专用装置介绍 1、液化天然气瓶。 用于车辆储存和供应LNG燃料的压力容器及总成。压力容器通常采用双层不锈钢壳体的真空绝热型式。 1.1加液组件 安装在加液面板上,加液时一端通过管路与气瓶上的加注单向阀连接,一端与加气站加气枪连接,使LNG液体由LNG加气站加注到LNG气瓶里。 1.2回气组件

安装在加液面板上,加液时一端通过管路与气瓶上的回气截止阀连接,一端与加气站回气枪连接,使LNG气瓶里的气态天然气回到到LNG加气站里,形成循环,避免天然气回气损失。 1.3加注单向阀 安装在LNG储气瓶箱内加注管上的阀,在加注的过程中阀打开,加注完成后,阀关闭,可避免LNG储气瓶内的LNG倒流。

1.4回气截止阀 安装在LNG储气瓶箱内回气管上的阀,在加注的过程中阀打开,加注完成后,阀关闭,使气瓶内的气态天然气回到加气站内,避免天然气排放损失。 1.5供液截止阀 安装在LNG气瓶上LNG供应管路上的阀,用于切断储气瓶与燃料供应管路的

操作。在加气过程中,该阀门应处于关闭状态。 1.6供液扼流阀 安装在供液截止阀后面的阀,在流速异常增大时,能对流速的增大具有抑制的作用,避免管路万一发生破裂时,能抑制燃料外泄的速度。 1.7节气调节阀 又名经济阀,储气瓶的压力控制装置之一,安装于燃料供应管路和气体管路之间,用于释放储气瓶内过量的气体。当储气瓶内压力高于调节阀的设定压力时,能自动开启,使储气瓶内压力下降。当储气瓶内压力低于设定压力时,则自动

LNG液化工艺的三种流程

LNG液化工艺的三种流程 LNG是通过将常压下气态的天然气冷却至-162℃,使之凝结成液体。天然气液化后可以大大节约储运空间,而且具有热值大、性能高、有利于城市负荷的平衡调节、有利于环境保护,减少城市污染等优点。 由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。我国对LNG产业的发展也越来越重视,LNG项目在我国天然气供应和使用中的作用尤为突出,其地位日益提升。 1 天然气液化流程 液化是LNG生产的核心,目前成熟的天然气液化流程主要有:级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程。 1.1 级联式液化流程 级联式(又称复迭式、阶式或串级制冷)天然气液化流程,利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的。常用的冷剂为水、丙烷、乙烯、甲烷。该液化流程由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。每个制冷循环中均含有三个换热器。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量;通过9个换热器的冷却,天然气的温度逐步降低,直至液化如下图所示。 1.2 混合制冷剂液化流程 混合制冷剂液化流程(Mixed-Refrigerant Cycle,MRC)是以C1~C5的碳氢物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、膨胀,得到不同温度水平的制冷量,逐步冷却和液化天然气。混合制冷剂液化流程分为许多不同型式的制冷循环。

