文档库 最新最全的文档下载
当前位置:文档库 › III、IV级围岩基本判断

III、IV级围岩基本判断

III、IV级围岩基本判断
III、IV级围岩基本判断

铁路岩石隧道III、IV级围岩简易判别

一、影响围岩稳定的因素

影响围岩稳定的因素多种多样,主要是岩石(体)的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工程类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态,岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。因此将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。

二、岩体基本因素划分

1、岩石坚硬程度的定性划分,主要应考虑岩石的成分、结构及其成因,还应考虑岩石内化作用的程度,以及岩石受水作用后的软化、吸水反应情况。为了便于现场勘察时直观地鉴别岩石坚硬程度,在“定性鉴定”中规定了用锤击难易、回弹强度、手触感觉和吸水反应等方法(对应表A.1.2确定围岩类别)。

2、表征岩石坚硬程度的定量指标有岩石单轴抗压强度度Rc、弹性(变形)模量Er、回弹值等。一般将岩石单轴饱和抗压强度Rc作为反映岩石坚硬程度的定量指标(此项可咨询试验室, 对应表A.1.2确定围岩类别)。

3、岩体完整程度的定性划分,采用结构面发育程度、主要结构面的结合程度和主要结构面类型作为划分依据。按表A.1.3、表A.2、表A.

4、表A.

5、表A.6作定性划分时,应注意上述三项依据的综合分析评价,在此基础上对岩体完整程度进行定性划分并定名。“主要结构面”是指相对发育的结构面,或对围岩稳定性影响较大的结构面。结构面发育程度由结构面组数和平均间距来反映。结构面的结合程度应从结构面特征即张开度、粗糙状况、填充物性质及其性状等方面进行评价。现场鉴定结构面结合程度时,除应注意结构面缝隙的宽度外,还应注意描述结构面两侧壁岩性的变化,充填物性质(来源、成分、颗粒大小),胶结情况及赋水状态等,综合分析评价它们对结合程度的影响。结构面粗糙情况也是决定结构面结合好坏的一个重要方面。结构面的粗糙起伏程度,很大程度上影响该结构面的抗剪强度。

三、岩体修正因素

岩石坚硬程度和岩体完整程度是岩体的基本属性,是各种岩石工程类型的共性,反

映了岩体质量的基本特征,但它们远不是影响岩体稳定的全部重要因素。当隧道围岩存在地下水、高初始应力、不利的软弱结构面等时,其稳定性要降低,可将它们作为围岩分级的修正因素。

四、简易判别方法

1、熟悉隧道通过山体大的地质构造。是否位于破碎带影响范围、褶皱带、岩层的产状等。

2、每开挖循环前对掌子面进行观察,确定围岩的风化程度、完整性、层理结构、坚硬程度(一般通过锤击即可大概确定)、是否有大的节理裂隙发育、是否有软弱夹层钙泥质填充、渗水情况。

3、钻孔开挖过程中可观察询问现场操作人员钻孔具体情况,通过钻孔时的声音、钻孔进度、是否易卡钻等初步直观确定岩石的风化程度、完整性、坚硬程度、节理裂隙发育情况。在富水地段还可提前揭露出水点。

4、爆破后岩块的大小也可间接反映围岩的完整性及坚硬程度。岩体完整性好且较坚硬时爆破后碴体大小较均匀,多呈块状结构。岩体较破碎且较坚硬时爆破后碴体大小不一,多呈少部分大块石及碎石碴,盖因节理裂隙相互切割岩体导致炸药能量不能良好传导,多从结构面处发生破坏。

5、爆破后待排烟结束后尽可能第一时间观察拱顶围岩情况,目测开挖轮廓线是否圆顺、有无较大超欠挖、半孔(残眼)留存情况、出碴过程中是否持续掉块、使用挖机斗轻轻扰动围岩是否掉块加剧。

6、支护过程中是否易掉块,支护完成后通过监控量测数据核对支护参数是否满足实际围岩需要。

7、参考超前地质预报结果,初步界定围岩级别。

8、对照附表判定围岩,依据岩石坚硬程度和岩体的完整程度进行初步分级,依据修正因素修正围岩级别。

铁路隧道围岩分级

注:1 表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊;

2 关于隧道围岩分级的基本因素和围岩基本分级及其修正,可按本规范附录A的方法确定。

附录A 铁路隧道围岩基本分级

A.1 围岩基本分级

A.1.1 分级因素及其确定方法应符合下列规定:

1 围岩基本分级应由岩石坚硬程度和岩体完整程度两个因素确定;

2 岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法综合确定。

A.1.2 岩石坚硬程度可按表A.1.2划分。

A.1.4岩体基本分级可按表A.1.4确定。

以上各表中的标准或等级的划分或确定可参照以下说明表。

注:1、k f是同一岩体中风化岩石的单轴饱和抗压强度与未风化岩石的单轴饱和抗压强度的比值; 2、k p是同一岩体中风化岩体的纵波速与未风化岩体的纵波速的比值;

V级围岩开挖、支护技术交底

一、施工方案 (一)工程概况 本合同段为鹤大高速公路桓仁新开岭(辽吉界)至丹东古城子段第4合同段,项目工程包括5条中小隧道,5条隧道均为左右分离式,分别为上古城隧道、下古城隧道、挂牌岭隧道、石哈达1号隧道、石哈达2号隧道。各隧道围岩级别包括V级(偏压)、V级(浅埋)、V级(深埋)、IV级(深埋)、Ⅲ级。各条隧道进出口为V级围岩,在管棚施工完成后,进行围岩开挖。其中各隧道左右线V级围岩长度分别为:上古城隧道左线195m,右线200m;下古城隧道左线,右线;挂牌岭隧道左线545m,右线;石哈达1号隧道左线107m,右线107m;石哈达2号隧道左线175m,右线215m。本施工方案论述Ⅴ级浅埋段围岩开挖与支护。 (二)、主要工程材料规格表(表1) 页脚内容1

