文档库 最新最全的文档下载
当前位置:文档库 › 数学建模 购房问题

数学建模 购房问题

数学建模 购房问题
数学建模 购房问题

A题:购房贷款问题

蒋萍

(08(3)班 08211337)

【摘要】

随着人们生活水平的不断提高,越来越多的人正在购置房产用于居住或进行置业投资。但是购房投资是一项金额较大的投资,要人们一次性支付比较困难。但随着市场经济的发展,向银行贷款购房成了我们买房的主要方式。我们知道,如果向银行贷款就需要直接面对提供担保、偿还借贷的问题,现实生活中人们选择贷款的期数、月还款额时,却往往因为缺乏这方面的知识,而带来一定的盲目性,给自己带来或多或少的经济损失。所以在这个市场经济时代,面对不同的决策方案,正确的决策意味着经济资源的最优配置。

本文就购房贷款问题,展开一系列的讨论。针对购房问题进行全面分析,利用递推数列将实际问题数学化,建立了一个数学模型。利用计算机程序算出结果,不仅求出了各种还款方式的还款金额和利息,而且还指出了等额还款是最优的还款方式。

【关键词】

递推数列贷款额利息贷款期限还款额

1.问题重述

小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是0.6%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

1. 在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?

2. 在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还

贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?

3. 如果在第6年初,银行的贷款利`率由0.6%/月调到0.8%/月,他们仍然

采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?

4. 小王夫妇认为,随着他们工作经历的增长,家庭收入也会随着增长,因此,

打算采用逐步增加还款额的还款方式来偿还贷款,具体的办法是:如果第1年的每月还款额是1000元的话,那么第2年的每月还款额就是1500元,第3年的每月还款额是2000元,第4年的每月还款额是2500元,以此类推。

在此情况下,如果贷款利率还是0.6%/月,那么,第1年的每月还款额是多少?以后各年的每月还款额又是多少?共计付了多少利息?

5. 在4提出的还款方式下,在贷款满5年后,打算在第6年初一次还清全部

余款,那么,一次的还款额是多少?如果第6年初,银行的贷款利率由0.6%/月调到0.8%/月,从第6年起,以后各年的每月还款额是多少?

6. 综合上述问题,为小王夫妇(实际上是打算贷款购房的人)写一份报告,

帮助他们分析各种方法的利弊,和偿还贷款的计划。

2.问题的提出及分析

从数学角度看,本课题是等比数列知识的一个实际运用,因此在解决这一问题时首先应弄清以下方面的问题;(1)在银行按揭分期付款中,每月的利息按复利计算;(2)付款中每期付款金额相等(3)付款时,本金和每期所付款额在贷款全部付清前随时间推移而不断增值(4)各期所付款额连同到最后一次付款时所产生的利息之和等于本金从购买到最后一次付款时的利息之和。

本文以计算贷款在分期付款时每期应付款决策,并说明数列在分期付款的应用。有些人认为购房付款一次性付清较好,有些认为分期付款比较好,因为有很多人一次支付较高的款额有一定的困难,还有不少开发商在不断改进营销策略,方便人们消费和付款,所以我认为采取分期付款容易被不同阶层的人接受,现对购房分期付款作以下分析,并作出最优的决策方案。

3.模型假设

(1)除去一定的政策原因

(2)在还款过程中,月收入稳定

(3)银行利率保持稳定

4.模型建立与求解

(1)按分期付款中的规定,各期所付的金额连同到最后一次付贷款的利息之和,等于房子售价及从购买到最后一次付款时的利息之和,所以我们得到如下关系式:

设每月还x元,一共还了n个月,本金为a,利率为b,利息为m元

x+(1+b)x+x(1+b)^2+x(1+b)^3+…+x(1+b)^(n-1)

=a*(1+b)^n

即x[1+(1+b)+(1+b)^2+(1+b)^3+…+(1+b)^(n-1)]

=a*1.006^n

观察上式中括号内,是一个首项为1,公比为(1+b)的等比数列的前n项和。

根据:Sn=a1(1-q^n)/(1-q)得:

x[(1-(1+b)^n)]/[1-(1+b)]