液化天然气LNG装置各岗位操作规程详细操作规程

一、净化岗位原料气压缩单元操作规程 1、主题内容与适用范围 1.1本规程规定了净化岗位原料气压缩单元的任务、管辖范围、开停车步骤、正常操作及事故处理。 2、编写依据 2.1林德提供的《操作手册》。 3、管辖范围 3.1容器6台:101 原料气过滤分离器、102原料气压缩机第一中间罐、103 原料气压缩机第二中间罐、104净化气第一缓冲罐、105净化气第二缓冲罐。 3.2空冷器3组:101原料气压缩机第一中间冷却器、102原料气压缩机第二中间冷却器、103原料气压缩机后冷却器。 4、工艺流程叙述 由界区外来的压力为0.8(a)的天然气,先在101(原料气过滤分离器)中 除去液体和固体的颗粒,然后由101(原料气压缩机)I段将压力提升到1.96, 再经101(I段中间冷却器)由空气冷却到约40℃。冷却产生的冷凝水在102 (原料气压缩机I段分离器)中分离出来送到洗涤单元。 经过I段压缩后的原料气,经102进入101Ⅱ段并在101Ⅱ段压缩到4.0,然 后进入102(Ⅱ段中间冷却器),冷却到约40℃,冷却产生的冷凝水在103(压 缩机Ⅱ段分离器)中分离出来送到洗涤单元,以减少界区外来的精制水的用量。 原料气进入2洗涤单元201,将2从0.1脱除至50(V)以下。 离开201顶部返回到原料气压缩机Ⅲ段入口的净化天然气温度约40℃,为防 止原料气带水,先进入V104经分离脱水后,进入压缩机Ⅲ段被压缩,压力上升 到约6.7,再经103(压缩机Ⅲ段出口空冷器),经空气冷却到约40℃,其冷凝 水在105中分离并排至102,原料气送干燥单元进一步净化处理。 5、开车 5.1原料气压缩单元氮气置换 5.1.1公用工程制氮系统生产的氮气从去火炬F701-1/2的N2气总管90026-2"上,经由90048-3/4"线,引至主装置区101,供C101原料气压缩单元N2气置 换用气。 5.1.2氮气置换方法:采用充、卸压方式,反复进行直到取样分析O2小于1% 为合格,维持一定压力,关充氮气阀。 5.1.3天然气管线进界区至C101入口段管路系统的氮置换 5.1.3.1关闭天然气进装置界区处10001-20"线上的第一道闸阀及副线阀。 5.1.3.2关闭C101入口10002-20"手动闸阀及副线阀。 5.1.3.3关闭所有导淋及放空阀,及V101液控阀和旁路阀。 5.1.3.4由界区天然气去冷火炬燃料气线10031-2"管线,倒引N2气。首先利 用去火炬区的氮气系统90004-1"氮气线关闭管线上的70001、70005手阀,同时 开启该管线上的闸阀和盲板,开启从该管线接出的1″线上的闸阀,将N2引至10031-2″管线,再关闭相邻的70009-1″线上的闸阀,将系统氮气升压至0.5

天然气系统商用车操作手册

天然气汽车操作要点 第一节天然气汽车的起动 当天然气汽车起动时,建议当点火钥匙在ON档3秒后再起动发动机,由于天然气的特点,故汽车起步时,应适当提高发动机转速。每次起步之前,宜怠速运行数分钟,讲发动机水温提高到发动机所要求的水温再起步。 第二节天然气汽车的运行 一、运行中档位的选择 1.天然气汽车运行中,应注意档位的选择,要尽量避免高档低速行驶。 2.长期运行时,发动机水温应保持在发动机使用说明书中要的范围内。水温过低易造 成高压减压器冰堵、密封阀片损坏及使耗气量增加。 二、行驶过程中操作注意事项 1.运行过程中,若在驾驶室内对有低压指示表的汽车,应注意低压表的指示情况。平 稳运行时低压表的指针应无剧烈波动,如发现异常波动,应立即停车排除故障后方 可运行,如故障不能排除,则应关闭高压截止阀,通知专业维修人员进行维修。 2.驾驶天然气汽车时,应根据路况等提前换挡,最好不要急加油门,禁止高档低速, 防止造成回火放炮,引起不必要的机件损坏。 3.在行驶中随时观察天然气量的变化情况,如变化太快,与行驶里程不符,应及时停 车检查是否有漏气情况。 第三节天然气汽车冬夏季驾驶注意事项 一、冬季驾驶的特殊要求 1.冬季当气温下降到10度以下时,露天停放的天然气汽车起动发动机后,让发动机 在中、低速工况运转,当水温达到发动机规定温度时,方可上路行驶; 2.在行车途中,如果感到行车无力,应当检查减压器进出气口、供气管路接头是否结 冰,如结冰,禁止用火烘烤,可用温水浇烫。 二、夏季驾驶的特殊要求 1.夏季当天气在高温时,必须注意水温表读数。 2.如果水温接近或达到发动机使用说明书中规定的上限时,应当检查发动机冷却系统 工作是否正常,如不正常应首先排除冷却系统故障。 第四节天然气汽车的停车 一、临时停车 1.临时停车,应尽量选择通风阴凉、远离火源和热源之处,并尽可能设置停车警示标 志。 2.停车时,发动机应熄火3~5分钟后,关闭电源总开关。 二、夜间停车 1.晚上停车,应尽量选择通风阴凉,远离火源和热源之处停车。 2.晚上停车前,应检查燃气系统是否正常,有无漏气现象,储气瓶固定装置有无松动。 3.车停稳后,应关闭电器总开关,关闭气路总截止阀,查看并记录高压表压力读书或 气量显示器指示值(在第二天开车前,再次观察高压表压力读书或气量显示器指示 值,评估管路接头是否存在微漏气隐患)。 三、长期停车 1.汽车长期停放时,除按车辆停放规定处理外,应尽量将天然气用完,一般压力降到 0.20~4MPa即可,并关闭气瓶阀。

