文档库 最新最全的文档下载
当前位置:文档库 › 信 幅频相频特性的画法 频率响应法

信 幅频相频特性的画法 频率响应法

1、频率响应法

?基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些

变化规律就能得出关于系统运动的性能指标。

?由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。该方法具有很高的工程价值,深受工程技术人员欢迎。

6 频率响应分析法2

2、频率特性的图示方法

?为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:

1.幅相频率特性(奈氏图)

2.对数频率特性(Bode图)

3.对数幅相特性(尼氏图)

6 频率响应分析法5

2.1 幅相频率特性图

?极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。

G(jω)=x(ω)+ j y(ω)

ω:0→+∞

6 频率响应分析法6

2.2 对数频率特性(Bode图)

?对数坐标图:伯德(Bode)图,由两辐图组成。对数幅频特性图+对数相频特性图,横坐标为频率的(以10为底数)对数,单位是10倍频程(dec)。

–对数幅频图的纵坐标为幅频的对数,单位为分

贝(dB)

–对数相频图的纵坐标为相频值,单位为弧度

6 频率响应分析法8

6 频率响应分析法10

伯德(Bode)图的优点

?对数坐标图有如下优点:

–把乘、除的运算变成加、减运算。串联环节的

Bode 图为单个环节的Bode图迭加。

–K 的变化对应于对数幅频曲线上下移动,而相

频曲线不变。

–一张图上可以同时画出低、中、高频的特性。?因此在工程上得到了广泛的应用

6 频率响应分析法11

2.3 对数幅相特性(尼氏图)

对数幅相图

?尼科尔斯(Nichols)图,以对数幅频特性为纵坐标(分贝),相频特性为横坐标,频率ω为参变量。

6 频率响应分析法12

6 频率响应分析法14

6 频率响应分析法20

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

频率响应分析仪知识

频率响应分析仪知识 一、概述 (一)用途 频率响应分析仪是测量被测系统频率特性的仪器。早期频率特性的测量是用信号源、电压表、频率计、相位计、示波器等单机组成,仪器操作复杂,易受干扰,测量精度低。进入60年代,国外开发出以数字相关滤波为核心技术的频率响应分析仪,提高了测量精度。随着技术发展,智能化、数字化程度不断提高,测量功能、精度得到了快速发展,拓宽了仪器应用范围。目前,频率响应分析仪广泛地应用于航空航天、军工、机械制造的振动分析,大型机械的故障监测与诊断,自控系统、伺服系统的设计与调试,电子元件、压电元件的阻抗与谐振测试,高压电网滤波器调试,桩基检测,自动控制系统科研与教学等领域。 (二)分类与特点 频率响应分析仪可以分为基础型频率响应分析仪、教学型频率响应分析仪、多通道频率响应分析系统等类型产品。 ●基础型频率响应分析仪的特点 性能指标高,接口齐全,方便与各种测试仪器及计算机联接组成测试系统,适用于各种领域的频率响应测试。 ●教学型频率响应分析仪的特点 性能指标一般,频率范围窄,适用于低成本测试,如教学以及要求性能指标不高,能满足一定要求的场合。 ●多通道频率响应分析仪的特点 性能指标高,多通道测试可达32通道,适用于大型机械、桥梁、堤坝等大型系统多点测试。 (三)产品国内外现状 国内生产频率响应分析仪的厂家主要有:天津中环电子仪器。天津中环电子仪器自1958年建厂以来,一直致力于频率响应测试产品的研发,80年代与英国solartron公司合作,开发出以TD1250频率响应分析仪为代表的系列产品,同类产品技术水平国内领先。国外厂家主要有:英国solartron公司和日本NF回路设计株式会社。英国solartron公司以数字相关滤波为技术核心的产品,频率范围10微赫到65千赫(1250),以及10微赫到32兆赫(1260)等,具有双通道及四通道测试功能,1250侧重于低频与超低频,主要用于机械、自控等领域,1255上限频率较高,满足低频测试的同时可用于电子元件、压电元件等测试。 (四)技术发展趋势 ●小型化成为频率响应分析仪的主要发展趋势; ●提高功能指标精度,嵌入式、PLD的采用是未来的趋势; ●降低成本,向教学普及扩大应用范围是未来主要发展方向。 二、基本工作原理 频率响应分析仪主要由:发生器、分析器、控制器、运算器、键盘与显示器、接口、选件等构成。频率响应分析仪的原理框图如下图1所示。