=a*(1+b)^n

则x=a*(1+b)^n*[(1+b)-1]/[(1+b)^n-1]

利息:m=n*x-a

此时n=240 a=200000 b=0.006

应用计算机程序算出结果:

程序如下:

Option Explicit

Private Sub Command1_Click()

Dim n As Integer, a As Double, b As Single, x As Single, m As Single

n = Val(Text1.Text)

a = Val(Text2.Text)

b = Val(Text3.Text)

x = a * (1 + b) ^ n * ((1 + b) - 1) / ((1 + b) ^ n - 1)

m = n * x - a

Text4.Text = CStr(x)

Text5.Text = CStr(m)

End Sub

所以由运行结果得:

x=1574.699元

m=177927.7元

所以小王夫妇每月的还款额是1574.699元

共计付了利息177927.7元

(2)设第n个月还完x元后还欠银行r元

r=a*(1+b)^n-[1+(1+b)+(1+b)^2+…+(1+b)^(n-1)]x

r=a*(1+b)^n-[(1-(1+b)^n)]/[1-(1+b)]x

此时n=60 x=1574.699 a=200000 b=0.006

应用计算机程序算出结果:

程序如下:

Option Explicit

Private Sub Command1_Click()

Dim n As Integer, a As Double, b As Single, r As Single, x As Single

n = Val(Text1.Text)

a = Val(Text2.Text)

b = Val(Text3.Text)

x = Val(Text4.Text)

r = a * (1 + b) ^ n - ((1 - (1 + b) ^ n)) / (1 - (1 + b)) * x

Text5.Text = CStr(r)

End Sub

所以由运行结果得:

r=173034.9元

故他们在第6年初,应一次付给银行173034.9元,才能将余下全部的贷款还清

(3)由(1)知:x=a*(1+b)^n*[(1+b)-1]/[(1+b)^n-1]

此时b=0.008 n=180 a=173034.9

应用计算机程序算出结果:

程序如下:

Option Explicit

Private Sub Command1_Click()

Dim n As Integer, a As Double, b As Single, x As Single

n = Val(Text1.Text)

a = Val(Text2.Text)

b = Val(Text3.Text)

x = a * (1 + b) ^ n * ((1 + b) - 1) / ((1 + b) ^ n - 1)

Text4.Text = CStr(x)

End Sub

所以由运行结果得:

x=1817.329元

那么第六年后,每月的还款额应是1817.329元

(4)设第一年每月还Y1元,以后每年依次为Y2,Y3,…Y20

假设:还款总额为a;月利率为r;总期数为n;递增间隔为m;递增金额为t;开始递增期数为k;

余数w=(n-k+1)mod m,取整v=int[(n-k+1)/m]等额递增还款法每月还款金额=Y

Z1=t/[(1+r)^n-1]

Z2=(1+r)^w*[(1+r)^((v+1)*m)-1]/[(1+r)^(m-1)]

Y=x-Z1*[Z2-(v+1)]

此时a=200000 r=0.006 n=240 m=1 k=20 t=500

将数据分别代入上式得:

w=221

Z1=156.1244

Z2=462.2607

Y1=200000-156.1244*[462.2607-222]

=1624.9

…….

第二十个月应付Y20=1624.9+500*20

=172490元

总利息:(1624.9+172490)*20/2-200000

=314980元

故第一个月应该还款1624.9元共计利息为314980元

(5)设贷款总额为a第一个月还x元,月利率b,还款间隔为m,每月递增y元,还款的总期数为n,剩余的钱为r

x+(1+b)x+(1+b)^2x+(1+b)^3x+…+(1+b)^11x

=x[1-(1+b)^12]/[1-(1+b)]

(x+y)+(1+b)(x+y)+(1+b)^2(x+y)+(1+b)^3(x+y)+…+(1+b)^11(x+y)

=[(x+y)(1-(1+b)^12)]/[1-(1+b)]

(x+my)+(1+b)(x+my)+(1+b)^2(x+my)+(1+b)^3(x+my)+…+(1+b)^11(x+my)

