文档库 最新最全的文档下载
当前位置:文档库 › 高原湖泊溶解有机质的三维荧光光谱特性初步研究_傅平青

高原湖泊溶解有机质的三维荧光光谱特性初步研究_傅平青

高原湖泊溶解有机质的三维荧光光谱特性初步研究_傅平青
高原湖泊溶解有机质的三维荧光光谱特性初步研究_傅平青

基于三维荧光光谱技术的水质有机物检测方法研究硕士学位

基于三维荧光光谱技术的水质有机物检测方法研究硕士学位

中图分类号:X83论文编号:HBLH2014-204 U D C:密级:公开 硕士学位论文 基于三维荧光光谱技术的水质有机物检测方法研究作者姓名:周燕 学科名称:控制理论与控制工程研究方向:检测与控制技术及智能装置 学习单位:河北联合大学学习时间: 2.5年提交日期: 2013年12月9日 申请学位类别:工学硕士 导师姓名:陈至坤教授单位:河北联合大学电气工程学院 论文评阅人:赵春祥研究员单

位:唐山亿立科技开发有限公司 王福斌高工单位:河北联合大学电气工程学院 论文答辩日期:2014年3月3日答辩委员会主席:赵春祥研究员 关键词:微量石油类有机物;三 维荧光光谱技术;平行 因子分析法;成分检测 唐山河北联合大学 2014年3月

Study of Detection Method of Water Quality Organic Based on Three-Dimensional Fluorescence Spectra Technology Dissertation Submitted to Hebei United University in partial fulfillment of the requirement for the degree of Master of Science in Engineering by Zhou Yan (Control Theory and Control Engineering) Supervisor: Professor Chen Zhikun March, 2014

土壤有机质分解和转化

土壤有机质如何分解和转化 土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用。土壤有机质是指存在于土壤中所有含碳的有机物质,包括土壤中各种动物、植物残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分有机物质组成。原始土壤中微生物是土壤有机质的最早来源。随着生物的进化和成土过程的发展,动物、植物残体称为土壤有机质的基本来源。自然土壤经人为影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等有机物质。 土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种。新鲜有机质和半分解有机质,约占有机质总量的10%~15%,易机械分开,是土壤有机质的基本组成部分和养分来源,也是形成腐殖质的原料。腐殖质约占85%~90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质,也是土壤肥力水平的重要标志之一。耕作土壤表层的有机质含量通常<5%,一般在1%~3%之间,一般把耕作层有机质含量>20%——有机质土壤,耕作层有机质含量<20%——矿质土壤。 一、土壤有机质组成 土壤有机质由元素和化合物组成。 1、元素组成 主要元素组成是c、h、o、n,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是p、s。 2、化合物组成 (1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解

产生co2和h2o,嫌气分解产生ch4等还原性气体。 (2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解。 (3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线菌分解。 (4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醚及苯中,抵抗化学分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解。 (5)含氮化合物,易被微生物分解。 (6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5%。主要成分有ca、mg、k、na、si、p、s、fe、al、mn等。 二、土壤有机质的分解和转化 进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过程与腐殖化过程 (一)矿质化 微生物分解有机质,释放co2和无机物的过程称矿化作用。这一过程也是有机质中养分的释放过程。土壤有机质的矿质化过程主要有以下几种。 1、碳水化合物的分解 土壤有机质中的碳水化合物如纤维素、半纤维素、淀粉等糖类,在微生物分

土壤有机质的七大作用

1、是土壤养分的主要来源 有机质中含有作物生长所需的各种养分,可以直接或简接地为作物生长提供氮、磷、钾、钙、镁、硫和各种微量元素。特别是土壤中的氮,有95%以上氮素是以有机状态存在于土壤中的。因为土壤矿物质一般不含氮素,除施入的氮肥外,土壤氮素的主要来源就是有机质分解后提供的。土壤有机质分解所产生的二氧化碳,可以供给绿色植物进行光合作用的需要。此外,有机质也是土壤中磷、硫、钙、镁以及微量元素的重要来源。 2、促进作物的生长发育 有机质中的胡敏酸,可以增强植物呼吸,提高细胞膜的渗透性,增强对营养物质的吸收,同时有机质中的维生素和一些激素能促进植物的生长发育。 3、促进改善土壤性质,结构 有机质中的腐殖质是土壤团聚体的主要胶结剂,土壤有机胶体是形成水稳性团粒结构不可缺少的胶结物质,所以有助于黏性土形成良好的结构,从而改变了土壤孔隙状况和水、气比例,创造适宜的土壤松紧度。土壤有机质的黏性远远小于黏粒的黏性,只是黏粒的几分之一。一方面,它能降低黏性土壤的黏性,减少耕作阻力,提高耕作质量;另一方面它可以提高砂土的团聚性,改善其过分松散的状态。 4、提高土壤的保肥能力和缓冲性能 土壤有机质中的有机胶体,带有大量负电荷,具有强大的吸附能力,能吸附大量的阳离子和水分,其阳离子交换量和吸水率比黏粒要大几倍、甚至几十倍,所以它能提高土壤保肥蓄水的能力,同时也能提高土壤对酸碱的缓冲性。 5、促进土壤微生物的活动 土壤有机质供应土壤微生物所需的能量和养分,有利于微生物活动。 6、提高土壤温度 有机质颜色较暗,一般是棕色到黑褐色,吸热能力强,可以提高地温。可改善土壤热状况。 7、提高土壤养分性