频响指标以及测试方法

频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍 然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10 倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

频率响应原理2

第2节 频率响应原理 1. 简介: 在伺服调试过程中,会经常用到频率响应曲线,特别是振动抑制,电流环HRV ,HRV 过滤器等,甚至评价机械刚性的高低都是采用该曲线进行分析,后面介绍的[伺服调试指南]中,几乎每个调试步骤中都可能用到频率响应曲线(波形)。可以说,不会使用频率响应曲线就不能正确的进行伺服参数的调整(当然不包括基本参数的设定),以及后面介绍的高速高精度参数的调整。用好了该曲线,进行伺服调试就会得心应手。所以,在伺服系统调试之前简单介绍一下伺服控制中频率响应的基本原理。 2. 信号采集: `从下面的控制框图中获得 上述框图中,将输入信号和输入信号取出如下。 速度指令 速度反馈 图2:输入输出信号 将输出信号和输入信号放到一起进行比较,如下: 幅度变化 相位变化 图3:输入输出信号比较 由于增益的大小不同,输出信号幅度和相位随着频率的增高,发生相应的变化,产生衰减或迟后,或者由于共振产生突然变大。

3. 幅频和相频特性曲线 1.根据上述的曲线,将输入信号和输出信号的幅度比较,按下面公式计算: 输出信号幅度 幅度 图4:幅度-频率曲线 2.同样,将输入信号和输出信号的相位进行比较。 计算公式如下: 输出信号相位 相位 图4:相位-频率曲线 4. 实际机床的幅频和相频特性 在伺服控制中,伺服增益(V-GAIN )一般为PK1V 和PK2V ,对应的参数如下:PK1V=NO.2043 * ((256+NO2021)/256) PK2V= NO.2044* ((256+NO2021)/256) VG= ((256+NO.2021)/256)*100% PK1V=NO.2043* VG PK2V=NO.2044*VG

频响特性

5.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入( )内) 1.若一因果系统的系统函数为011 10111)(b s b s b s b a s a s a s a s H n n n n m m m m ++++++=---- ,则有如下结论—————————— ( 2 ) (1) 若)2,,1,0(0>=>n n i b i 且 ,则系统稳定。 (2) 若H (s )的所有极点均在左半s 平面,则系统稳定。 (3) 若H (s )的所有极点均在s 平面的单位圆内,则系统稳定。 2.一线性时不变因果系统的系统函数为H (s ),系统稳定的条件是—— (3、4 ) (1) H (s )的极点在s 平面的单位圆内; (2) H (s )的极点的模值小于1; (3) H (s )的极点全部在s 平面的左半平面; (4) H (s )为有理多项式。 3.根据图示系统信号流图,可以写出其转移函数H (s )= ) () (s X s Y ————( 2 ) X (s Y (s ) (1) c s a s b +-/1/ (2)a s b cs -+ (3)??? ??-ab c s 11 (4)?? ? ??-+a c b s 11 4.线性系统响应的分解特性满足以下规律————( 2、3 ) (1) 若系统的起始状态为零,则系统的自由响应为零; (2) 若系统的起始状态为零,则系统的零输入响应为零; (3) 若系统的零状态响应为零,则强迫响应亦为零; (4) 一般情况下,零状态响应与系统特性无关。 5.系统函数H (s )与激励信号X (s )之间——( 2 ) (1)是反比关系; (2)无关系; (3)线性关系; (4)不确定。 6.线性时不变系统输出中的自由响应的形式由——————( 1 )决定 (1)系统函数极点的位置; (2)激励信号的形式; (3)系统起始状态; (4)以上均不对。 5.2 是非题(下述结论若正确,则在括号内填入√,若错误则填入×) 1.若已知系统函数) 1(1 )(+=s s s H ,激励信号为)()(2t u e t x t -=,则系统的自由响