天然气液化工艺

天然气液化工艺 工业上,常使用机械制冷使天然气获得液化所必须的低温。典型的液化制冷工艺大致可以分为三种:阶式(Cascade)制冷、混合冷剂制冷、带预冷的混合冷剂制冷。 一、阶式制冷液化工艺 阶式制冷液化工艺也称级联式液化工艺。这是利用常压沸点不同的冷剂逐级降低制冷温度实现天然气液化的。阶式制冷常用的冷剂是丙烷、乙烯和甲烷。图3-5[1]表示了阶式制冷工艺原理。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量。制冷剂丙烷经压缩机增压,在冷凝器内经水冷变成饱和液体,节流后部分冷剂在蒸发器内蒸发(温度约-40℃),把冷量传给经脱酸、脱水后的天然气,部分冷剂在乙烯冷凝器内蒸发,使增压后的乙烯过热蒸气冷凝为液体或过冷液体,两股丙烷释放冷量后汇合进丙烷压缩机,完成丙烷的一次制冷循环。冷剂乙烯以与丙烷相同的方式工作,压缩机出口的乙烯过热蒸气由丙烷蒸发获取冷量而变为饱和或过冷液体,节流膨胀后在乙烯蒸发器内蒸发(温度约-100℃),使天然气进一步降温。最后一级的冷剂甲烷也以相同方式工作,使天然气温度降至接近-160℃;经节流进一步降温后进入分离器,分离出凝液和残余气。在如此低的温度下,凝液的主要成分为甲烷,成为液化天然气(LNG)。 阶式制冷是20世纪六七十年代用于生产液化天然气的主要工艺方法。若仅用丙烷和乙烯(乙烷)为冷剂构成阶式制冷系统,天然气温度可低达近-100℃,也足以使大量乙烷及重于乙烷的组分凝析成为天然气凝液。 阶式制冷循环的特点是蒸发温度较高的冷剂除将冷量传给工艺气外,还使冷量传给蒸发温度较低的冷剂,使其液化并过冷。分级制冷可减小压缩功耗和冷凝器负荷,在不同的温度等级下为天然气提供冷量,因而阶式制冷的能耗低、气体液化率高(可达90%),但所需设备多、投资多、制冷剂用量多、流程复杂。