=(x+my)*(1-(1+b)^12)/[1-(1+b)]

(1-(1+b)^12) [x+(x+y)+…+(x+my)]

=a*(1+b)^n/[1-(1+b)]

此时b=0.006 a=200000 n=60 m=5 y=500

x*(m+1)+((1+m)*m/2)*y=(a*(1+b)^n)(1-(1+b))/(1-(1+b)^12)

x=[(a*(1+b)^n)(1-(1+b))/((1-(1+b)^12)-((1+m)*m/2)*y)]/(m+1)

r=a(1+b)^n-x*(m+1)+((1+m)*m/2)*y

r=200000(1+0.006)^60-(500*6+15)*500

=122110

所以,一次的还款额是122110元

(6)综合上述分析,相比较而言等额还款是一种比较好的还款方式。

特点:每月还款金额相等。

每月贷款利息按月初剩余贷款本金计算并逐月结清。由于每月的还款额相等,因此,在贷款初期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较少;而在贷款后期因贷款本金不断减少、每月的还款额中贷款利息也不断减少,每月所还的贷款本金就较多。适合月收入比较固定,额外支出较小的家庭由上述计算我们可以知道等额递增还款法,与等额本金还款法想反,每月还款额逐月递增,适合目前还款能力较弱,但是已经预期到未来会逐步增加的人群缺点就是还款压力逐步变大。

1、分期付款一般情况下多是在购买期房是采用,此种情况也称为建筑期付款。购房人交付首期是与开发商签订正式的房屋买卖契约,房屋交付使用时,交齐全部房款,办理产权过户。

2、也有购买现房分期付款的情况。房屋的交付与房价款支付不同时进行,

房屋交付款

前,现金支付完毕在后。

3分期付款与一次性付款比较慢,其短处是,由于分期付款的利息是付款

时间越长,利率越高,因此放款额加在一起会高于一次性付款金额。不过,如果我们将通货膨胀和个人收入增长率及支付能力综合起来比较,分期付款对购房者来讲还是更合算一些。

5.模型结果分析与检验

(1)在上面计算的过程中,结果都精确到小数后面一位。存在一定的误差,但并

不影响数据总体情况。

(2)将数据与实际情况进行比对,数据合理,不存在较大的误差。

(3)针对以上数据进行各方面的分析比较,就如何在首期、月供、总利息之间找到一个平衡

点。根据实际得到一些结论,出去政策原因,首期应付越多越好,尽量减少贷款额;贷款额一定,还款期限应据实际月收入而定,期限越短,付银行总利息越少;月供中利息

成分逐年减少,本金成分逐年增多。月薪2000元以内,最后选择10年以上期限供楼,月薪3000元以上,最好选择10年以内期限供楼。

6.模型优缺点及改进方向

(1)优点:比较精确的计算出了还款金额与总利息金额,可帮助购房贷款的人们

提供参考意见。是他们在面对还贷时,不再有盲目性。选择最优的还款方式。

(2)缺点:没有考虑各种政策原因、家庭月收入是否稳定以及银行利率是否会改

变的因素。现实生活中,存在着很多不确定的因素可能影响结果。所以我们的模型在实际生活应用中需要加以改进。

(3)解决购房贷款中分期付款的问题后,我们还可以尝试着解决购买其他商品(如

汽车、家电)中分期付款的问题。

7.参考文献

《数学建模简明教程》戴朝寿孙世良编著高等教育出版社

《数学建模》沈继红编著哈尔滨工程大学出版社 1998

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模之贷款问题

数学建模 之 贷款问题 姓名1:张昌会学号:201105514 姓名2:郭娟丽学号:201105534 姓名3:武申金学号:201105547 专业:统计学 班级:统计学1101班 2013年11 月25 日

数学建模题目:贷款问题 组员1:姓名张昌会 学号201105514 班级统计1101班 组员2:姓名郭娟丽 学号201105534 班级统计1101班 组员3:姓名武申金 学号201105547 班级统计1101班