表1 (三)、施工工序 施工准备→测量放样→土石方开挖→掌子面素喷→出碴→钢架架立→系统锚杆施作→挂网→喷砼。 (四)、施工方案 开挖:采用弧形导坑开挖预留核心土法进行。先开挖上部导坑成弧形,并进行初期支护,再分部开挖剩余部分的施工方法。 页脚内容2

页脚内容3 1.弧形导坑预留核心土施工工艺流程 工艺流程见图1

图1 弧形导坑预留核心土施工工艺流程图 2.弧形导坑预留核心土法具体开挖施工顺序(具体见图2) 图 2 弧形导洞预留核心土法,将开挖断面分为上、中、下三个部分逐级掘进施工。开挖顺序如图2,按数字由小到大的顺序逐级开挖。上、下断面间距控制在1-2倍洞室尺寸。 ⑴开挖前拱部施作φ50超前小导管对拟开挖岩体进行注浆预加固,待浆液达到一定强度后,采用小型挖掘机开挖,预留一定厚度由人工持风镐修边到位。 ⑵每一台阶开挖完成后,及时喷射混凝土对围岩进行封闭,施作系统锚杆,设立型钢钢架及锁脚锚杆,最后铺设钢筋网,分层复喷混凝土到设计厚度,必要时各台阶设临时仰拱加强支护,完成一个 页脚内容4

隧道开挖围岩稳定性分析

隧道开挖围岩稳定性分析 发表时间:2020-04-03T01:52:44.878Z 来源:《建筑学研究前沿》2019年24期作者:马智勇[导读] 我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。 中铁二十局集团有限公司 摘要:我国西部地区地质条件复杂,存在岩溶、高地应力等复杂地质体。隧道穿越这些复杂地质构造时,会产生严重的变形破坏。如果处理不当,可能造成重大事故,造成人员和财产损失。在开挖过程中,不同的开挖方法对隧道围岩的影响也会不同,导致隧道围岩应力重分布的差异很大。围岩应力应变随开挖断面的变化而变化。目前,对围岩稳定性的判断方法主要有理论分析、工程类比和数值分析,其中数值分析法是最适合分析隧道施工的方法。 关键词:隧道开挖;围岩;稳定性 1地形地貌 隧道高程93.05m~640.1m,相对高差547.05m,地层岩性主要为中侏罗统自流井组(J2Z)和沙溪庙组、下侏罗统和上三叠统香溪组(t3-j1x)。岩性为砂岩、泥岩、砂质泥岩、粉砂岩,含薄层炭质页岩、炭质泥岩。 2软弱岩群稳定性 2.1软岩地层工程地质特征 单轴抗压强度小于30MPa的岩层称为软岩。软岩地层具有强度低、孔隙率低、胶结程度高、受构造面切割和风化影响大等特点。在隧道围岩压力的作用下,工程岩体具有明显的变形。软岩隧道围岩具有强度低、结构软弱、易吸水膨胀等特点,隧道围岩变形较大。 2.2软岩地层围岩变形分析 对于围岩是否会发生较大变形及变形量,支护压力和地应力作用下隧道围岩相对变形及掌子面变形预测公式如下:式中:εt一一隧道径向相对变形,指径向挤压变形量和隧道半径或者跨度之比; εf一一隧道掌子面相对变形,指掌子面挤压变形量和隧道半径或者跨度之比; σcm一一岩体单轴抗压强度; σci一一岩石单轴抗压强度; Pi一一支护压力; Po一一隧道中的原岩应力,取3σ1–σ3,即σmax。 3坚硬岩组围岩稳定性分析 根据切向应力准则,将围岩的切向应力(σo)与岩石的抗压强度(σc)之比作为判断有无岩爆及发生岩爆等级划分原则,结果表明: σo/σc<0.30一一一一一一一一一一一无岩爆 σo/σc介于0.30~50一一一一一一一轻微岩爆 σo/σc介于0.50~0.70一一一一一一中等岩爆 σo/σc>0.70一一一一一一一一一一一强烈岩爆 由于地下洞室的开挖,原地应力状态将受到一定程度的扰动,在洞壁及其一定深度范围形成应力的二次分布和应力集中。应力集中的结果,使得洞壁附近的切向应力有可能超过其临界值,从而产生岩爆。为了计算围岩的切向应力(σ0),首先需要作一定假设,将隧道的横截面抽象为受两向正应力作用的平面应变模型。两向正应力其中之一为上覆岩石自重作用引起的垂向应力(Sv);其二维水平向正应力(σn),它是根据实测的原地应力状态(SH、Sh以及SH的方向)利用线弹性理论公式计算得出,其计算公式如下:

影响隧道围岩稳定性因素

B RIDGE&TUNNEL 桥梁隧道 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆1性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩2的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整。那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏, 即使发生破坏,变形的量值也是较少 的。这种情况下,围岩岩性对围岩的稳 定性的影响是很微弱的,即一般是稳定 的,可以不采取支护,能适应各种断面 形状及尺寸的隧道。如果隧道围岩的整 体性质差、强度低,节理裂隙发育或围 岩破碎(如塑性围岩)即围岩为破碎、较 破碎或极破碎,则围岩的二次应力会产 生较大的塑性变形或破坏区域,同时节 理裂隙间的岩层错动会使滑移变形增 大,势必给围岩的稳定带来重大的影 响,不利于隧道洞室稳定;软硬相间的 岩体,由于其中软岩层强度低,有的因 层间错动成为软弱围岩而对围岩的稳定 性不利。 从岩体的结构角度,可将岩体结 构划分为整体块状结构(整体结构和块 状结构) 、层状结构(薄层状结构和厚层 状结构) 、碎裂结构(构镶嵌结构和层状 碎裂结构) 、散体结构(破碎结构和松散 结构) 。松散结构及破碎结构岩体的稳 定性最差;薄层状结构岩体次之;厚层状 块体最好。对于脆性的厚层状和块状岩 体,其强度主要受软弱结构面的分布特 点和较弱夹层的物质成分所控制,结构 面对围岩的影响,不仅取决于结构面 的本身特征,还与结构面的组合关系 及这种组合与临空面的交切关系密切 相关。一般情况下,当结构面的倾角 ≤30°时,就会出现不利于围岩稳定 的分离体,特别是当分离体的尺寸小 于隧道洞跨径时,就有可能向洞内产 生滑移,造成局部失稳;当倾角> 30° 时,将不会出现不利于围岩稳定性的 分离体。而软弱夹层对围岩稳定性的 影响主要取决于它的性状和分布。一 般认为软弱夹层的矿物成分、粗细颗 粒含量、含水量、易溶盐和有机质等 的含量是决定其性质的主要因素,对 不同类型的软弱夹层,这些因素是不 大相同的。由于软弱夹层的抗强度较 低,故不利于隧道围岩的稳定。 围岩岩体的变形和破坏的形式特 点,不仅与岩体内的初始应力状态和隧 道形状有关,而且还与围岩的岩性及岩 体结构有关,但主要的是和围岩的岩性 及结构有关(见表1) 。 岩体的天然应力状态 岩体的天然应力是岩体的自重应 力、构造应力、变异及残余应力在某一 个具体地区以特定方式作用的结果。已 经有大量的实践资料证明,大多数地区 的岩体的天然应力状态是以水平方向为 主的即水平应力通常大于垂直应力。一 般情况下,隧道轴向与水平主应力垂 直,以改善隧道周边的应力状态。但水 平应力很大时,则隧道方向最好与之平 行以保证边墙的稳定性。然而,岩体的 天然应力对隧道的影响主要取决于垂直 于隧道轴向水平应力的大小与天然应 力的比值(ζ) ,它们是围岩内应力重分 布状态的主要因素。例如,圆形隧道, 当ζ= 1 时,围岩中不会出现拉应力集 中,压应力分布也比较均匀,围岩稳定 性最好;当ζ≤1/ 3 时围岩出现拉应力, 压应力集中也较大,对围岩稳定不利。 最大天然主应力的数量级及隧道轴向的 关系,对隧道围岩的变形特征有明显的 影响,因为最大主应力方向围岩破坏的 概率及严重程度比其它方向大。因此, 估算这种应力的大小并设法消除或利用 非常重要的。 地质构造 褶曲和断裂破坏了岩层的完整性 降低了岩体的力学强度,一般来说,岩 分析影响隧道围岩稳定性因素 文/王冠勇 TRANSPOWORLD 2012No.13(Jul) 234

分析影响隧道围岩稳定性因素

分析影响隧道围岩稳定性因素 习小华 摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。 关键词:围岩稳定性;天然应力状态;地质构造 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 1 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。 从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。 围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。

级围岩开挖初支施工技术交底

Ⅴ级围岩开挖初支施工技术交底一:隧道开挖 洞口段Ⅴ级围岩是整个施工的重点,根据以往类似隧道施工经验,保证安全 拱,封闭成环

施工顺序:超前小导管(洞口段为超前管棚)→注浆→测量→上、下部打眼→装药→上、下部分段爆破→通风、找顶→初喷砼封闭岩面→出渣→施作径向砂浆锚杆→上、下部立拱架、挂钢筋网→复喷至设计厚度→下一循环。 施工方法:Ⅴ级围岩段施工采用短台阶法施工,上台阶预留核心土,上台阶采用人工手持风钻钻孔,下台阶采用多功能作业台架配合人工钻孔,核心土长度3~5米,上下台阶长度错开10-15米,光面爆破开挖,上台阶采用ZLC-50C侧卸式装载机装渣,翻入下台阶。由下台阶18t自卸汽车出渣。循环进尺控制在1m。施工中严格坚持“管超前、严注浆、短进尺、强支护、紧封闭、勤量测”的施工方针。根据监控量测结果及时调整台阶长度。初期支护紧跟开挖工作面。为了避免初期支护钢架拱脚下沉,应增加锁脚锚杆。加强围岩监控量测以观察拱顶下沉和拱脚收敛情况,下部采用跳槽马口开挖,初期钢拱架、锚喷支护紧跟开挖面。

循环进尺控制在1m以内。 二、隧道施工支护及辅助施工措施 初期支护施工工艺见《隧道喷、锚、网、喷支护施工工艺框图》。 1:初期支护 A 喷射砼施工 施工工序:清理岩面→初喷砼→系统锚杆→挂钢筋网→复喷至设计厚度。 施工方法:采用湿喷机作业,砼由洞外拌合站集中拌料,砼运输车运到工作面。喷射砼前,先用水、高压风对岩面粉尘、松动岩石和杂物进行清理,并使岩面保持一定的湿度。喷射作业分段、分片、由下而上顺序进行。 ①喷射砼采用6m3/h湿喷机,湿喷料由洞外拌和楼集中拌料,运料车运到工作面。 ②喷砼:喷射砼前,用高压风Ⅴ类围岩段可用高压风、水将岩面粉尘和杂物进行清理,喷射作业应分段、分片、由下而上顺序进行。初喷砼厚度不小于2~4cm。格栅拱架等安装完后进行复喷砼作业,喷至设计厚度。

(完整版)第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析 第一节概述 1.地下洞室(underground cavity): 指人工开挖或天然存在于岩土体中作为各种用途的构筑物。 2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。 目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。 3.分类: 按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等; 按内壁有无水压力:有压洞室和无压洞室; 按断面形状为:圆形、矩形或门洞形和马蹄形洞室等; 按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类; 按介质,土洞和岩洞。 4.地下洞室→引发的岩体力学问题过程: 地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时) (洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系) 第二节围岩重分布应力计算 1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。 2.地下洞室围岩应力计算问题可归纳的三个方面: ①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定; ②开挖后围岩重分布应力(二次应力)的计算; ③支护衬砌后围岩应力状态的改善。 3.围岩的重分布应力状态(二次应力状态): 指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。