液化天然气气瓶维修操作说明

张家港富瑞特种装备股份有限公司液化天然气气瓶维修操作说明张家港富瑞特种装备股份有限公司

1.范围 1.1适用于供气系统总成、框架结构除真空失效以外的材质为304、SUS304、0Cr18Ni9或低碳钢的焊接维修及更换压力表、液位计等阀门附件的安全操作。 2.规范性引用文件 TSGR3001-2006《压力容器安装改造维修许可规则》 TSGR0009-2009《车用气瓶安全技术监察规程》 TSG Z6002-2010《特种设备焊接操作人员考核细则》 Q/320582FRT09-2010《汽车用液化天然气气瓶》 GB/T12137-2002《气瓶气密性试验方法》 3.维修单位资质要求 3.1从事维修工作的单位应当取得国家质量监督检验检疫总局颁发或省级质量技术监督局颁发的《特种设备安装改造维修许可证》。 3.2 取得B3类特种气瓶(包括真空绝热低温气瓶和液化天然气车用气瓶)制造许可证。 4.操作人员要求 4.1从事焊接操作人员应具备按照《特种设备焊接操作人员考核细则》考试合格且有相应项目和等级的焊工证书。 4.2从事人员应具有与维修有关的技术知识和掌握相应的基本操作方法。 5.设备使用情况 5.1所使用到的焊接设备应保持完好,焊机上的电流表、电压表应保持完好且必须在校验的有效期内。

5.2所使用到的焊接辅助设备(包括氩气瓶)应保持完好,气瓶上的压力表、流量计应保持完好且必须在校验的有效期内。 5.3专用设备必须专人管理,做好一级保养,确保设备清洁、润滑、紧固、安全、可靠,延长设备的使用寿命。 6.场地要求 6.1场地必须配备有防火设施和消防设备。 6.2必须有良好的通风环境。 6.3场地所用的电器等应当为防爆型式。 7.日常维修 7.1气瓶使用者、维修人员应按照使用说明书要求正确使用,并定期检查气瓶的各种安全附件,如安全阀、压力表和调压阀等,并做好记录。 7.2气瓶使用者、维修人员应当编制详细的检修计划,并按照计划实施,确保产品的使用安全。 8.维修方法 8.1汽车不需动火的维修 维修时间预计超过5天的盛液气瓶,在维修之前必须将液体排尽,且将压力放至0Mpa,关闭所有阀门。 若维修时间较短(5天以内)的气瓶,在维修之前必须将压力放至0Mpa(允许存有LNG液体),每隔三天观察气瓶压力变化,若发现气瓶压力升高将接近1.7MPa则采用人工手动放空,放空时需将气瓶拖至通风、空旷的安全地点,气瓶半径10米以内禁止明火,周边不应有易燃或能够燃烧的物品,场地须安放5kg干粉(碳酸钾)灭火器

液化天然气贮罐气化站工艺流程和使用说明

浙江长荣能源有限公司 液化天然气(LNG)贮罐气化站供气系统流程说明 一、工艺流程图: 二、槽罐车卸液操作: 1、罐车停稳与连接:液化天然气的专用槽罐车开到装卸区停稳、熄火、拉手刹,用斜木垫固定车轮,防止滑移;先把装卸台上的静电接地线与LN G槽罐车可靠夹接,再用三根软管分别把卸液箱卸液口与槽罐车装卸口可靠连接;并打开卸液箱接口处排气阀,打开槽车顶部充装阀、回气阀,使气体进入软管,再从排气阀放气置换软管内空气,关闭排气阀,检查软管接头处是否密封至不漏气。 2、槽罐与贮罐压力平衡:查看槽罐车内压力和贮罐内的压力,如贮罐内的压力大于槽罐车内压力时,这时打开贮罐顶部充装管道至槽罐车增压器进液管之间的阀门和增压器进液口阀门,使贮罐内的气相与槽罐车内的液相相通,以降低贮罐内的气相压力。当贮罐内与槽罐内的压力相同时,关闭贮罐顶部充装管至槽罐车增压器进液管之间的阀门。 3、槽罐的增压:打开槽罐车与槽罐车增压器进液管之间的阀门,以及槽罐车增压器回气至槽罐车气相管之间的阀门,通过槽罐车增压器增压以提高槽罐车内的气相压力。 4、槽罐卸液:当槽罐罐内压力大于贮罐中压力0.2Mpa左右,可逐渐打开槽罐车出液阀至全开状态。这样槽罐车内的液化天然气通过卸液箱的软管与贮罐上的装卸口连接卸入液化天然气(LNG)贮罐。