摘要 随着我国改革开放的发展和人民生活水平的提高,人们越来越不满足于只是吃饱、穿暖,而是向更高的目标迈进,房子、车子,自然成了人们渴求的目标。俗话说:“安居才能乐业”,摆在人们面前的问题也就浮于水面。同时,从某种意义上来说,人类文明的进程就是建筑和城市化的过程,人类对居所的投资,直接为社会劳动生产力的延续与发展创造了物质载体。特别是国家的宏观调控激活了房地产市场和汽车消费市场,扩大了内需。社会传统的房屋卖买方式受到较大冲击而日趋缩萎,取而代之的银行按揭贷款买房买车成为新的购房趋势,并日渐盛行。 本文根据银行住房贷款和我们的日常常识,首先对题目中的条件进行合理的分析,比较并分析等额本息和等额本金两种贷款方式,一是等额本息贷款, 计算原则是银行从每月月供款中,先收剩余本金利息,后收本金;二是等额本金贷款, 计算原则是每月归还的本金额始终不变,利息随剩余本金的减少而减少。推导出月均还款及累计利息总额的公式,建立数学模型。其次根据给出的银行利率,利用vc++软件和已求出的公式,计算出月均还款额和所花费的利息总额,制成图表并借以分析贷款的期限与月还款之间的关系。 最后对按揭贷款买房提出了一些我们的建议。这些天来我们对贷款买房的研究,使我们对这个很现实的问题有了较深的了解,相信这些实用知识对我们的使我们对这个很现实的问题有了较深的了解,未来发展一定有很大的帮助。 关键词:贷款,利率,月均还款额,累计利息总额,等额本息,等额本金

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模 购房问题

A题:购房贷款问题 蒋萍 (08(3)班 08211337) 【摘要】 随着人们生活水平的不断提高,越来越多的人正在购置房产用于居住或进行置业投资。但是购房投资是一项金额较大的投资,要人们一次性支付比较困难。但随着市场经济的发展,向银行贷款购房成了我们买房的主要方式。我们知道,如果向银行贷款就需要直接面对提供担保、偿还借贷的问题,现实生活中人们选择贷款的期数、月还款额时,却往往因为缺乏这方面的知识,而带来一定的盲目性,给自己带来或多或少的经济损失。所以在这个市场经济时代,面对不同的决策方案,正确的决策意味着经济资源的最优配置。 本文就购房贷款问题,展开一系列的讨论。针对购房问题进行全面分析,利用递推数列将实际问题数学化,建立了一个数学模型。利用计算机程序算出结果,不仅求出了各种还款方式的还款金额和利息,而且还指出了等额还款是最优的还款方式。 【关键词】 递推数列贷款额利息贷款期限还款额 1.问题重述 小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是0.6%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。 1. 在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息? 2. 在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还 贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清? 3. 如果在第6年初,银行的贷款利`率由0.6%/月调到0.8%/月,他们仍然 采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少? 4. 小王夫妇认为,随着他们工作经历的增长,家庭收入也会随着增长,因此, 打算采用逐步增加还款额的还款方式来偿还贷款,具体的办法是:如果第1年的每月还款额是1000元的话,那么第2年的每月还款额就是1500元,第3年的每月还款额是2000元,第4年的每月还款额是2500元,以此类推。 在此情况下,如果贷款利率还是0.6%/月,那么,第1年的每月还款额是多少?以后各年的每月还款额又是多少?共计付了多少利息?

全国大学生数学建模竞赛论文--范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全 名):参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。通过Matlab 对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。 针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo 软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。 最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR 法;满意度量化函数;动态规划模型;非线性规划 1.问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

贷款数学建模终极版k

数学建模 题目:贷款月还款问题 组员1:姓名李龙 学号200908639 班级自动控制091班组员2:姓名李 学号200908642 班级自动控制091班组员3:姓名康灵涛 学号200908638 班级自动控制091班

