文档库 最新最全的文档下载
当前位置:文档库 › 调速实验

调速实验

调速实验
调速实验

《电力拖动自动控制系统实验》实验指导书

实验一单闭环不可逆直流调速系统实验

一、实验目的

1、了解速度单闭环直流调速系统的组成和工作原理。

2、弄清P调节器和PI调节器的作用。

3、认识速度反馈控制系统的基本特性。

二、实验设备

1、DJK01 电源控制屏

2、DJK02 晶闸管主电路

3、DJK02-1 三相晶闸管触发电路

4、DJK04 电机调速控制实验Ⅰ

5、DJK08可调电阻、电容箱

6、DD03-3 电机导轨、光码盘测速系统及数显转速表

7、DJ13-1直流发电机

8、DJ15直流并励电动机

9、D42三相可调电阻

10、双综慢扫描示波器

11、万用表

三、实验系统组成及原理

为提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。

在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。

四、实验内容

1、U ct不变时直流电动机开环特性的测定。

2、速度调节器为P调节器时,测定转速反馈单闭环直流调速系统的机械特性。

3、速度调节器为PI调节器时,测定转速反馈单闭环直流调速系统的机械特性。

五、预习要求

1、复习自动控制系统教材中有关晶闸管直流调速系统、闭环反馈控制系统的内容。

2、掌握调节器的基本工作原理。

六、实验线路、方法和步骤

1、速度反馈单闭环直流调速系统实验电路图

给定调节器?触发

电路正桥

功放

三相

全控

整流

速度

变换TG

V

A

M

励磁

电源

G

V

A

13

2R7C5

456

7

Uct

31

2

三相电源输出

电流反馈

与过流保护

I1

U1Ld

U2

I2

R

Ulf

测速发电机

2、U ct不变时直流电动机开环特性的测定

1)DJK02-1上的移相控制电压U ct由DJK04上的给定输出U g直接接入,直流发电机接负载电阻R,L d用DJK02上200mH,将给定的输出调到零。

2)先闭合励磁电源开关,按下DJK01“电源控制屏”启动按钮,使主电路输出三相交流电源,然后从零开始逐渐增加“给定”电压U g,使电动机慢慢启动并使转速n 达到1000rpm。

3)改变负载电阻R的阻值,使电动机的电枢电流从空载直至I ed=1.1A 。即可测出在U ct不变时的直流电动机开环外特性n=f(I d),测量并记录数据于下表:表一U g= V

n(rpm)1000

I d(A)

3、转速反馈单闭环直流调速系统

1)当速度反馈调节器为P调节器时:

按速度反馈单闭环直流调速系统实验电路图接好线。在本实验中,将速度调节器电容(5、6)两端短接构成P调节器,U g为负给定,转速反馈电压为正电压。先接通电动机励磁电源,再接通低压电源和三相电源,缓慢调节U g,使直流电动机起动、升速到达n= 1000r/min,保持U g不变,调节负载电阻R,由轻载至满载调节,将测得的数据记录在下表中。

表三U g= V

n(r/min)1000

I d(A)

2)当速度反馈调节器为PI调节器时:

将速度调节器电容(5、6)两端短接线拆掉构成PI调节器,U g为负给定,转速反馈电压为正电压。先接通电动机励磁电源,再接通低压电源和三相电源,缓慢调节U g,使直流电动机起动、升速到达n= 1000r/min,保持U g不变,调节负载电阻R G,由轻载至满载调节,将测得的数据记录在下表中。

表四U g= V

n(r/min)1000

I d(A)

六、实验报告

1、根据表一实验数据,画出U ct不变时直流电动机开环机械特性n=f(I d)。

2、根据表二实验数据,画出U d不变时直流电动机开环机械特性n=f(I d)。

3、根据表三实验数据,画出速度调节器为P调节器时,速度反馈单闭环直流调速系统的机械特性n=f(I d)。

4、根据表四实验数据,画出速度调节器为PI调节器时,速度反馈单闭环直流调速系统的机械特性n=f(I d)。

5、比较两种调节器的机械特性,并作出解释。

七、注意事项

(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2)电机启动前,应先加上电动机的励磁,才能使电机启动。在启动前必须将移相控制电压调到零,使整流输出电压为零,这时才可以逐渐加大给定电压,不能在开环或速度闭环时突加给定,否则会引起过大的启动电流,使过流保护动作,告警,跳闸。

(3)在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反,确保为负反馈,否则会造成失控。

(4)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。

(5)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。

实验二、双闭环晶闸管不可逆直流调速系统实验

一、实验目的

1、了解双闭环不可逆直流调速系统的原理及组成。

2、掌握双闭环不可逆直流调速系统的调试方法和步骤。

二、实验设备

1、DJK01 电源控制屏

2、DJK02 晶闸管主电路

3、DJK02-1 三相晶闸管触发电路

4、DJK04 电机调速控制实验Ⅰ

5、DJK08可调电阻、电容箱

6、DD03-3 电机导轨、光码盘测速系统及数显转速表

7、DJ13-1直流发电机

8、DJ15直流并励电动机

9、D42三相可调电阻

10、双综慢扫描示波器

11、万用表

三、实验系统的线路和原理

许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。为了缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。