三、贮罐的使用操作: 1、贮罐的压力调整至恒压:利用贮罐自带的增压阀、节气回路、增压器把贮罐的压力调整在一定的范围内(一般控制在0.2~0.35MPa),若贮罐内的压力不够,可通过调整增压阀升高设定压力,从而获得足够的供液压力确保正常供气。正常工作时,贮罐增压器的进液阀和出气阀需要打开,以保证贮罐增压器正常工作,确保贮罐的工作压力。 2、供气系统的供气: 、管道和相关设备在首次使用液化天然气时,应使用氮气置换管道和相关设备内的空气,然后用天然气置换管道和相关设备内的氮气,以确保系统中天然气的含量后才能使用液化天然气。正常用气时可根据车间用气量大小确定是开二台空温式气化器还是开一台空温式气化器。打开空温式气化器前后相关阀门以及至车间用气点的阀门,缓慢打开贮罐出液使用阀,液化天然气(LNG)通过空温式气化器吸收空气中的热量,使液态介质气化成气体,同时对气体进行加热升温,使气体接近常温。气化后的天然气再经一级调压阀组调压,把气相压力调至一较低值(一般调至0.09Mpa),然后通过工艺管道进入用气设备前的二级调压阀组,经过二级调压后进入用气设备。 ②、贮罐操作主要是开关出液口阀门及气相使用阀门,一般出液口、气相使用阀门均为双阀,靠近贮罐的一只阀门是常开阀门,另一只是工艺操作阀,这样,一旦工艺操作阀因经常开关而损坏,把近罐的根部阀关闭就可以修理。 ③、贮罐节气操作:在正常用气时,如发现贮罐的压力达到0.6Mpa时,这时可打开贮罐气相使用阀、同时关闭贮罐出液使用阀,让气相代替液相进入空温气化器供气使用;当贮罐压力值下降至正常值0.2Mpa时,再开贮罐出液使用阀,同时关闭气相使用阀;如反复出现贮罐压力达到0.6Mpa时,应报设备产权单位修理或调整设定压力。在使用贮罐气相使用阀时,必须确保贮罐压力不得低于0.15 MPa。以保证生产的正常用气供应。 ④、当生产停产后恢复生产时,应首先确定供气系统和管道内的介质是天然气还是空气。如果介质是空气,则先要用氮气置换供气系统和管道内的空气,再用天然气置换供气系统和管道内的氮气,以确保系统中天然气的含量后才能恢复生产。如果介质是天然气,则可先开贮罐出液口阀旁的贮罐气相使用阀,让贮罐内的气相代替液相进入空温气化器和相关的工艺管道至车间用气设备。等相关设备和管道预冷后再开贮罐出液阀,同时关闭气相使用阀。 四、空温气化器和调压系统的操作: 1、关闭空温气化器出口阀,缓慢打开空温气化器的进液阀,待空温气化器内压力与贮罐内压力相等时,缓慢打开空温气化器出口阀。

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

危化品一书一签-液化天然气LNG

液化天然气化学品安全技术说明书 第一部分:化学品及厂商资料 化学品中文名称:液化天然气 化学品英文名称: Liquefied?Natural?Gas? CAS No:74-82-8 分子式:CH4 分子量:16.04 企业名称: 地址:? 企业应急电话: 第二部分:成分/组成信息 有害物成分含量:甲烷95.3802%、乙烷3.0579%、丙烷0.4337% CAS No:74-82-8 第三部分:危险性概述 危险性类别:第2.1类(UN类别)易燃气体 侵入途径:吸入 健康危害:当空气中甲烷浓度达25-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、精细动作障碍等;当空气中甲烷浓度更高时,可能使人出现窒息、昏迷等。 环境危害:无 燃爆危险:易燃,与空气混合能形成爆炸性混合物,当在爆炸极限范围内遇明火、高热能时引起燃烧爆炸。