贷款月还款问题 摘要 随着我国改革开放的发展和人民生活水平的提高,人们越来越不满足于只是吃饱、穿暖,而是向更高的目标迈进,房子自然成了人们渴求的目标。俗话说:“安居才能乐业”,摆在人们面前的问题也就浮于水面。同时,从某种意义上来说,人类文明的进程就是建筑和城市化的过程,人类对居所的投资,直接为社会劳动生产力的延续与发展创造了物质载体。特别是国家的宏观调控激活了房地产市场和汽车消费市场,扩大了内需。社会传统的房屋卖买方式受到较大冲击而日趋缩萎,取而代之的银行按揭贷款买房买车成为新的购房趋势,并日渐盛行。 本文根据银行住房贷款和我们的日常常识,首先对题目中的条件进行合理的分析,比较并分析等额本息和等额本金两种贷款方式,一是等额本息贷款, 计算原则是银行从每月月供款中,先收剩余本金利息,后收本金;二是等额本金贷款, 计算原则是每月归还的本金额始终不变,利息随剩余本金的减少而减少。推导出月均还款总额的公式,建立数学模型。其次根据给出的银行利率,利用vc++软件和已求出的公式,计算出15年内月均还款额和所花费的本息总额,制成图表并借以分析贷款的期限与月还款之间的关系。 最后对按揭贷款买房提出了一些我们的建议。这些天来我们对贷款买房的研究,使我们对这个很现实的问题有了较深的了解,相信这些实用知识对我们的使我们对这个很现实的问题有了较深的了解,未来发展一定有很大的帮助。 关键词:贷款,利率,月均还款总额,等额本息,等额本金

《购房中的数学问题》研究性学习报告

《购房中的数学问题》研究性学习报告 作者班级:广州市中高一六班 研究小组成员:李俏俏彭馨莹许碧茹陈伟芸 指导老师:李琼 (一)研究背景 在参加了数学研究性学习这个活动后,我们领悟到了数学在生活中的广泛应用,这使我们对生活中的数学问题很感兴趣,希望从熟悉的事物中理解,体会数学。于是,数学老师的鼓励下,我们小组对“购房中的数学问题”进行研究。 (二)研究目的意义 通过联系实际,从生活中出发进行研究,充分拓展数列的学习内容,以促进学生的对数列的理解,培养学生对学习数列的兴趣。提高学生运用数列知识来分析、运用多方面的数学方法来进行全方位考虑和解决生活实际问题的能力。 通过本课题的研究,探索提高学生的应用能力、理解能力和实践能力的新方法,全面提高学生的综合素质,培养创新型人材。 (三)研究方法 资料调查法、文献资料收集法、例题分析法、联系实际 (四)研究内容 在探究数列性质的同时,我们要善于将数列与生活联系在一起,这样不但容易了解数列的性质,也懂得了许多生活上的知识,将数列生活化,既加深了我们对数列的了解,又为生活提供了方便。很多生活上的问题也和数学息息相关,而解决这些问题所涉及的数学知识、数学思想和方法又都是高中数学大纲所要求掌握的概念、公式、定理和法则等基础知识。数列在实际生活中有很多应用,例如人们在贷款、储蓄、购房、购物等经济生活中就大量用到数列的知识。 问题:某地一位居民为了改善家庭的住房条件,决定在年重新购房。某日,他来到了一个房屋交易市场, 面对着房地厂商林林总总的宣传广告,是应该买商品房呢还是应该买二手房呢?他一时拿不定主意。以下是他的家庭状况以及可供选择的方案 家庭经 济状况 家庭每月总收入元,也就是年收入万元。现有存款万元,但是必须留万元万元以备急用。 预选方案.买商品房: 一套面积为的住宅,每平方售价为元 .买二手房: 一套面积为左右的二手房,售价为万元,要求首付万元。 购房还需要贷款。这位居民选择了一家银行申请购房贷款。该银行的贷款评估员根据表格中的信息,向他提供了下列信息和建议: 申请商业贷款,贷款期限为年比较合适,年利率为。购房的首期付款应不低于实际购房总额的,贷款额应不高于实际购房总额的。还款方式为等额本金还款,如果按季还款,每季还款额可以分成本金部分和 利息部分,其计算公式分别为 本金部分贷款部分÷贷款期季数, 利息部分(贷款本金已归还贷款本金累计额)×季利率