一、无压洞室围岩重分布应力计算 1.弹性围岩重分布应力 坚硬致密的块状岩体,当天然应力()c v h σσσ2 1 ≤ 、,地下洞室开挖后围岩将呈弹性变形状态。这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。重点讨论圆形洞室。 (1)圆形洞室 深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。 无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。 任取一点M (r ,θ)按平面问题处理,不计体力。则: ……………………① 式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。 边界条件: ()()()()()??? ? ?? ???===>>-=??? ??--=>>+=-++=====003103131R b 0)(2sin 22sin 2)(2cos 222cos 22b r r b r r b r r b r r R b p R b p p θθτσθθσστθθσσσσσ ………………② 设满足方程①的应力函数φ为: () θ2cos ln 222F Dr cr Br r A ++++=Φ- ………………………………③ 由③代入①,并由②可得: 2 R F ,4-D ,4-c ,4B ,2204020p pR p p pR A = ===-= ???? ???????Φ ?-?Φ?=?Φ?= ?Φ ?+?Φ?=θθτσθσθθr r r r r r r r r 22 2 22 221111 图 8.1柯西课题分析示意图

Ⅳ级围岩开挖技术交底

□ √安全 □√环保 □√技术 □√质量交底卡 施工班组:开挖班 编号: 保存期:3年 项目 名称 广东珠三角轨道交通穗莞深城际铁路SZH-2标 工程部位 太平隧道厚虎暗挖 区间 工作内容 Ⅳ级围岩洞身开挖 交底内容: 一、使用范围 本交底适用于Ⅳ级围岩浅埋段Ⅳb 、Ⅳbxm 、深埋段Ⅳa 开挖施工工法交底。 二、施工方法 1、Ⅳ级围岩开挖以钻爆法为主、机械配合作业,开挖断面时需要测放开挖轮廓线,隧道中线和高程线,确保开挖面合格。 2、开挖工法为台阶法。Ⅳ级围岩浅埋段Ⅳb 、Ⅳbxm 施工时根据地层的具体情况,上台阶必要时架设临时支撑(掌子面位于中风化(W2)或强风化(W3)地层时,不设临时支撑,其余地层必须设置临时支撑)。当上台阶不设置临时支撑时,台阶底部喷射10cm 混凝土临时封闭。Ⅳ级围岩深埋段(即Ⅳa )为台阶法施工。 3、Ⅳa 级断面,隧道上台阶开挖循环进尺不大于 2.0m(两榀格栅进尺),上台阶开挖高度为4.0m 。下台阶开挖高度3.65m ,每次开挖进尺不大于2.0m (两榀格栅进尺)。隧底开挖高度1.5m ,每次开挖进尺不大于3m (三榀格栅进尺)。 Ⅳa 台阶法断面图 Ⅳa 台阶法工序图 EJGS/R-QES-4.4.3-105 B 1

4、Ⅳb及Ⅳbxm段开挖: Ⅳb段隧道上台阶开挖循环进尺不大于 2.0m(两榀格栅进尺),上台阶开挖高度为 4.22m。下台阶开挖高度3.75m,每次开挖进 尺不大于 2.0m(两榀格栅进尺)。隧底开挖 高度1.5m,每次开挖进尺不大于3m(三榀 格栅进尺)。 Ⅳbxm段隧道上台阶开挖循环进尺不 大于1.6m(两榀格栅进尺),上台阶开挖高度 为4.22m。下台阶开挖高度4m,每次开挖进 尺不大于 1.6m(两榀格栅进尺)。隧底开挖 高度1.96m,每次开挖进尺不大于2.4m(三 榀格栅进尺)。 Ⅳb台阶法断面图 Ⅳb台阶法工序图 5、施工组织:上台阶进尺两个循环,下台阶跟近两个循环,仰拱及时跟近成环。 6、开挖土石方利用装载机装入运渣车运至井底,通过提升井架将渣土提升至井口的渣场再运至弃渣场。 7、Ⅳ级围岩浅埋段掌子面围岩较差时设置临时支撑,施工下台阶一个循环,应拆除临时支撑两榀。当上台阶掌子面岩层及初支结构不稳定时,应变更施工方案。 三、爆破施工 对于硬岩开挖时需要采用钻爆法施工: 1、施工顺序:施工准备→钻孔→吹孔→装药→联线→引爆→爆破检查及瞎炮处理→找顶。 2、在上一循环初支砼及系统锚杆施工结束后,清理作业面并进行钻孔施工。 3、炮眼布置: (1)周边孔间距40~60cm,Ⅳa、Ⅳb深度2.4cm,Ⅳbxm深度2.0m,孔底超出设计

隧道Ⅲ级围岩初期支护施工技术交底

璧山隧道Ⅲ级围岩初期支护施工技术交底 一、交底说明 本交底适用于中铁二局成渝客运专线经理部第五分部璧山隧道暗洞Ⅲ级围岩地段初期支护施工。 二、施工概况 璧山隧道Ⅲ级围岩初期支护施工主要包括初喷混凝土、安设锚杆、架立钢架(Ⅲ级Ⅰ型复合式衬砌)、挂设钢筋网以及复喷混凝土等。在上一工序施工结束后,应立即施作初期支护,约束围岩变形。 璧山隧道Ⅲ级围岩初期支护参数见下表2-1: 衬砌类型Ⅲ级Ⅲ级Ⅰ型Ⅲ级Ⅱ型预留变形量(cm)5~8 喷射混凝土 规格 拱部、边墙C25 仰拱/ / C25 设置部位及设置厚度拱墙:12cm 拱180°:21cm 边墙:12cm 拱墙:15cm 仰拱找平:10cm 钢筋网钢筋规格(HPB235)φ6 设置部位拱部开挖边缘线上部180 拱部网格间距(cm)25×25 锚杆 规格 拱部Φ25普通中空锚杆(L=3m) 边墙Φ22砂浆锚杆(L=3m) 设置部位及间距(环×纵m) 拱部:1.2×1.5 拱部:1.2×1.5 拱部:1.2×1.5 边墙:1.5×1.5 / 边墙:1.5×1.5 钢架类型/ 四肢格栅(高140)/