第四部分:急救措施 皮肤接触:若有冻伤,就医治疗。 吸入:迅速脱离现场至空气新鲜处。注意保暖,呼吸困难时输氧。呼吸及心跳停止者立即进行人工呼吸及心脏按压术,并就医治疗。 第五部分:消防措施 危险特性:与空气混合能形成爆炸性混合物,当在爆炸极限范围内遇明火、高热能时引起燃烧爆炸。与氟、氯等能发生剧烈的化学反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:立即切断电源。若不能立即切断电源,则不允许熄灭正在燃烧的气体。喷水冷却容器,如果可能应将容器从火场移至空旷处。采用雾状水、泡沫灭火器和二氧化碳灭火器等。 第六部分:泄漏应急处理 应急处理:切断气源,喷雾状水稀释、降温,抽排(室内)或强力通风(室外)。切断火源,迅速撤离泄漏污染区人员至污染区上风处,并隔离直至气体散尽。应急处理人员应戴自给正压式呼吸器,穿一般消防护服。如有可能,应将漏出气用排风机送至空旷地方或装设适当喷头烧掉;也可将漏气的容器移至空旷处,注意通风。漏气容器不能再用,且要经过技术处理以清除可能剩下的气体。 第七部分:操作处置与储存

液化天然气的流程和工艺

液化天然气的流程与工艺研究 随着“西气东输”管线的建成,沿线许多城镇将要实现天然气化,为了解决天然气的储气、调峰及偏远小城镇的供气问题, 液化天然气(英文缩写为LNG) 技术将有十分广阔的应用前景[1 ,2 ] 。天然气液化技术涉及传热、传质、相变及超低温冷冻等复杂的工艺及设备。在发达国家LNG 装置的设计与制造已经是一项成熟的技术。 一、天然气在进入长输管线之前,已经进行了分离、脱凝析油、脱硫、脱水等 净化处理。但长输管线中的天然气仍含有二氧化碳、水及重质气态烃和汞,这些化合物在天然气液化之前都要被分离出来,以免在冷却过程中冷凝及产生腐蚀。因此我们需要进行预处理。天然气的预处理包括脱酸和脱水。一般的脱除酸气和脱水方法有吸收法、吸附法、转化法等。 1. 1 吸收法 该种方法又分为化学溶剂吸收和物理溶剂吸收两类。化学溶剂吸收是溶剂在水中同酸性气体作用,生成“络合物”,待温度升高,压力降低,络合物分解,释放出酸性气体组分,溶剂循环回用。常用的溶剂有一乙醇胺(MEA) 和二乙醇胺(DEA) ,以上方法又叫胺法.物理吸收法的实质是溶剂对酸性气体的选择性吸收而不是起反应。一般来说有机溶剂的吸收能力与被吸收气体的分压成正比,较新的方法是由醇胺和环丁砜加水组成的环丁砜法或苏菲诺法。 1. 2 吸附法 吸附法实质上是固体干燥剂脱水。一般采用两个干燥塔切换吸附与再生,处理量