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家N.Monardes于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

溶解性有机质及对重金属迁移转化的影响综述

溶解性有机质及对重金属迁移转化的影响 摘要:溶解性有机质(Dissolved organic matter, DOM )由于含有羧基、羟基、羰基等活性功能团,是生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性。DOM 可以作为有机和无机污染物的载体,通过与水体、土壤和沉积物中的金属离子之间的离子交换吸附、络合、螯合、氧化还原等一系列反应,影响金属离子的吸附解吸,从而影响重金属的最终归宿。因此,具体介绍了DOM的来源、提取方法和种类组成以及不同来源DOM的性质的表征,同时综述了溶解性有机质对重金属的影响迁移转化的影响尤其是对土壤中重金属吸附的影响及其影响机理的研究进展。 关键词:溶解性有机质;重金属;迁移转化;影响 引言 重金属是指密度高于4.5g·cm-3(也有文章指出为5g·cm-3)的常见金属。重金属污染则是指因人类活动导致环境中的重金属或其化合物含量增加,超出正常范围并导致环境质量恶化。重金属污染主要来源于工业生产,如金属采矿和冶炼产生的废渣、废水、废气排入

环境;其次来源于交通和生活活动产生的污染,如汽车尾气和家庭燃煤产生的金属污染等。重金属污染与其他有机化合物的污染不同,大多数有机化合物可以通过自然净化作用降解消除危害。生物体内的各种酶和蛋白质能和重金属在发生强烈的相互作用失去活性。重金属也可能在人体的某些器官中富集会造成人体急性中毒、亚急性中毒、慢性中毒等,如果超过人体所能耐受的临界限度,对人体会造成很大的危害。 溶解性有机质((Dissolved organic matter, DOM)能结合对环境和生物有重要影响的Hg、Cu、Pb、Cd、Ni 等重金属,从而改变这些物质的迁移、生物可利用性[1,2]。从而越来越多的研究开始关注DOM 与重金属作用对金属迁移转化及其生物利用性的影响。在DOM 与金属离子的络合反应中,普遍认为低分子量DOM 易与重金属络合,高分子量DOM 则与重金属反应多形成难溶络合物[3]。研究同时表示DOM 主要通过氢键、范德华力、疏水作用等作用与金属离子以及其它污染物发生,形成溶解度不同的络合物,通过改变金属自由离子浓度来改变其迁移性[3-5]。从而可能影响重金属的迁移转化和生物利用性。 1. 溶解性有机质(DOM)的概念、来源和提取 1.1 DOM的概念 DOM 指能通过0.45 um的滤膜,具有不同结构及分子量大小的有机物(如低分子量的游离氨基酸、碳水化合物、有机酸等和大分子量的酶、多糖、酚和腐殖质等)的连续体或混合体。它是陆生生态系统和水生生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性[6]。其主要成分可以分为腐殖质类和非腐殖质类,腐殖质分为富里酸、胡敏酸和胡敏素等;非腐殖质主要包括为碳水化合物、碳氢化合物、脂肪族、醇类、醛类和含氮化合物等[9]。 DOM作为环境中许多有机、无机污染物的迁移载体或配位体,其自身在环境中的行为和性质直接影响这些污染物在环境中的毒性。通常认为,DOM中移动性强的组分能够提高污染物在介质中的运移能力;反之,如果DOM在迁移过程中易被介质吸附固定,则可为污染物提供吸附位点,从而降低了与其相结合的污染物的迁移性或活性[10]。 因此,溶解性有机质DOM对于重金属的迁移转化(尤其土壤和沉积物中的重金属)有很大的影响作用。 1.2 DOM的来源 在自然生态系统中,DOM主要来自植物凋落物、根系分泌物和微生物体的分解、渗滤、腐殖化等。在农业生态系统中,DOM除上述来源外,施用的外源有机物料(如:还田秸秆、

不同生态类型水体溶解性有机质差异研究摘要

摘要 溶解性有机质(DOM)是水体的一个重要的组成部分,在水体化学和生物过程中起着十分重要的作用。通过对太湖,三峡库区,及高原湖泊的对比研究分析,可以发现(1)以太湖为例长江中下游的生态湖区的DOM来源和分类成分,东部湖区和湖心区因受周围影响较小,水质相对较好,DOM来源以内源为主,蛋白质含量和多糖类物质含量明显较多;北部湖区的入湖河流和竺山湾湖区其DOM含有的羧基和芳香族类物质较多,类腐殖酸物质含量不明显。(2)三峡库区内源输入明显表现为类富里酸和类腐殖酸,库区水体类腐殖酸荧光强度变化与类富里酸的变化具有一定的正相关性;同时库区类蛋白质的含量明显其原因与陆源污染物排入相关。(3)高原湖泊以红枫湖和百花湖为例的生态湖区DOM成分有明显的芳构化,羧基和芳香族类物质较多,DOM来源以陆源输入为主,腐殖酸类物质明显,荧光峰强受到深度影响。 关键词:水体;生态类型;溶解性有机质;荧光分析;