表2-1 Ⅲ级围岩初期支护参数 三、施工工艺工序 1、施工工序 (超欠挖处理完毕后)第一次初喷砼→施作拱顶普通中空锚杆及边墙砂浆锚杆→铺挂钢筋网→安装锚垫板→立钢拱架(Ⅲ级Ⅰ型复合式)→施作锁脚锚杆(Ⅲ级Ⅰ型复合式)→复喷砼至设计厚度 图3-1 初期支护施工流程图 2、施工工艺 喷射混凝土采用湿喷工艺,利用湿喷台车或湿喷机械手施作。安装锚杆时采用YT-28气腿式风钻钻孔后,将锚杆打入孔内并注浆和施作钢垫板。钢架在洞外加工成型并试拼装后运输进洞,利用装载机配合人工架立,及时加设锁脚锚杆和纵向连接筋。钢筋网片在洞外加工成1.5m2片状,运进洞内进行铺设,搭接1~2个网格。最后必须复喷混凝土至设计厚度。 四、初期支护喷射混凝土施工 1、喷射混凝土原材料 ①水泥 设置部位 / 开挖边缘线上部180 / 纵向间距(m ) / 1.2~1.5 / 钢材规格 / Φ22、Φ14、φ6 / 超欠挖处理 第一次初喷锚杆施作钢筋网安设安装锚垫板架设钢拱架施作锁脚锚杆复喷砼至设计厚度 喷射机就位 喷射材料准备

地下洞室围岩稳定性综述

地下洞室围岩稳定性综述 摘要:地下洞室围岩的稳定性在地下洞室施工时有着至关重要的作用,简要介绍了近几年研究成果,并对这一研究的现状与发展趋势做了简要评述。 关键词:地下洞室围岩稳定性综述 引言 地下洞室等地下工程开挖之前,岩体处于一定的应力平衡状态。用于各种目的的地下开挖改变了原有的平衡状态,从而造成开挖空间周围的应力重新分布。如果围岩中的应力超过了岩体强度,则围岩会破坏,产生坍塌、片帮甚至底板隆起等现象,软岩或高地应力中的地下洞室则可能产生很大的塑性变形。如果不及时对围岩进行支护或加固开挖出来的地下空间就会因为围岩的变形与破坏而无法使用。当二次应力较低,达不到围岩的弹性极限时,围岩处于弹性状态,无需支护就可以保持稳定;反之当围岩应力较高、强较低时,就会产生塑性变形和断裂破坏;在有断层、节理等不连续面切割时,还有可能在地下洞室的顶板或边墙产生不稳定的楔形块体,也可以对地下空间构成威胁。在进行地下空间设计和施工之前,需要对开挖后的围岩应力进行分析,进而对围岩稳定性进行评价,以便采取合理的开挖方式和支护形式。地下洞室等地下工程不可能一次开挖完成,不同的开挖顺序及施工方案对地下洞室群的稳定性的影响不同,即开挖顺序或施工方案将直接影响围岩应力、变形及破坏区的发展变化过程。因此,选择合理的开挖顺序或施工过程是地下洞室群设计与施工的重要内容,具有重要的理论意义和过程使用价值。 主要研究成果 2004年周敏等[1]在针对影响因素与围岩稳定的非线性关系,利用神经网络理论与BP神经网络的建模能力,进行非线性运算,提出改进的BP神经网络评判围岩稳定性模型,得出神经网络方法可以很好的运用于洞室稳定性影响因素中,且输入的参数不受限制,分类,设计及预测精度高,还可以进行数据联想以及校正补错。提出神经网络方法在地下洞室稳定性分类中具有非常重要的意义。 2005年胡夏嵩等[2~4]以西北某市大型水利地下洞室工程为例,采用弹塑性二维有限元法通过低地应力区地下洞室开挖后围岩拉应力、剪切应力分布与围岩变形破坏进行了数值模拟研究,模拟结果表明:在低地应力地区对于椭圆形洞室,地下洞室开挖后在洞侧壁位置产生应力集中,在洞顶位置出现拉应力现象,基本产生在拱顶正中位置;低地应力区地下洞室开挖后,围岩中的剪应力集中带主要形成于洞顶垂直位置,即地下洞室围岩破坏主要发生在洞顶位置,略偏于拱顶的位置,最大剪切应力等值线分布具有对称性,形成于地下洞室底边墙拐角位置处的最大剪应力集中现象,这种现象与地下洞室开挖所引起的围岩块体结构面切向挤压滑落时的剪切变形、应力释放有一定的关系,洞顶位置处的最大剪应力值明显小于底部边墙拐角处的最大剪应力值,边墙拐角处的最大剪应力值一般是洞顶位置最大剪应力值得1.7倍以上,这与地下洞室底边与侧壁边墙之间开挖成直角形有关,直角形的拐角容易形成剪应力集中,产生围岩的不稳定区;低地应力区地下洞室围岩变形破坏主要是发生在垂直方向,水平方向的规模和程度均不及前者,同时总结分析了低地应力区地下洞室开挖后围岩变形破坏规律及其特征。 2010年叶洲元[5]基于等效数值原理并结合地下洞室围岩本身特性,对大冶铁矿地下洞室工程进行分析,选取围岩质量指标D、单轴抗压强度R c、岩体完整性指标K v、地下水渗水流量W和节理状况对地下洞室围岩稳定性进行评价,结果表明等效数值法应用于围岩稳定性的评价,具有计算简单高效,使用方便等特点。 2013年朱义欢[6]针对地下洞室短长期稳定性的评判准则进行分类总结与归纳,得出岩体流变特性试验的开展以及长期强度的确定,如何给出围岩稳定性的综合评判以及相应的临界