双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静态、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。实验系统的原理框图组成如下:

“调节器I”的“4”、“5”两端接可调电阻120K,“5”、“6”两端接可调电容0.47uF。“调节器II”的“8”、“9”两端接可调电阻13K,“9”、“10”两端接可调电容0.47uF。

起动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电动机转速达到给定转速。

系统工作时,要先给电动机加励磁,改变给定电压的大小即可方便地改变电动机的转速。本实验中DJK04上的“调节器Ⅰ”作为“速度电流调节器”使用,“调节器Ⅱ”作为“电流调节器”使用。

四、实验内容

1、测定高、低速时系统闭环静态特性n=f(I d)。

2、测定闭环控制特性n=f(U g)。

五、预习要求

1、阅读电力拖动自动控制系统教材中有关双闭环直流调速系统的内容,掌握双闭环直流调速系统的工作原理。

2、理解PI调节器在双闭环直流调速系统中的作用。

六、思考题

1、为什么双闭环直流调速系统中使用的调节器均为PI调节器?

2、转速负反馈的极性如果接反会产生什么现象?

3、双闭环直流调速系统中哪些参数的变化会引起电动机转速的改变?哪些参数的变化会引起电动机最大电流的变化?

五、方法和步骤

1、测定闭环机械特性n=f(I d)

按图接线,DJK04的给定电压U g输出为正给定,转速反馈电压为负电压,直流发电机接负载电阻R,Ld用DJK02上的200mH,负载电阻放在最大值,给定的输出调到零。

缓慢增加U g使电动机起动、升速,当转速n=1000r/min时,逐渐改变负载电阻R G,(R G阻值由最大逐渐减小)。即可测出系统静态特性曲线n=f(I d)。

分别将n=1000r/min和n=800r/min时测得的数据记录在下表中。

表一

n(r/min)1000

I d(A)

U d(V)

n(r/min)800

I d(A)

U d(V)

2、测定闭环系统控制特性n=f(U g)

调节U g,使电动机起动、升速,当n=1000r/min时,调节R G使I d=1A,逐渐降低

U g将测得的数据记录在下表中。

表二 I d=1A

n(r/min)1000

U g(V)

3、系统动态特性的观察

用慢扫描示波器观察动态波形,突加给定U g,电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形和转速n(“转速变换”的“3”端)波形

六、实验报告

1、根据表一数据,画出两种转速时系统的闭环机械特性n=f(I d)。

2、根据表二数据,画出闭环控制特性曲线n=f(U g)。

实验三、SPWM电压源型变频调速实验

一、实验目的

1、掌握SPWM电压源型变频器的使用方法。

2、了解SPWM电压源型变频器的调速过程。

二、实验设备

1、3G3JV——AB007型变频器

2、鼠笼式异步电动机——直流发电机——测速发电机组

3、直流电压表、直流电流表各一块

4、双综示波器

5、滑线电阻器

三、系统组成和原理

参看上课所用教材。

四、实验内容

1、用SPWM变频器拖动三相异步电动机实现变频调速。

2、改变加速、减速时间、最高输出频率,观察电动机加速、减速过程及变频器频率的变化情况,掌握SPWM通用变频器的使用方法

3、观察变频器电压输出波形。

五、实验线路、方法和步骤

实验所用变频器有两种运行摸式,一种是本地运行模式(即采用触摸面板输入运转指令),另一种是远程运行模式(即采用端子输入运转指令)。本实验采用本地模式。两种模式的切换方法有以下二种:

⑴、通过触摸面板上LO/RE切换键进行切换。

⑵、通过对输入端子参数(n36~n39)的设定来切换。

1、 触摸面板的操作方法

触摸面板操作有两种功能:一种是用面板上的RUN 键和STOP/RESET 键来控制电机的起动、停止。另一种是用于参数设定。 1) 指示灯显示说明

正常时:接通电源后,RUN 灯闪亮、ALARM 灯灭。指示灯FREF 、FOUT 、IOUT 、

MNTR 、 F/R 、 LO/RE 、 PRGM 中有灯亮,指示窗口有数据显示。

异常时: RUN 灯闪亮、ALARM 灯亮。指示灯FREF 、FOUT 、IOUT 、 MNTR 、 F/R 、

LO/RE 、 PRGM 中有灯亮,指示窗口显示异常代码。

2) LED 显示

按模式键

指示灯FREF 、

FOUT

、IOUT 、 MNTR

、 F/R 、 LO/RE 、 PRGM 中依次灯亮。

按模式键

点亮PRGM 指示灯,此时,显示窗口有常数号码。 3)