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

频率响应振动抑制增益调整

频率响应原理 1.简介: 在伺服调试过程中,会经常用到频率响应曲线,特别是振动抑制,电流环HRV,HRV 过滤器等,甚至评价机械刚性的高低都是采用该曲线进行分析,在所有的介绍[SERVO GUIDE]的资料中,几乎每个调试步骤中都可能用到频率响应曲线(波形)。可以说,不会使用频率响应曲线就不能正确的进行伺服参数的调整(当然不包括基本参数的设定),以及在一些介绍有关高速高精度参数的调整中也会有应用。分析好了该曲线,进行伺服调试就会得心应手。所以,在进行伺服系统调试时应该了解一下伺服控制中频率响应的基本原理。 2.信号采集: `从下面的控制框图中获得 上述框图中,将输入信号和输入信号取出如下。 幅度变化 相位变化 由于增益的大小不同,输出信号幅度和相位随着频率的增高,发生相应的变化,产生衰减或迟后,或者由于共振产生突然变大。

3. 幅频和相频特性曲线 1.根据上述的曲线,将输入信号和输出信号的幅度比较,按下面公式计算: 输出信号幅度 幅度频率响应=20Log 10 (dB) 输入信号幅度 如果输出信号幅度=输入信号幅度,则,GAIN=0dB 。 将频率作为横坐标,幅度作为纵坐标,画出幅-频响应曲线如下: (dB) 2.同样,将输入信号和输出信号的相位进行比较。 计算公式如下: 输出信号相位 相位频率响应=20Log 10 (deg ) 输入信号相位 如果输出信号幅度=输入信号幅度,则,GAIN=0deg 。画出幅-频响应曲线如下: 4. 实际机床的幅频和相频特性 在伺服控制中,伺服增益(V-GAIN )一般为PK1V 和PK2V ,对应的参数如下: PK1V=NO.2043 * ((256+NO2021)/256) PK2V= NO.2044* ((256+NO2021)/256) VG= ((256+NO.2021)/256)*100% PK1V=NO.2043* VG PK2V=NO.2044*VG

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

[频响] 频响分析方法总结

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。 直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。 模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

频率响应介绍_频率响应概念

频率响应介绍_频率响应概念 频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应。也是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应,也叫频率特性。在额定的频率范围内,输出电压幅度的最大值与最小值之比,以分贝数(dB)来表示其不均匀度。频率响应在电能质量概念中通常是指系统或计量传感器的阻抗随频率的变化。 频率响应确定方法分析法基于物理机理的理论计算方法,只适用于系统结构组成易于确定的情况。在系统的结构组成给定后,运用相应的物理定律,通过推导和计算即可定出系统的频率响应。分析的正确程度取决于对系统结构了解的精确程度。对于复杂系统,分析法的计算工作量很大。 实验法频率响应图册采用仪表直接量测的方法,可用于系统结构难以确定的情况。常用的实验方式是以正弦信号作为试验信号,在所考察的频率范围内选择若干个频率值,分别测量各个频率下输入和稳态输出正弦信号的振幅和相角值。输出与输入的振幅比值随频率的变化特性是幅频特性,输出与输入的相角差值随频率的变化特性是相频特性。 频率响应性能系统的过渡过程与频率响应有着确定的关系,可用数学方法来求出。但是除一阶和二阶系统外,这样做常需要很多时间,而且在很多情况下实际意义不大。常用的方法是根据频率响应的特征量来直接估计系统过渡过程的性能。频率响应的主要特征量有:增益裕量和相角裕量、谐振峰值和谐振频率、带宽和截止频率。 增益裕量和相角裕量它可提供控制系统是否稳定和具有多大稳定裕量的信息。 谐振峰值Mr和谐振频率rMr和r规定为幅频特性|G(j)|的最大值和相应的频率值。对于具有一对共轭复数主导极点(见根轨迹法)的高阶线性定常系统,当Mr值在(1.0~1.4)M0范围内时,可获得比较满意的过渡过程性能。其中M0是=0时频率响应的幅值。r的大小表征过渡过程的快速性:r值越大,系统在单位阶跃作用下输出响应的快速性越好。带宽和截止频率截止频率c规定为幅频特性|G(j)|达到0.7M0并继续下降时的临界频率。