洞室围岩稳定性

第七章地下洞室围岩稳定性的工程地质分析 第一节围岩应力的重分布 一、岩体初始应力状态——地应力 地下洞室开挖前,岩体内的应力状态称为初始应力状态。 地应力的类型:自重应力 构造应力 变异及其他应力 二、围岩应力的重分布特征 (一)围岩应力:洞室周围发生应力重分布的这部 分岩体叫围岩 围岩中重分布的应力状态叫围岩应力 (二)地下洞室围岩应力重分布特征 1、圆形洞侧压力系数λ=1 径向应力向洞壁内方向逐渐增大 切向应力在洞壁处为2倍的自重应力,但向洞壁内逐渐减小,到5-6倍洞半径时径向应力=切向应力=自重应力 即围岩应力重分布影响范围是6倍的洞半径 2、圆形洞λ不等于1 洞壁受剪应力最大 3、其他形状洞室 洞顶、洞底容易出现拉应力,转角处剪应力最大 洞室高、宽对围岩应力影响最大 三、开挖后围岩中出现塑性圈时的重分布应力 围岩一旦松动,如不加支护,则会向深部发展,形成具有一定范围的应力松弛区,称为塑性松动圈。在松动圈形成过程中,原来周边集中的高应力逐渐向深处转移,形成新的应力增高区,该区岩体被挤压紧密,称为承载圈。此圈之外为初始应力区。 第二节围岩的变形破坏的特征 1、坚硬完整结构:岩爆、开裂 2.块断结构:块体滑移、掉块 3、层状结构岩体:层面张裂、岩层弯曲折断 4、碎裂结构、散体结构岩体 以塌方、塑性挤入为主 第三节地下工程位置选择的工程地质评价 一、地形条件 1、在地形上要求山体完整,洞室周围包括洞顶及傍山侧应有足够的山体厚度。 2、隧洞进出口地段的边坡应下陡上缓,无滑坡、崩塌等现象存在。 3、洞口岩石应直接出露或坡积层薄,岩层最好倾向山里以保证洞口坡的安全。 4、隧洞进出口不应选在排水困难的低洼处,也不应选在冲沟、傍河山嘴及谷口等易受水流冲刷的地段 5、水工隧洞避免曲线或弯道,转弯角度大于60°,曲率半径大于5倍洞径。 二、岩性条件 坚硬完整的岩体,围岩一般是稳定的,能适应各种断面形状的地下洞室。而软弱岩体如粘土岩类、破碎及风化岩体,吸水易膨胀的岩体等,通常力学强度低,遇水易软化、崩解及膨胀等,不利于围岩的稳定。一般软硬互层或含软弱夹层的岩体,稳定性差。层状岩体

隧道Ⅴ级围岩开挖(技术交底)

殷家洞隧道Ⅴ级围岩开挖施工要点 (一)方案总述 Ⅴ级围岩属于地质条件很差的围岩,因而为了防止隧道坍塌、保证施工的安全,应遵循“短进尺、弱爆破、初期支护紧跟、及时闭合成环、加强监控量测”的原则,同时做好爆破设计,特别是在洞口及浅埋段更应倍加小心,选择合适的开挖方法和控制循环进尺的深度。洞口及浅埋段计划采用“上部环形开挖,预留核心土法”,开挖深度控制在0.75~1.5m,开挖后立即初喷砼,封闭掌子面,而后进行环形初支后开挖核心土,随后进行边墙及仰拱开挖,Ⅴ级围岩深埋段采用上下台阶法开挖,循环进尺控制在1.5~2m,施工中也应遵循“短进尺、弱爆破、初期支护紧跟、及时闭合成环、加强监控量测”的原则,保证施工安全。 (二)开挖程序 测量放样画开挖轮廓线布置炮眼钻孔吹孔装药连线起爆排烟除尘找顶刷邦出渣初期支护下一循环。 核心土法开挖步骤:环形开挖环形初支核心土开挖下边墙交错开挖下边墙交错初支仰拱交错开挖及初支。 上下台阶法开挖步骤:上断面开挖上断面初支下边墙交错开挖下边墙交错初支仰拱交错开挖及初支。 (三)爆破参数设计 采用预留光面层光面爆破的方法,并按微震控制爆破设计,不偶合系数装药,塑料导爆管非电起爆。开挖施工中根据爆破设计,结合现场地质情况进行试验,并不断修正设计参数,达到最佳爆破效果。成立爆破作业小组,实行定人、定位、定标准的岗位责。 ☆微震控制爆破设计: 单段最大爆药量按下式计算,并对相邻隧道及浅埋地表构造物进行监测及时调整爆破方法。 V=K(Q1/3R)a(cm/s) Q:单段最大起爆药量(kg); R:爆破中心距构筑物距离(m) K:地质介质系数:K=50~360 a:地震波衰减系数,取a=1.5 (四)钻眼、装药 为控制超欠挖,钻眼也是一项关键性工作,每循环作业前必须由测量人员现场画出开挖轮廓线,做好炮眼布置,并根据设计-0.6%的纵坡用水平尺调整好钻