频率指令旋钮,用于设定频率。

4) FREF : 灯亮时,可以设定或监控频率指令。

FOUT : 灯亮时,数据显示窗口显示变频器的输出频率。 IOUT : 灯亮时,数据显示窗口显示变频器的输出电流。 MNTR : 灯亮时,数据显示窗口显示对U01~U10的监控值。

按 或 键,选择要显示的监控项目,按 键

显示所选项目的内容,按 键返回。

U01:用于监控频率指令值。(与FREF 同) U02:用于监控变频器的输出频率。(与FOUT 同) U03:用于监控变频器的输出电流。(与IOUT 同) U04:用于监控变频器内部的输出电压指令值。 U05:用于监控变频器主回路直流输出电压。

U06:用于监控变频器输入端子状态。 ¦:输入状态 ¦:未输入状态 U07:用于监控变频器输出端子状态。 ¦:闭状态 ¦:开状态 U09:显示过去最后一次发生过的异常内容。 U10:制造商管理用。

F/R :灯亮时,可用 或 键,选择电动机的运转方向(正/

反转)。 FOR :正转 rev :反转

LO/RE :灯亮时,可用 或 键,选择本地/远程模式。 rE :远程 LO :本地

︽ ︾ ︽ ︾ ︽ ︾

PRGM :。灯亮时,可用

或 键,选择要设定的参数,再用

键显示该参数的内容,用

或 键修改该

参数,按

确认。

5) 状态键:用于在FREF 、FOUT 、IOUT 、 MNTR 、 F/R 、 LO/RE 、 PRGM

之间切换。

6) 输入键:用于显示参数值和修改参数后的确认。

7) 增加键; 减少键 8)RUN :开始运转键

9)STOP/RESET :运转停止键。 2、变频器调速系统实验线路图

注1:适配电动机的最大容量为0.75KW 。

︽ ︾ ︽

︾ ︽ ︾

~220V

n

TG

V

A

G

R G

220

M

3 ~

R/L1 S/L2 T/L3 - +1 +2

变频器

A ~

V ~

3、实验方法和步骤

注意事项:

⑴、注意正确连接变频器主回路的输入、输出接线。若电源与变频器输出端相连将损坏变频器,变频器要牢靠接地。

⑵、鼠笼异步电动机:100W、220V(△)、0.48A、1420r/min

直流发电机:100W、220V、0.5A、1600r/min

⑶、变频器输入电压为220V,最大频率为50H Z。

1)练习操作触摸面板

在设定范围内分别对加速时间n16、减速时间n17、频率指令上限n30、频率指令下限n31的参数进行修改。观察电动机在参数修改后的起动、停止过程及电动机运行过程中H Z、U、n的变化。

2)记录数据并绘制恒压频比(U/F)控制特性

F(H Z)

U(V)

I(A)

U/F

注意:U的数值用机械表测量。

3)分别将频率设定为20、30、40H Z,改变R G记录数据,绘制采用恒压频比控制时异步电动机的机械特性n=f(Te)。

F(H Z)20 30 40

I G(A)

U G(V)

n(r/min)

Te(N.m)

注意:U G的数值用数字表测量。

4)将示波器探头接到电动机任意两相,观察变频器输出电压波形。

六、实验报告

1、简述实验中观察到的现象,对实验中出现的问题加以分析、解释。

2、画出U/F曲线。

3、画出异步电动机的机械特性n=f(Te)曲线。

4、思考题:如何改变电动机的加速度、减速度?

5、写出实验小结。

直流调速系统设计实训报告

实训报告课程名称:专业实训 专业:自动化班级:103031学号:10303104姓名:徐红颖指导教师:王艳秋成绩: 完成日期:2014 年1月9 日

任务书

1 单闭环直流调速系统 对于单闭环直流调速系统来说,转速是输出量,一般我们引入的是转速负反馈构成闭环调速系统。转速负反馈系统是在电动机上安装一台测速电机TG,引出和输出量转速成正比的负反馈电压Un,和转速给定电压Ua*进行比较,得到偏差电压ΔUa,经过放大器A,产生驱动或触发装置的控制电压Uct,与控制电动机的转速,组成了反馈控制的闭环调速系统。在单闭环系统中,转速单闭环使用较多。而一般采用的比例调节器的调速系统还是有静差,为了消除静差,可用积分调节器替代比例调节器。 反馈控制系统的规律是如果要想维持系统中的某个物理量基本不变,就要引用该量的负反馈信号去与恒量给定相比较,组成一个闭环系统。对于调速系统来说,如果想提高静态指标,就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要想维持转速这一物理量不变化,最有效和最直接的方法就是采用转速负反馈构成转速闭环调节系统。 1.1 主电路设计 直流调速系统电路的组成主要由主电路和控制电路两大部分组成,知道了电路组成的两大部分后,就应该确定主电路的接线方式和系统的控制方案。整流变压器由变压部分和整流部分组成,其变压部分将电网电压降压并变成稳定的交流电,整流部分将变压后的交流电整流为恒定40V的直流电压供给直流电动机的励磁回路,整流变压器变压后的交流电两端另接一个单相桥式全控整流电路,输出的可调直流电加在直流电动机的电枢回路。保护环节采用的是过电压保护的一种--阻容吸收,将其并联在整流变压器二次侧起到保护电路的作用。 主电路的设计需要准备的资料: 1 单相整流模块:MZKD-ZL-50 了解其功能,技术参数,电路内部结构,外部接法,控制线管脚接法,安装说明2电机参数:直流电机,额定电压24V,额定电流6A,励磁电压24V,最大允许电流50A,了解电机不同的接线形式,重点掌握电机他激(并激)方式的接线方法。 3 电机转速测量的检测器:光电编码器(E6B2-C)