弹性结构频率响应函数的测定

弹性结构频率响应函数的测定 一实验目的 1.掌握用随机激励激振方式,进行机械阻抗测试的仪器组合及使用方法。 2.了解随机激振时的数据处理方法。 3. 测出悬臂梁的频响函数。 二实验原理及方法 激励信号可用以用以下几种方式: 一是快速正弦扫频法。将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频。从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号。 二是脉冲激励。用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间t,t越小则频率范围越大。用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以省掉,并且可以在更接近于实际工作的条件下来测定试件的频率响应函数。 三是宽白噪声激励。白噪声信号和白色光含有同一比率的所有波长的成分相同,在一切频带区域,也具有相等功率成分的那种不规则信号。从而保证了在所分析的频段内的激励信号存在频率。 频率响应函数表明了系统的动态特性,在机械结构中频率响应函数是对结构振动特性的描述,又称为机械阻抗。它可以理论计算也可以通过实验测定。工程上很多问题即便有了计算值往往也离不开实验的方法校核,特别是对于大型复杂结构,实验的方法更显得更重要。 实验装置参见图2试验件为长640mm宽56mm厚8mm悬臂梁,前四阶参考频

率为: 在结构振动实验分析中,通常把一连续弹性系统简化成离散的多自由度系统,上述悬臂梁被等分的划成n 个单元体,近似的认为每个单元体的质量只集中在结点上, 各结点之间均为弹性连接,激励点和测量点被布置在结点上。针对每一个测点系统被简化为单自由度常系数线性系统。若只考虑在输出端加有输入信号线性不相关的噪声干扰时,此系统振动方程在频域表示为: )()()()(f N f X f H f Y += 上式乘以输入信号付氏变换的共轭)(*f X ,在样本足够大的情况下,应用统计平均做上式的期望值的运算,可以得到: )()()(f G f H f G XX YX = 即 ()()()YX XX G f H f G f = 式中: )(f G YX 为输入输出的互谱 )(f G XX 为输入信号的自谱 )(f H 为系统的频率响应函数 三 实验步骤 CF-7200、加速度传感器、信号调理设备、激振器等实验设备连线和实验的结构如图3.1所示。

滤波器的频率响应

无源低通滤波器的测量数据: 幅频特性: 有源低通滤波器的测量数据: F(kHz) 0.1 0.2 0.5 0.8 1 2 3 f=4 U1(V) 1 1 1 1 1 1 1 1 U2(V) 1 1 1 1 0.99 0.95 0.90 0.83 F(kHz) 5 6 7 8 9 10 11 12 U1(V) 1 1 1 1 1 1 1 1 U2(V) 0.76 0.70 0.64 0.59 0.54 0.50 0.46 0.43 F(kHz) 0.1 0.2 0.5 0.8 1 2 2.5 3 f=4 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 1 1 1 1 1 0.98 0.975 0.97 0.94 F(kHz) 5 6 7 8 9 10 11 12 U1(V) 1 1 1 1 1 1 1 1 U2(V) 0.91 0.87 0.84 0.80 0.76 0.72 0.68 0.64

幅频特性: 无源高通滤波器的测量数据: 幅频特性: F(kHz) 0.5 0.8 0.9 1 2 3 4 5 f=6 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.001 0.002 0.003 0.004 0.015 0.032 0.053 0.076 0.1 F(kHz) 10 20 30 40 50 60 70 80 U1(V) 1 1 1 1 1 1 1 1 U2(V) 0.20 0.42 0.58 0.69 0.77 0.82 0.86 0.89