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

购房贷款的数学建模

数学建模课程设计 题目:购房贷款比较问题 班级:15级初等教育(理) 姓名:尹天予 关于购房贷款的数学模型 摘要:近几年,我国经济快速发展,社会传统的房屋买卖方式受到较大冲击而日趋缩萎,取而代之的是银行按揭贷款买房成为新的购房趋势,并日渐盛行。这对现在社会的消费及生活所产生的积极意义与便利是不容抹杀。目前银行提供的贷款期限在一年以上的房屋贷款还款方式一般有等额本息法,等额本金递减法,等额递增还款法,等额递减还款法,等比递增还款法,等比递减还款法。而对这些贷款还款方式,如何根据自己的现在及预期未来的收入情况,作出一个合理的还款方案,是每个打算贷款买房的人必须认真考虑的。 本文根据银行购房贷款和我们的日常常识,建立数学模型,推导出月均还款总额、还款总额和利息负担总和的公式。并以一笔40万元、10年的房贷为例,利用已求出的公式,计算出10年内月均还款额和所花费的本息总额,制成图表,将等额本息还款法和等额本金还款法两种还款方式作一次比较。 最后得出结论,等额本息还款法的月还款数不变,还款压力均衡,可以有计划地控制家庭收入的支出,也便于每个家庭根据自己的收入情况,确定还贷能力,但需多付些利息,所以适合收入不是很高的,经济条件不允许前期还款投入过大没有打算提前还款的收入处于稳定状态的人群。而等额本金还款法,由于贷款人本金归还得快,利息就可以少付,还款总额比较少,并且随着时间的推移每月还款数越来越少,但前期还款额度大,因此适合当前收入较高者,有一定的经济基础,能承担前期较大还款能力,且有提前还款计划的人,这种方式对准备提前还款的人较为有利。 关键词:贷款;等额本息;等额本金;月均还款总额 1.问题的提出 某人购房,需要贷款,有等额本息还款法和等额本金还款法两种还款方式。贷款40年,还款期10年,分别求: (1)月供金额。 (2)总的支付利息。 比较两种还款法,给出自己的方案。

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

住房贷款的数学模型

住房贷款的数学模型 黄惠玲 数学系 02级信息技术教育(1)班 [摘要]:本文根据银行住房贷款和我们的日常常识,推导出月均还款总额、还款总额和利息负担总和的公式. 银行年利率下降后,我们以5年期和20年期的贷款为例,做一次比较. 发现利率下降后还款总额也随之减少,而且减少了很多. 这样大大刺激了人们买房,而且也使银行收益增加了,就以贷款44万,23年还款期为例. 若收入只有3350元. 如果选等额本金还款法,还款总额虽然比较少,但开头的几期的还款负担会很重,因此,对收入不是很高的,应该选等额本息还款法为还款方法. 相对银行来说,贷款公司好像要便宜一点,但算一下,贷款公司要比银行还更多的金额,所以,银行的等额本息还款法更适合. 关键词:贷款;利率;月均还款总额 1 问题的提出 今年年初由中国建设银行北京市分行印发的《个人住房贷款简介》的小册子中介绍了有关个人住房贷款的有关问题. 个人住房贷款利率如附表1所示. 借款人在借款期内每月以相等的月均还款额偿还银行贷款本金和利息. 附表2中列出了在不同贷款期限下的月均还款额、还款总额和利息负担总和. 试给出公式说明附表2中后三列数是如何算出来的. 近来经国务院批准,中国人民银行决定从1999年9月21日起,延长个人住房贷款期限并降低利率以支持城镇居民购房. 个人住房贷款年利率最高水平降为 5. 58%,并根据贷款期限划分为两个档次:5年以下(含五年)为年利率5. 31%,五年以上为年利率5. 58% 请你根据新规定计算5年期、20年期的月均还款额、还款总额和利息负担总和,并与原附表2中的同期贷款的负担情况比较,住房贷款的负担各降低了多少. 张先生打算向银行贷款44万人民币买房子,分23年还清,在向银行咨询的时候,银行还提到另一种还款方法:等额本金还款法. 试给出以这种还款方法的月还款额,还款总额和利息负担总和. 并且比较一下,哪种还贷方法更省钱?如果张先生每月有3350元的盈余,你认为他应该选择那个还款方法? 若此时张先生又看到某借贷公司的一则广告:"若借款44万元20年还清,只要:每个月还3340元. " 请你给张先生决策一下是到银行贷款还是去借贷公司贷款. 2 问题的分析 试想一下,银行如果不把本金贷给客户的话,银行就可以从这笔本金中赚到利息. 因此,银行为了保障自己的利益,他不仅要求客户还贷款本金外,还要求客户还本金在贷款期内应该赚到的利息. 现在的银行大多是要求客户每月还相等的金额,即是每月按月均还款额偿还贷款,这样,贷款期过后,客户就会把本金和本金的利息都还清. 可以根据这些,从中推导出月均还款总额的公式. 3 符号的约定 A : 客户向银行贷款的本金 B : 客户平均每期应还的本金 C : 客户应向银行还款的总额 D : 客户的利息负担总和 α: 客户向银行贷款的月利率 β: 客户向银行贷款的年利率 161