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

SIMULINK交流调速实验报告

三相桥式全控整流电路仿真实验 学院:机械工程学院 专业:机械设计制造及其自动化 班级:机自144 学号:1400150191 学生姓名:杨青青 2017年5月12日

三相桥式全控整流电路仿真实验 一、实验目的 1.熟悉Matlab仿真软件和Simulink模块库; 2.掌握三相桥式全控整流电路的工作原理、工作情况和波形。 二、实验方法 1.启动MATLAB,建立一个simulink的仿真新文件; 2.从simulink的模块库中选择仿真所需要的元件,并按照实验图将它们连接起来; 3.设置实验参数,运行仿真并观察示波器显示的波形。 三、仿真电路 实验电路如下图所示: 四、参数设置 (1)电源参数设置:电源设置为220V,频率为50Hz; (2)负载参数设置:负载选为RL负载,电阻设为100欧,电感为0,电容为无穷大inf;(3)6-脉冲发生器:频率为50Hz,脉冲宽度取10°,“alpha_deg”是移相控制角输入端,单位为度。该输入端可与“常数”模块相连,也可与控制系统中的控制器输出端相连,从而对触发脉冲进行移相控制。 参数设置分别如下图所示: 1)电源参数设置:

2)负载参数设置: 3)6-脉冲发生器: 4)晶闸管参数设置:

五、实验结果记录及波形 1.三相桥式全控整流电路电阻负载 (1)电阻负载ɑ=30° (2)电阻负载ɑ=60° (3)电阻负载ɑ=90° 结果分析:有上图的仿真结果分析可得ɑ=30°时

2.三相桥式全控整流电路阻感负载电阻和电感的设置如下图所示 (1)阻感负载ɑ=30° (2)阻感负载ɑ=60°

(3)阻感负载ɑ=90° 小结 通过这一次的仿真实验的学习,我了解了matlab的simulink的基本仿真方法,大概的了解了simulink的元件库的模块,以及元件的参数设置。虽然在实际操作中,存在着对软件不熟悉,无法调整设置实验元件等情况,但我同样认识到了matlab对我们学习的便利性和其功能的强大性,今后应该好好学习该软件,多多进行实验仿真,对所学的知识进行验证和巩固,两者相互促进,才能取得更好的学习效果。

计算机控制实验报告4(电机调速实验)

班级:座号:姓名成绩: 课程名称:计算机控制技术实验项目:电机调速实验 实验预习报告(上课前完成) 一、实验目的 1.了解直流电机调速系统的特点。 2.研究采样周期T对系统特性的影响。 3.研究电机调速系统PID控制器的参数的整定方法。 二、实验仪器 1.EL-AT-II型计算机控制系统实验箱一台 2.PC计算机一台 3.直流电机控制实验对象一台 三、控制的基本原理 1.系统结构图示于图8-1。 图8-1 系统结构图 图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e-TS)/s Gp(s)=1/(Ts+1) 2.系统的基本工作原理 整个电机调速系统由两大部分组成,第一部分由计算机和A/D&D/A卡组成,主要完成速度采集、PID运算、产生控制电枢电压的控制电压,第二部分由传感器信号整形,控制电压功率放大等组成。电机速度控制的基本原理是:通过D/A输出-2.5v~+2.5v的电压控制7812的输出,以达到控制直流电机电枢电压的目的。速度采集由一对红外发射、接收管完成,接收管输出脉冲的间隔反应了电机的转速。

第二部分电路原理图 3.PID递推算法: 如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:Uk=Kpek+Kiek2+Kd(ek-ek-1) 其ek2是误差累积和。 四、实验内容: 1、设定电机的速度在一恒定值。 2、调整P、I、D各参数观察对其有何影响。 五、实验步骤 1.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 3. 20芯的扁平电缆连接实验箱和炉温控制对象,检查无误后,接通实验箱电源。 开环控制 4.选中[实验课题→电机调速实验→开环控制实验]菜单项,鼠标单击将弹出参数设置窗口。在参数设置窗口设置给定电压,及电机控制对象的给定转速,点击确认在观察窗口观