有源高通滤波器的测量数据: 幅频特性: 无源带通滤波器的测量数据: F(kHz) 0.5 0.8 0.9 1 2 3 4 5 f=6 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.001 0.002 0.003 0.004 0.015 0.034 0.059 0.091 0.12 F(kHz) 8 10 20 30 40 50 60 70 80 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.2 0.28 0.61 0.78 0.86 0.90 0.92 0.94 0.96 F(kHz) 0.5 1 2 3 5 10 f1=17.27 20 25 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.03 0.06 0.12 0.17 0.24 0.32 0.33 0.33 0.32 F(kHz) 30 f2=34.8 40 50 80 100 150 200 250 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.30 0.29 0.27 0.24 0.17 0.15 0.10 0.08 0.06

频率响应测试

频率响应测试 一、 实验目的 1. 掌握频率特性的测试原理和方法。 2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。 二、 实验内容 1. 测定给定环节的频率特性。 2. 实验模拟电路连接如下 取23R R =41R M ==Ω,121C C ==μF, 1 R K R =,则系统方块图如下 易得系统传递函数为: 取K=2则,G (S )=2200 10200s s ++; 取K=5则,G (S )=2500 10500 s s ++; 若正弦输入信号为Ui (t )=A 1sin ?(ωt ), 则当输入达到稳态时,其输出信号

为Uo(t)=A 2sin ?(ωt +φ)。改变输入信号频率f = ω2π 值,便可测得二组12 /A A 和φ随f (或ω)变化的数值,这个规律就是系统的幅频特性和相频特性。 三、 实验原理 1. 幅频特性即测量输入与输出信号幅值A 1与A 2,然后计算其比值21 /A A 21/A A 。 2.实验采用“李沙育“图形法进行相频特性性的测试。假设输入信号为(t )= X m sin ?(ωt ),输出信号为Y(t)=Y m sin ?(ωt +φ)。当ωt=0时,有 X(0)=0 ;Y(0)=Y m Sin(ψ) 。则相位差角φ的求法如下:若椭圆长轴在一、三 象限,则φ=arcsin(/O M Y Y );若椭圆长轴在二、四象限则φ=π-arcsin(/O M Y Y )。应注意φ始终为负。 3.将所测数据代入根据公式 1A (ω) =2222 ( )(1())(2)n n Ar Ac ωωζωω=-+ 1 2 2()1()n n tg ω ζ ωφωωω-=-- 即可求得n ω及ζ,则传递函数为 G(s)= ωn 2 S +2ζωn S +ωn 四、 实验结果 1. K=2

频响分析

radioss频响分析 材料 属性T=*** 1.loadcollector spc DOF 123456 钻柱 井壁 2. A DOF1=2.54mm DAREA DAREA 载荷激励 SPCD 强制位移、速度激励、加速度激励 如果是SPCD,则激励处还需添加相应自由度的SPC约束 3. B card image=TABLED1 x(1)=0,y(1)=1,x(2)=1000,y(2)=1 如果是激励曲线,则从utility——>table creat中导入 4. OMEGA card image=FREQi 勾选FREQ1,F1=20,DF=20,NDF=49 5. RLOAD2card image=RLOAD2 EXCITED——>A TB——>B TP——>φ DELAY——>τ DPHASE——>θ TYPE=LOAD 如果有好几个载荷,则用DLOAD组合 6.loadstep type=freq.resp(direct) SPC——>SPC DLOAD——>RLOAD2 FREQ——>OMEGA 7.定义set type=SET_GRID 6.control cards Displacements format=HG, DISP_FORM=PHASE, DISP_OPT=SID PARAM coupmass:yes G=0.06 OUTPUT keyword=HGFREQ FREQ=ALL 6.loadstep type=freq.resp(direct) 6.loadstep type=freq.resp(direct) 直接频响 模态频响还需设置EIGRL卡片 汽车白车身 输入:白车身与底盘相连的点 输出:方向盘,底板、座椅…

相关文档