地下工程围岩稳定性分析与控制

第6章 地下工程围岩稳定性分析与控制 6.1 概述 地下洞室是指在地下岩土体中人工开挖或天然存在的作为各种用途的构筑物,按用途分为:矿山井巷(竖井、斜井、巷道)交通隧道、地下厂房(仓库)、地下军事工程等。修建地下洞室,必然要进行岩土体开挖。开挖将使工程周围岩土体失去原有的平衡状态,使其在一个有限的范围内产生应力重新分布,这种新出现的不平衡应力没有超过围岩的承载能力,岩体就会自行平衡;否则,将引起岩体产生变形、位移甚至破坏。在这种情况下,就要求构筑物承力结构或支护结构,如支架、锚喷、衬砌等,进行人工稳定。在岩石力学中,将受开挖影响而发生应力状态改变的周围岩体,称作围岩。从原始地应力场变化至新的平衡应力场的过程,称为应力重新分布。经应力重新分布形成的行的平衡应力,称为次生应力或诱发应力,也叫围岩应力、二次应力、地压、岩亚、矿压或矿山压力。由于次生应力是岩体变形、破坏的主要根源,故次生应力是岩石力学研究的重要内容之一。因此,实现地下岩体工程稳定的条件是 max max u U σ??? <S < (6.1) 式中, max σ和max u 分别为围岩内或支护体内的最大或最危险的应力和位移;S 和U 为围岩或支护体所允许的最大应力(极限强度)和最大位移(极限位移)。 有关这方面问题的研究,无论是否支护,都统称为稳定性问题。稳定性问题是岩体地下工程的一个重要研究内容,关系到工程施工的安全性及其运行期间的是否满足工程截面大小的安全可靠性。有的地下工程不稳定,还将造成对周围环境的影响,如地面建筑的损坏、边坡塌方以及工程地质条件的恶化等。 此处所讨论的稳定性问题,与压杆、薄壁、壳体等结构稳定性问题的概念有所不同,采用的理论分析方法也是不一样的。 岩体地下工程埋在地下的一定深度,如目前的交通隧道、矿山巷道,有的深到数百米甚至数千米。根据岩体地下工程埋入的深浅可以把它分为深埋和浅埋两种类型。浅埋地下工程的工程影响范围可达到地表,因而在力学处理上要考虑地表界面的影响。深埋地下工程可视为无线体问题,即在远离岩体地下工程的无穷远处的原岩体。

地下工程围岩稳定性分析

地下工程围堰稳定性分析 班级:08勘查1班 姓名:水如云 学号:08201030142 时间:2011.11.21 摘要通过对地下工程围岩稳定性分析的相关方法及在工程实践中存在问题的分析, 阐述在地下工程围岩稳定性分析中应避免追求精确的计算,提倡探索新的研究思想与研究方法。 关键字:围岩、稳定性分析、地下工程 一、前言 地下工程的稳定问题亦即围岩的变形与破坏问题。顶板塌落、边墙挤入、底板隆起、围岩开裂、突发岩爆、支护折断等都是围岩不稳定的显现。但从永久性地下建筑物及地下空间利用的类型看,由于使用要求或标准不同,稳定性的定义就会有差异。围岩稳定性分析方法主要有:块体理论支持的分析方法,主要用于裂隙岩体的稳定分析中;模型试验方法,多用于重要的难以用现场试验方法解决的复杂工程;数值分析法,基于某种力学模型和分析理论对围岩进行稳定性分析的方法,是目前应用较广泛的一种分析方法,它根据力学模型和分析思想的不同又分为有限元分析、边界元分析、位移反分析等。 目前,在地下工程施工领域中,存在着一种倾向,即追求高精度的数值计算及数学方法的深奥,花了大量的精力、财力和时间去从事复杂而繁琐的数值计算,而放松了对地下工程特殊性的思考,忽略了对问题整体性的理解。 二、地下工程的特点 地下工程涉及到地理与地质环境因素、工程因素、社会经济水平、材料科学发展水平、施工过程控制水平以及地下工程在国民经济中的地位等因素。地理与地质环境本身就是复杂的,它是天然的介质(涉及地应力、地下水、岩性、地质结构、地质构造),很少有地质条件完全相同的两个工程;工程因素则是指工程规模、断面形状与尺寸、施工技术、过程控制、环境控制、工程材料、人、机、料的协调水平等。 地下工程的地理与地质环境、投资水平、设计水平、承建者的技术与管理水平等诸多因素都与工程的成败有联系,它们相互作用、相互渗透、相互影响、相互制约。因此,必须用

隧道工程施工技术交底解析

隧道工程施工技术交底 一、工程概况 本合同工程共有分离式隧道两座,其中:隧道左洞长200m(含明洞10m),右洞长235m(含明洞10m);塔石岭隧道左洞利用原53省道(丽浦线),塔石岭隧道右洞长1105m(含明洞10m)。 隧道设计均为左右分离式,兰头隧道左、右线中心相距30~35m,塔石岭隧道左、右线中心相距40m。 兰头隧道左洞围岩类别为:Ⅱ类围岩55m,Ⅲ类围岩42.5m,Ⅳ围岩102.5m;右线隧道围岩类别为:Ⅱ类围岩79m,Ⅲ类围岩10m,Ⅳ类围岩146m。 塔石岭隧道右洞围岩类别为:Ⅱ类围岩154m,Ⅲ类围岩81m,Ⅳ围岩870m。 左右线隧道相距较近,洞口施工时要采取弱爆破、设立防护网、临时限制左洞通行的方法,保证行车安全和防止飞石破坏既有的道路、房屋等设施。 二、总体施工方案 根据本隧道情况,采取“弱爆破、短进尺、少扰动、早喷锚、勤量测、紧封闭”的技术措施,用风钻及台车打眼,装载机配合自卸汽车出碴。采用TZ系列子午加速式轴流通风机,φ1350mm软管压入式通风。砼集中拌和,罐车运送,泵送入模,可调整体式模板台车进行二次砼的衬砌。 根据本工程的设计,针对不同围岩类别,分别采取以下施工方案: 1、对于Ⅱ类围岩(除过明洞段) 对于明洞段,先按设计开挖,开挖采用风钻打眼,岩石开裂机松动岩石,挖掘机配合自卸汽车运碴。开挖后应及时进行明洞砼的浇灌、回填土的施工,以保证边坡的稳定。 对于洞中的Ⅱ类围岩,临时加固措施为:管棚注浆+Φ25中空锚杆(长3.5m,间距0.75m×1.0m)+Φ6.5钢筋网(15cm×15cm)+喷射砼厚25cm +16#工字钢拱架(间距0.75m)作为初期支护。初期支护完成后,进行监控量测,围岩变形基本稳定后,及时进行防水层、仰拱及C30钢筋砼二次衬砌。 2、Ⅲ类围岩(中风化岩层) 主要采取风钻打眼,正台阶法开挖。拱部根据围岩情况采取用Φ22超前钢筋砂浆锚杆加固(长3.0m,间距1.2m×1.2m)+Φ25中空锚杆(长3.0m,间