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

电气工程及其自动化交流调速实验指导书

实验一三相交流调压电路实验 一、实验目的 (1)了解三相交流调压触发电路的工作原理。 (2)加深理解三相交流调压电路的工作原理。 (3)了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-23所示。图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 图3-23三相交流调压实验线路图 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试 ①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。 ⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-23连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载(1800Ω),接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°及180°时的输出电压波形,并记录相应的输出电压有效值,填入下表: 七、实验报告 (1)整理并画出实验中记录的波形,作不同负载时的U=f(α)的曲线。 (2)讨论、分析实验中出现的各种问题。

实验(1)PWM电机调速实验报告

PWM电机调速 班级:09应电(5)班 姓名: 学号:0906020122 指导老师 时间:2011年10月20日

目录 一、实验名称 (2) 二、实验设计的目的和要求 (2) 三、预习要求 (2) 四、电路原理图 (4) 五、电路工作原理 (4) 六、 PCB图 (5) 七、实验结果 (6) · 八、实验中出现的问题以及解决方法 (13) 九、实验心得 (13) 十、参考文献 (14) 十一、元件清单 (14)

一、实验名称:PWM电机调速 二、实验设计的目的和要求 1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽; 2)掌握脉宽调制PWM控制模式; 3)掌握电子系统的一般设计方法; 4)培养综合应用所学知识来指导实践的能力; 5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。 三、预习要求 3.1关于LM339器件的特点和一些参数 图3-1 LM339管脚分配图 1)电压失调小,一般是2mV; 2)共模范围非常大,为0v到电源电压减1.5v; 3)他对比较信号源的内阻限制很宽; 4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 5)输出端电位可灵活方便地选用; 6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形 1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波 图3-2 锯齿波 2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽 图3-3 脉冲波(pwm) 3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的 4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护

实验一 直流电机调速系统的数学模型

实验一直流电机调速系统的数学模型 一、实验目的 1.通过实验掌握直流电机PWM开环调速控制方法。 2.掌握PWM功率放大H桥芯片LMD18200T的应用方法。 3.掌握开关电源PWM控制芯片SG3525A在直流调速系统中的应用。 4.掌握直流调速系统的数字模型的建立方法。 二、实验线路 实验线路如图1所示,所发的元件按图1所示焊接好,检查核对无误后,接上30V电源,在U4的2脚处断开与运放U3的连接,U4的2脚接一10K的电位器,称为PR1(图1中没画),电位器电源电压为5V,电位器的滑动端接U4的2脚,即Uc接电位器PR1的中点,调节该电位器PR1即可改变Uc的大小,实现直流电机的开环速度控制。 图1 实验电路 三、实验内容 1 PWM环节数学模型测定调节PR使SG3525A的13脚输出的PWM波形占空比为50%,测量SG3525A 2脚的输入电压及PWM环节的输出电压,填入表1。改变PR,按不同的占空比测量2脚的电压和PWM环节输出电压,填入表1。

表1 PWM 环节数学模型测试表 空比比 10% 20% 30% 40% 50% 60% 70% 80% 90% Vc(2pin) V 2电机参数的测量 1) 电势常数C E Φ的测定 用另一台电动机牵引被测电机运在额定转速, 测出电机的电势Ea ,则 电势常数:C E Φ=N a n E 。 (1) 2)电机转矩常数C m Φ 转矩常数可由C E Φ求出:Φ= ΦE m C C π30。 (2) 3)飞轮矩GD 2的测定 已知电机的运动方程为: dt dn GD T T l e 3752=- (3) 电机接可调稳压电源,测速发电机接数字示波器的Y 轴输入,调节稳压电源电压使电机运行在额定转速附近,测量此时的空载电流I O 。断开电源使电机自由行使,测出电机的下降时间t ?(若为指数下降曲线,则按其初始斜率求下降时间t ?),则电机的飞轮矩可由下式求出: GD 2 =t n I C o m ??Φ375 (4) 4)电枢电阻的测定 电机电枢接可调稳压电源,卡住电机轴不让转动,调节稳压电源使电机电流为额定电流,测出一组V 1,I 1 。电机轴转动一定位置,重复测量得另一组数据,V 2,I 2 。 测出4、5组数据。则电枢电阻a R 为: a R =n Rn R R ++21 (5) 5)电源内阻的测定 在H 桥输出端接电压表,电流表和可调负载电阻, 调节控制电压U C 使PWM 电路输出为额定电压的2 1,调节负载电阻使电流为额定电流I N ,保持控制电压不变,调节负载电阻,使负载约为额定电流的0.8倍,测 出电流I 1,测出电压为V 2,则按下式可算出电源的等效内阻: R pwm =2 112I I V V -- (6) 6)电枢电感的测定 自耦变压器输出与电机联接在如图所示。交流电流应大于额定值,测得电压,电流分别为U 和I ,则电枢电感a L 为:

正弦脉宽调制变频调速系统

实验报告课程名称:电机控制指导老师:年珩赵建勇成绩: 实验名称:正弦脉宽调制变频调速系统实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、加深理解自然采样法生成SPWM波的机理和过程。 2、熟悉SPWM变频调速系统中直流回路、逆变桥功率器件和微机控制电路之间的连接。 3、了解SPWM变频器运行参数和特性。 二、实验线路及原理 SPWM变频器供电的异步电机变频调速系统的实验原理图如图1所示,其中控制键盘与运行显示布置图见图2所示。 SPWM变频调速系统主要由不控整流桥、电容滤波、直流环节电流采样(串采样电阻)、MOSFET逆变桥、MOSFET驱动电路、8031单片微机数字控制情况、控制键盘与运行显示等环节组成。整个系统可按图1所示的接线端编号一一对应接线。 图1 SPWM变频调速系统原理图

本实验系统的性能指标如下: (1)运行频率f1可在1~60Hz的范围内连续可调。 (2)调制方式 1)同步调制:调制比F r=3~123可变,步增量为3; 2)异步调制:载波频率f0=0.5~8kHz可变,步增量为0.5kHz; 3)混合调制:系统自动确定各运行频率下的调制比。 图2 SPWM变频器控制键盘与运行显示面板图 (3)V/f曲线 有四条V/f曲线可供选择,以满足不同的低频电压补偿要求,如图3所示。 曲线1: f1=1~50Hz, U1/f1=220/50=4.4V/Hz f1=51~60Hz,U1=220V 曲线2:f1=1~5Hz, U1=21.5V f1=6~50Hz,U1/f1=220/50=4.4V/Hz f1=51~60Hz, U1=220V 曲线3:f1=1~8Hz, U1=34.5V f1=9~50Hz,U1/f1=220/50=4.4V/Hz f1=51~60Hz, U1=220V 曲线4:f1=1~10Hz, U1=43V f1=11~50Hz,U1/f1=220/50=4.4V/Hz f1=51~60Hz, U1=220V (4)加速时间 可在1~60s区间设定电机从静止加速到额定速度所需时间,10s以下步增量为1s,10s到60s步增量为5s。 图3 不同的V/f曲线 三、实验内容 (1)用SPWM变频器驱动三相异步电动机实现变频调速运行。 (2)改变调制方式,观察变频器调制波形、不同负载时的电动机端部线电压、线电流

华电电气电力电子综合实验——直流电机调速实验-实验报告2019

电力电子技术综合实验 实验报告 实验名称:直流电机调速实验 院系:电气与电子工程学院 组员:哈哈哈电气150* 115118**** 哈哈哈电气150* 115118**** 指导教师:赵国鹏 成绩: 日期:2019年1月11日

一、实验目的 1、熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。 2、熟悉H型PWM变换器的控制原理与特点。 3、学习PSIM仿真软件,能够通过该软件进行电力电子仿真。 4、通过仿真及实验学习直流电机双闭环调速系统。 二、实验内容 1、复习直流-直流变流电路中桥式可逆斩波电路和直流电机工作原理 2、通过PSIM仿真软件实现桥式可逆斩波电路带直流电动机仿真 3、开环直流电机调速系统实验 4、学习直流电机双闭环调速基本理论 5、通过PSIM仿真软件实现直流电机双闭环调速仿真 6、双闭环直流电机调速实验 三、实验设备及仪器 MCL系列教学实验台主控制屏、NMCL-22实验箱、直流电动机M03及测速发电机、双踪示波器、万用表 四、实验过程及结果 1、复习DC/DC变流电路中桥式可逆斩波电路和直流电机工作原理(1)DC/DC变流电路中桥式可逆斩波电路 逆变电路如图所示,采用IGBT 开关管作为开关器件,负载为电感性, 对晶体管的控制按如下程序进行:在 正半周期时让晶闸管VT1保持导通 而让晶闸管VT4交替通断。两管同 时导通时,负载两端所加电压为直流 电源电压ud,电动机工作于第1象 Figure 1 H桥电路图 限;当VT1导通VT4关断时,直到