大的可用3 个或4 个塔。固体干燥剂种类很多,例如氯化钙、硅胶、活性炭、分子筛等。其中分子筛法是高效脱水方法,特别是抗酸性分子筛问世后,即使高酸性天然气也可以在不脱酸性气体情况下脱水。所以分子筛是优良的脱水剂。从长输管道来的天然气进行脱除CO2 和水后,进入液化工序。 二、天然气液化系统主要包括天然气的预处理、液化、储存、运输、利用这5 个子系统。一般生产工艺过程是,将含甲烷90 %以上的天然气,经过“三脱”(即脱水、脱烃、脱酸性气体等) 净化处理后,采取先进的膨胀制冷工艺或外部冷源,使甲烷变为- 162 ℃的低温液体。目前天然气液化装置工艺路线主要有3 种类型:阶式制冷工艺、混合制冷工艺和膨胀制冷工艺。 1. 阶式制冷工艺 阶式制冷工艺是一种常规制冷工艺(图1) 。对于天然气液化过程,一般是由丙烷、乙烯和甲烷为制冷剂的3 个制冷循环阶组成,逐级提供天然气液化所需的冷量,制冷温度梯度分别为- 30 ℃、- 90℃及- 150 ℃左右。净化后的原料天然气在3 个制冷循环的冷却器中逐级冷却、冷凝、液化并过冷,经节流降压后获得低温常压液态天然气产品,送至储罐储存。 阶式制冷工艺制冷系统与天然气液化系统相互独立,制冷剂为单一组分,各系统相互影响少,操作稳定,较适合于高压气源(利用气源压力能) 。但由于该工艺制冷机组多,流程长,对制冷剂纯度要求严格,且不适用于含氮量较多的天然气。因此这种液化工艺在天然气液化装置上已较少应用。 2. 混合制冷工艺 混合制冷工艺是六十年代末期由阶式制冷工艺演变而来的,多采用烃类混合物(N2 、C1 、C2 、C3 、C4 、C5) 作为制冷剂,代替阶式制冷工艺中的多个纯组分。其制冷剂组成根据原料气的组成和压力而定,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量。又据混合制冷剂是否与原料天然气相

2020年常用的天然气液化流程

常用的天然气液化流程 常用的天然气液化流程 不同液化工艺流程,其制冷方式各不相同。在天然气液化过程中,常用天然气液化流程主要包括级联式:液化流程、混合制冷剂液化流程与带膨胀机的液化流程,它们的制冷方式如下。 一、级联式液化流程 由若干个在不同温度下操作的制冷循环重叠组成,其中的高、中、低温部分分别使用高、中、低温制冷剂。高温部分中制冷剂的蒸发用来使低温部分中的制冷剂冷凝,低温部分制冷剂再蒸发输出冷量,用几个蒸发冷凝器将这几部分联系起来。蒸发冷凝器既是高温部分的蒸发器又是低温部分的冷凝器。对于天然气液化,多采用由丙烷、乙烯和甲烷为制冷剂的三级复叠式制冷循环。 级联式液化流程的优点主要包括: 1、逐级制冷循环所需的能耗最小,也是目前天然气液化循环中效率最高的流程。 2、与混合制冷剂循环相比,换热面积较小; 3、制冷剂为纯物质,无配比问题; 4、各制冷循环系统与天然气液化系统彼此独立,相互影响少、操作稳定、适应性强、技术成熟。 级联式液化流程的缺点: 1、流程复杂、所需压缩机组或设备多,至少要有3台压缩机,初期投资大;

2、附属设备多,必须有生产和储存各种制冷剂的设备,各制冷循环系统不允许相互渗漏,管线及控制系统复杂,管理维修不方便; 3、对制冷剂的纯度要求严格。 根据级联式液化流程的以上特点,该流程无法满足小型撬装式LNG 装置对设备布局要求简单紧凑的要求,因此只适用于大型装置,常用于2X104~5X104m3/d的装置。通过优化设备的配置,级联式液化流程可以与在基本负荷混合制冷剂厂中占主导地位的带预冷的混合制冷 剂循环相媲美。 二、混合制冷剂液化流程 该工艺是20世纪60年代末期,由级联式制冷工艺演变而来的,多采用烃类混合物(N2、C1、C2、C3、C4、C5)作为制冷剂,代替级联式制冷工艺中的多个纯组分,其组成根据原抖气的组成和压力确是,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量,又据混合制冷剂是否与原料天然气相混合,分为闭式和开式两种混合制冷工艺。 混合制冷剂液化流程的特点是什么? 以C1~C5的碳氢化合物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、节流、膨胀得到不同温度水平的制冷量,以实现逐步冷却和LNG的工艺流程称之为混合制冷剂液化流程(Mixed-RefrigerantCycle,MRC),这种流程一般用于液化能力为7443X10~30XI0m/d的装置。 与级联式液化流程相比,MRC的优点是:

相关文档