隧道ⅴa级围岩钢拱架技术交底

技术交底内容

2、钢架加工与安装 钢架在加工厂集中制作,加工后试拼,允许误差为:沿隧道周边轮廓偏差为土3cm,平面(翘曲)偏差土2cm,不合格禁用。 初喷砼后,严格按设计架设钢架,钢架安装允许偏差横向和高程均为土5cm,倾斜度不大 于2°。 钢拱架两侧拱脚基础须牢固坚实。安装前清干净底脚处浮碴;拱脚标高不足时,设置钢板 或用砼调整;安装先将钢架节段预组装成安装段,拧紧连接螺栓。钢架立起后,据中线、水平将其校正到正确位置,然后用定位筋固定,并用纵向连接筋将其和相邻钢架连接牢靠,钢架与壁面间用钢楔或混凝土垫块楔紧。 四、检查项目、检查频率及方法见下表: 无污秽、无锈蚀和假焊,安装时基底无虚渣及杂物,接头连接牢靠。 五、安全保护措施 1、隧道内人员必须戴安全帽,必须持证上岗。 2、对喷锚地段的危石及时处理完毕,脚手架、防护栏杆、照明设施确保符合安全要求。 3、洞内电气设备的操作,必须符合下列规定:非专职电工不得操作电气设备;手持式电气 设备的操作手柄和工作中接触的部位,设有良好的绝缘。使用前进行绝缘检查。 4、对洞内拱顶和地表布置的测点定期观测,发现洞内和地表位移值等于或大于允许位移值, 以及地面或洞内出现裂缝时,必须立即通知作业人员撤离现场,待制订处理措施后再施工。 5、高空作业时必须系好安全带及其他防护用品。

6、隧道中如遇有害气体,所有人员应立即停止工作,并撤离洞外,加大通风量及时将有害气体排出洞内,确认无危险后,方可进洞施工。 7、钢架在搬运过程中,应将钢架构件绑扎牢固,以免发生碰伤人,车辆倾覆,构件坠落等事故。钢架的架设应由施工队长张全保按规定的信号进行指挥,随时观察围岩动态或喷射砼的情况,防止落石,坍塌引起伤人事故。在架设钢架前应采用垫板将钢架基础找平,架设时,应将钢架与定位锚杆固定,用纵向连接筋连接牢固,防止发生钢架倾覆或扭转。 &当紧固顶部连接螺栓,楔紧钢架时,作业人员应以正确的姿势站在平稳,牢固的脚手架上,并配带安全防护用具防止发生坠落事故。 9、对钢架应随时检查,如发现扭曲,压屈现象或征兆时,必须及时采取加固措施。必要时应使其他人员撤到安全地带,防止因坍塌造成伤亡事故。 10、薄层覆盖地区必须派人在洞顶观察土质变化,洞内初期支护后,在拱顶设观察点,由测量工程师与测量员跟踪控制标高,观察围岩变形。 11、在进行超前锚杆施工作业时,由专职安全员潘广文负责观察围岩变化。 12、锚杆及水泥等材料的质量,必须经过检定,合格后方可使用,防止因材料问题而出现安全事故。 13、洞内施工作业时应具有良好的照明设施,以便观察围岩变化。

隧道施工技术交底(一级EM)讲课讲稿

隧道施工技术交底(一 级E M)

隧道施工技术交底 一、工程概况 PDSYSG-6合同段起点桩号YK52+300,终点桩号YK56+900,共设隧道1.5座,其中大寨塬特长隧道1889.5m/0.5座,丰收隧道357m/1座。 大寨塬隧道为分离式隧道,右线起讫桩号为YK52+300~YK54+179,纵坡及坡长为-1.54%/3890m,全长1879m,左线起讫桩号为ZK52+300~ZK54+200,纵坡及坡长为-1.533%/3890m,全长1900m,隧道最大埋深180m;隧道大部分位于直线段上,右线出口端位于R-900m的平曲线上,左线出口端位于R-800m的平曲线上,右线设置明洞29m,左线设置明洞42m,全部为V级围岩。 丰收隧道为分离式隧道,右线起讫桩号为YK56+336~YK56+830,纵坡及坡长为-2.5%/880m,全长494m,左线起讫桩号为ZK56+600~ZK56+820,纵坡及坡长为-2.5%/880m,全长220m,隧道最大埋深65m;右位于R-1800m的平曲线上,左线位于直线上,右线设置明洞18m,左线设置明洞16.5m,全部为V级围岩。洞口段存在偏压,安全进洞为施工重点。 二、工程管理目标 (1)安全目标:以创建安全生产“平安工地”为目标,杜绝安全特别重大、重大、大事故,杜绝死亡事故,防止一般事故的发生,消灭一切责任事故,确保施工作业人员生命财产不受损害。 (2)质量目标:确保工程达到国家及交通部现行的施工质量验收标准,并满足按设计速度开通的要求,杜绝施工质量责任事故的发生,确保对完工隧道的质量自检率达到100%,满足创优规划要求,争创飞天金奖。 (3)工期目标: 大寨塬隧道:计划工期:2017.3.01-2018.12.31; 丰收隧道:计划工期:2017.5.01-2018.4.30。 (4)环保目标:建立环境保护体系,配备相应的环保设施、技术力量和相应的资金,与当地政府和环保部门联合协作,全面控制施工污染,减少污水、空气粉尘及噪音污染,严格控制水土流失。施工方案要具备环保防范措施,以保护现场环

相关文档
相关文档 最新文档