使VT4再一次导通之前由VD3续流。若负载电流衰减较快则在VT4再一次导通之前负载电压为零。这样负载上的输出电压就可以得到零和+ud 两种电平。同样在负半周让晶体管VT2保持导通,当VT3导通时负载被加上负电压-ud ,电动机工作于第3象限;当VT3关断时VD4续流,负载电压为零,负载电压可以得到-ud 和零两种电平。这样在一个周期内逆变器输出的PWM 波形就由±ud 和零三种电平组成。二极管用于逆变电路的续流。 (2)直流电机工作原理 如图所示,接入直流电源以后,电刷 A 为正极性,电刷 B 为负极性。电流从正 电刷A 经线圈ab 、cd ,到负电刷B 流出。 根据电磁力定律,在载流导体与磁力线垂 直的条件下,线圈每一个有效边将受到一 电磁力的作用。电磁力的方向可用左手定 则判断,伸开左手,掌心向着N 极,4指 指向电流的方向,与4指垂直的拇指方向 就是电磁力的方向。在图示瞬间,导线ab 与dc 中所受的电磁力为逆时针方向,在这个电磁力的作用下,转子将逆时针旋转.即图中S 的方向。 随着转子的转动,线圈边位置互换,这时要使转子连续转动.则应使线圈边中的电流方向也加以改变.要进行换向。由于换向器与静止电刷的相互配合作用,线圈不论转到何处,B 刷h 始终与运动到N 极下的线圈边相接触,而电极A 始终与运动到S 极下的线圈边相接触.这就保证了电流总是经电刷经N 极下导体流入,再沿S 极导体经电刷B 流出。因而电磁力和电磁转矩的方向始终保持不变,使电机沿逆时针方向连续转动。 Figure 2 直流电机工作原理图

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

控制步进电机调速系统实验报告

华北科技学院计算机系综合性实验 实验报告 课程名称微机原理及应用 实验学期 2011 至 2012 学年第二学期学生所在系部电子信息工程学院 年级 2009 专业班级 学生姓名学号 任课教师 实验成绩 计算机系制

《微机原理及应用》课程综合性实验报告 开课实验室:计算机接口实验室2012年5月29日 实验题目微机控制步进电机调速系统 一、实验目的 1、了解计算机控制步进电机原理 2、掌握步进电机正转反转设置方法 3、掌握步进电机调速工作原理及程序控制原理 二、设备与环境 TPC-2003A 微机。 Vc++编译器。 三、实验内容 硬件接线图参考实验指导书。 软件编程在TPC-2003A自带的VC++编译环境下使用。 在通用VC++下编程,需要拷贝相关的库文件。 用汇编语言编写控制程序需注明原理。 四、实验结果及分析 1、实验步骤 1、按如下实验原理图连接线路,利用8255输出脉冲序列,开关K0~K6控制步进电机转速,K7控制步进电机转向。8255 CS接288H~28FH。PC0~PC3接BA~BD;PA口接逻辑电平开关。 2、编程:当K0~K6中某一开关为“1”(向上拨)时步进电机启动。K7向上拨电机正转,向下拨电机反转。 实验原理图

2.实验结果 按照实验步骤连接实验电路,检查无误后运行程序。可以看到,当开关k0到k6依次为高电平时,电机转速越来越慢,k0闭合时速度最快,k6闭合时速度最慢,当k0到k6的低位有闭合时,步进电机按最低位的转速运行,因为程序中的查询方式是从k0-k6,即在程序的优先级别中k0的级别是最高的而k7的优先级别是最低的。k7控制电机的正转与反转。 3.实验分析 (1)步进电机的工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。驱动 电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 如图(b)所示:本实验使用的步进电机用直流+5V 电压,每相电流为0.16A,电机线圈 由四相组成:即: φ1(BA) φ2(BB) Φ3(BC) Φ4(BD) 驱动方式为二相激磁方式,各线圈通电顺序如下表所示。图(b) 表中首先向φ1 线圈-φ2 线圈输入驱动电流,接着φ2-φ3,φ3-φ4,φ4-φ1,又返回到φ1-φ2,按这种顺序切换,电机轴按顺时针方向旋转。 实验可通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度。

双闭环三相异步电机调压调速系统实验报告

运动控制系统专题实验 实 验 报 告 2016年5月

6.1双闭环三相异步电机调压调速系统 一.实验目的 (1)熟悉晶闸管相位控制交流调压调速系统的组成与工作原理。 (2)熟悉双闭环三相异步电机调压调速系统的基本原理。 (3)掌握绕线式异步电机转子串电阻时在调节定子电压调速时的机械特性。(4)掌握交流调压调速系统的静特性和动态特性。 熟悉交流调压系统中电流环和转速环的作用。 二.实验内容 (1)测定绕线式异步电动机转子串电阻时的人为机械特性。 (2)测定双闭环交流调压调速系统的静特性。 (3)测定双闭环交流调压调速系统的动态特性。 三.实验设备 (1)电源控制屏(NMCL-32); (2)低压控制电路及仪表(NMCL-31); (3)触发电路和晶闸管主回路(NMCL-33); (4)可调电阻(NMCL-03); (5)直流调速控制单元(NMCL-18); (6)电机导轨及测速发电机(或光电编码器); (7)直流发电机M03; (8)三相绕线式异步电机; (9)双踪示波器; (10)万用表。 四.实验原理 1.系统原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器(TVC)及三相绕线式异步电动机M(转子回路串电阻)。控制系统由零速封锁器(DZS)、电流调节器(ACR)、速度调节器(ASR)、电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器(AP1)等组成。其系统原理图如图6-1所示。