购房贷款的数学建模

购房贷款的数学建模 题目:购房贷款比较问题 组员: 班级: 指导教师: 关于购房贷款的数学模型 摘要: 近几年,我国经济快速发展,社会传统的房屋买卖方式受到较大冲击而日趋缩萎,取而代之的是银行按揭贷款买房成为新的购房趋势,并日渐盛行。这对现在社会的消费及生活所产生的积极意义与便利是不容抹杀。目前银行提供的贷款期限在一年以上的房屋贷款还款方式一般有等额本息法,等额本金递减法,等额递增还款法,等额递减还款法,等比递增还款法,等比递减还款法。而对这些贷款还款方式,如何根据自己的现在及预期未来的收入情况,作出一个合理的还款方案,是每个打算贷款买房的人必须认真考虑的。 本文根据银行购房贷款和我们的日常常识,建立数学模型,推导出月均还款总额、还款总额和利息负担总和的公式。并以一笔40万元、10年的房贷为例,利用已求出的公式,计算出10年内月均还款额和所花费的本息总额,制成图表,将等额本息还款法和等额本金还款法两种还款方式作一次比较。 最后得出结论,等额本息还款法的月还款数不变,还款压力均衡,可以有计划地控制家庭收入的支出,也便于每个家庭根据自己的收入情况,确定还贷能力,但需多付些利息,所以适合收入不是很高的,经济条件不允许前期还款投入过大没有打算提前还款的收入处于稳定状态的人群。而等额本金还款法,由于贷款人本金归还得快,利息就可以少付,还款总额比较少,并且随着时间的推移每月还款数越来越少,但前期还款额度大,因此适合当前收入较高者,有一定的经济基础,能承担

前期较大还款能力,且有提前还款计划的人,这种方式对准备提前还款的人较为有利。 关键词:贷款;等额本息;等额本金;月均还款总额 1.问题的提出 某人购房,需要贷款,有等额本息还款法和等额本金还款法两种还款方式。贷款40年,还款期10年,分别求: (1)月供金额。 (2)总的支付利息。 比较两种还款法,给出自己的方案。 2.问题的分析 2 目前有两种还款方式。等额本息还款法:每月以相等的额度平均偿还贷款本息,直至期满还清,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返,还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。而等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减。借款人在开始还贷时,每月负担比等额本息要重。但随着时间推移,还款负担便会减轻。所以我们可知等额本金还款法适合目前收入较高的人群。 假设小李夫妇能够支付这两种不同的还款方式,我们需要帮助他建立等额本息和等额本金还款法的数学模型,以选择最佳还款方式。 根据问题一和问题二,需分别建立两种还款方式的模型,并分别求出其月供金额和总的支付利息。 3.问题的假设 为了使问题更加明了清晰,便于计算,同时便于扩展因此特作如下假设:

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

购房贷款的数学建模

购房贷款的数学建模 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

数学建模课程设计 题目:购房贷款比较问题 班级:15级初等教育(理) 姓名:尹天予 关于购房贷款的数学模型 摘要:近几年,我国经济快速发展,社会传统的房屋买卖方式受到较大冲击而日趋缩萎,取而代之的是银行按揭贷款买房成为新的购房趋势,并日渐盛行。这对现在社会的消费及生活所产生的积极意义与便利是不容抹杀。目前银行提供的贷款期限在一年以上的房屋贷款还款方式一般有等额本息法,等额本金递减法,等额递增还款法,等额递减还款法,等比递增还款法,等比递减还款法。而对这些贷款还款方式,如何根据自己的现在及预期未来的收入情况,作出一个合理的还款方案,是每个打算贷款买房的人必须认真考虑的。 本文根据银行购房贷款和我们的日常常识,建立数学模型,推导出月均还款总额、还款总额和利息负担总和的公式。并以一笔40万元、10年的房贷为例,利用已求出的公式,计算出10年内月均还款额和所花费的本息总额,制成图表,将等额本息还款法和等额本金还款法两种还款方式作一次比较。 最后得出结论,等额本息还款法的月还款数不变,还款压力均衡,可以有计划地控制家庭收入的支出,也便于每个家庭根据自己的收入情况,确定还贷能力,但需多付些利息,所以适合收入不是很高的,经济条件不允许前期还款投入过大没有打算提前还款的收入处于稳定状态的人群。而等额本金还款法,由于贷款人本金归还得快,利息就可以少付,还款总额比较少,并且随着时间的推移每月还款数越来越少,但前期还款额度大,因此适合当前收入较高者,有一定的经济基础,能承担前期较大还款能力,且有提前还款计划的人,这种方式对准备提前还款的人较为有利。 关键词:贷款;等额本息;等额本金;月均还款总额

数学建模论文 (贷款问题)

数学建模论文银行贷款问题模型 姓名1:学号: 姓名2:学号: 姓名3:学号: 班级: 指导教师:

2014年5 月24 日

目录 摘要----------------------------------------- 2 一、问题叙述------------------------------------- 2 二、问题分析------------------------------------- 2 三、基本假定--------------------------------------5 四、模型的建立及求解 1、等额本金还款法 2、等额本息还款法 五、模型的进一步分析 六、模型的评价及推广 七、参考文献 附:等额本息还款法和等额本金还款法的比较 --------------------------------------5

摘要 随着社会的不断发展,人们日益增长的物质需求也不断升高,可是对于大部分人来说,要想完成一些经济活动,需要向银行贷款,目前商业银行已经加大了个人贷款的力度,“门槛”也一降再降,申请个人贷款已经不是件难事。对于贷款,大多数银行主要采用两种还贷方式:等额本息还款法和等额本金还款法。若我们根据已知年利率,针对每月还款额和个月限满后的最后一月付款后本利和为零,推导出等额本金还款法和等额本息还款法的还款总额、利息负担总和、月供的公式。 合理假设的前提下,运用等差数列求和设计等额本金还款法偿还贷款本息和每月还款额的模型,运用迭代和等比数列求和两种不同方法从不同角度推导等额本息还款法偿还贷款本息和每月还款额的模型,通过计算讨论比较偿还贷款本息的多少。 关键词:贷款利率还款总额等额本金还款等额本息还款 一、问题叙述 某家庭贷款30万元购买一套房子,贷款(年)利率为7%,用15年的时间还清贷款。不同的贷款方案将会产生不同的效益,根据问题的要求,建立相应的数学模型解答出不同情况下每月还款额以及利息、还款的时间。对不同方法进行比较,并选出最优方案。 问题如下: 1. 等额本息还款的方式偿还贷款; 2. 等额本金还款的方式偿还贷款; 3. 首先前5年用等额本息还款中途用等额本金还款的方式偿还贷款; 4. 考虑收入增长的情况下,贷款人收入每年增加一次且增加额为Δk的方式偿还贷款。 二、问题分析 银行贷款还款的利息方式计算方法有等额本息还款法和等额本金还款法。 等额本息还款法:

相关文档
相关文档 最新文档