整个调速系统采用了速度、电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。 2.三相异步电机的调速方法 交流调速系统按转差功率的处理方式可分为三种类型。 转差功率消耗型:异步电机采用调压、变电阻等调速方式,转速越低时,转差功率的消耗越大,效率越低。 转差功率馈送型:控制绕线转子异步电机的转子电压,利用其转差功率可实现调节转速的目的,这种调节方式具有良好的调速性能和效率,如串级调速。 转差功率不变型:这种方法转差功率很小,而且不随转速变化,效率较高,列如磁极对数调速、变频调速等。 如何处理转差功率在很大程度上影响着电机调速系统的效率。 五.实验方法 双闭环交流调压调速系统主回路和控制回路如图连接,NMCL-32的“三相交流 电源”开关拨向“交流调速”。给定电位器RP1和RP2左旋到最大位置,可调电阻NMCL-03左旋到最大位置。注意:图中主回路中接入的是交流电流表和交流电压表。 VT 3 VT 1 VT 6 VT 4 VT 5 VT 2 A 交流电流表,量程为1A 图2-1 双闭环交流调压调速系统主回路G 直流电机 励磁电源 R G 直流发电机M03V TG 定子 转子NMEL-09的线绕电机起动电阻

直流调速系统实验指导书11

直流调速系统实验指导书 江西理工大学应用科学学院 机电工程系 2007年10月

目录 实验一晶闸管直流调速系统参数和环节特性的测定 (1) 实验二晶闸管直流调速系统主要单元调试 (6) 实验三不可逆单闭环直流调速系统静特性的研究 (9) 实验四双闭环晶闸管不可逆直流调速系统 (13) 实验五逻辑无环流可逆直流调速系统 (18) 实验六双闭环可逆直流脉宽调速系统 (22)

实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的 1.了解电力电子及电气传动教学实验台的结构及布线情况。 2.熟悉晶闸管直流调速系统的组成及其基本结构。 3.掌握晶闸管直流调速系统参数及反馈环节测定方法。 二.实验内容 1.测定晶闸管直流调速系统主电路电阻R 2.测定晶闸管直流调速系统主电路电感L 3.测定直流电动机的飞轮惯量GD2 4.测定晶闸管直流调速系统主电路电磁时间常数T d 5.测定直流电动机电势常数C e和转矩常数C M 6.测定晶闸管直流调速系统机电时间常数T M 三.实验系统组成和工作原理 晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。 本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。 四.实验设备及仪器 1.教学实验台主控制屏。 2.NMCL—33组件 3.NMEL—03组件 4.电机导轨及测速发电机(或光电编码器) 5.直流电动机M03 6.双踪示波器 7.万用表 五.注意事项 1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。 2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。 3.电机堵转时,大电流测量的时间要短,以防电机过热。 六.实验方法

现代变频调速实验报告

西安科技大学 综合设计实验报告2015—2016学年第 2学期 题目现代变频调速控制实验 院(系、部) 电气与控制工程学院 专业及班级 姓名

学号 完成日期: 20 16 年 3 月 10 日

目录 实验一变频器的操作面板的使用 (1) 1.实验目的 (1) 2.实验原理 (1) 3.实验内容及步骤 (1) 实验二变频器的外部端子控制实验 (4) 1. 实验目的 (4) 2. 实验原理 (4) MM420变频器的数字输入端口 (4) 3. 实验内容和步骤 (6) 实验三变频器的多段速控制实验 (9) 1.实验目的 (9) 2.实验原理 (9) 3.实验内容及步骤 (11) 实验四 PLC控制变频器实验 (12) 1.实验目的 (12)

2.实验原理 (12) 3. 实验内容及步骤 (12) 按要求接线 (12) 变频器参数设定 (13) PLC程序编写 (13) 实验心得 (15)

现代变频调速控制实验 实验一变频器的操作面板的使用 1.实验目的 熟悉变频器的操作面板的使用方法; 熟悉变频器的功能参数设置; 掌握变频器的正反转、点动以及频率调节的方法。 2.实验原理 变频器MM420系列(MICROMASTER 420)采用高性能的V/f控制技术,提供低速高转矩输出和良好的动态特性,同时具有很强的过载能力,以满足广泛的应用场合。对于变频器的应用,必须先熟悉变频器的操作面板,再根据实际应用场合,对变频器的各种功能参数进行设置。 3.实验内容及步骤 电梯系统的异步电机的参数为:额定电压220V、额定电流、额定功率40W、额定频率50Hz、额定转速1350rpm。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验 一、实验目的 (1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。 (2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。 (3)研究调节器参数对系统动态性能的影响。 二、实验所需挂件及附件 三、实验线路及原理 许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。实验系统的原理框图组成如下: 启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g =U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。 系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。 在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。 四、实验内容 (1)各控制单元调试。 (2)测定电流反馈系数β、转速反馈系数α。 (3)测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。 (4)闭环控制特性n=f(U g)的测定。 (5)观察、记录系统动态波形。

相关文档
相关文档 最新文档