Abstract Dissolved organic matter (DOM) is an important component in water body solution, it have vital function on water body chemical and biological process.Based on the analysis of the Three Gorges Reservoir area, Taihu, comparative study and plateau lakes, can be found that (1)Tai Lake in the Yangtze River downstream ecological example DOM source and classification component, East Lake and lake center due to peripheral impact is small, the water quality is relatively good, DOM sources to endogenous, protein content and polysaccharide content was more; the Lake District in the north of the river into the lake and Zhushan Bay Lake DOM containing carboxyl and aromatic substances, humic acids is not obvious. (2) in the Three Gorges Reservoir endogenous input is evident to the class of fulvic acid and humic acid, humic acid in water and changes in fluorescence intensity of fulvic acid has a positive correlation; at the same time, content of protein was the cause of reservoir area and discharge of land-sourced pollutants related.(3)Plateau lakes in Hongfeng Lake and Baihua Lake as an example of the ecological lake DOM is organic component of aromatic material as the main body of the present obvious aromatization, carboxyl and aromatic substances, DOM source is dominated by terrestrial input, humic acids obviously, fluorescence peak intensity by the depth of the impact. Key words: water body; ecological types; dissolved organic matter; fluorescence analysis;

土壤中有机质和全氮的空间分布规律

长丰县土壤中有机质和全氮的 空间分布规律研究 作者:指导老师:胡宏祥 (安徽农业大学资源与环境学院 2004级农业资源与环境合肥 230036) 摘要:探明土壤有机质和全氮的空间分布,是科学配方施肥的重要依据。通过对长丰县8个乡镇土壤样品的化验测定,并对样品中有机质和全氮的含量进行统计分析。结果表明,长丰县土壤中全氮含量属中等水平,变异系数为中等程度变异;有机质含量偏低,变异系数也为中等程度变异。同时,该县土壤有机质和全氮含量的空间差异显著,有机质和全氮呈显著的正相关性,说明增加土壤有机质不仅能改良土质,而且能增加土壤肥力。 关键词:长丰县土壤全氮有机质空间分布 1.引言 我国要以占世界不足7%的耕地,养活占世界近22%的人口,为满足如此众多的人口对物质不断增加的需求,必须在有限的耕地上生产更多的产品[1]。要想在有限的耕地上生产更多的产品,增施化肥是提高农作物产量的重要措施。但是,盲目增施化肥已导致地区间土壤养分差异变大。在我国经济发达地区化肥施用明显过量,平均达339kg/hm2,是全国平均用量(262 kg/hm2)的1.29倍,而经济发展相对落后地区施肥量则仅为178kg/hm2,是全国平均的67.8%[2]。其结果是一些地区使有限的肥料资源大量浪费,且导致环境污染。为了解决这些问题,我国在上个世纪就引入了“精准农业”理念[3],并以北方土壤及种植管理模式为对象,开展了大量有关土壤养分状况的研究,对作物实施平衡施肥并在贵州、甘肃、广西、湖南、湖北、江西、四川等省份都得到实施,带来了经济、生态和社会效益[4]。 测土配方施肥是以土壤测试和肥料田间试验为基础,根据作物需肥规律,土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用数量、施肥时期和施用方法。通俗地讲,就是在农业科技人员指导下科学施用配方肥。测土配方施肥技术的核心是调节和解决作物需肥与

土壤全氮的测定—凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

土壤全氮测定方法

土壤全氮的测定—凯氏定氮法 一、目的 1、掌握土壤中全氮含量测定的方法。 2、了解测定土壤全氮的原理 二、原理 土壤中的氮大部分以有机态(蛋白质、氨基酸、腐殖质、酰胺等)存在,无 机态(NH 4+ 、NO 3 -、NO 2 -)含量极少,全氮量的多少决定于土壤腐殖质的含量。 土壤中含氮有机化合物在还原性催化剂的作用下,用浓硫酸消化分解,使其中所含的氮转化为氨,并与硫酸结合为硫酸铵。 给消化液加入过量的氢氧化钠溶液,使铵盐分解蒸馏出氨,吸收在硼酸溶液中,最后以甲基红-溴甲酚绿为指示剂,用标准盐酸滴定至粉红色为终点,根据标准盐酸的用量,求出分析样品中的含氮全量。 三、试剂: 1、混合催化剂:称取硫酸钾100g、五水硫酸铜10g、硒粉1g。均匀混合后研细。贮于瓶中。 2、比重1.84浓硫酸。 3、40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶解。 4、2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入2.5ml混合指示剂。(按体积比100:0.25加入混合指示剂) 5、混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 6、0.01的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至1000ml,用基准物质标定之。 四、操作步骤 1、消煮:在分析天平上准确称取通过60号筛的风干土0.5000g左右,移入干燥的凯氏瓶中,加入1.5g的还原性混合催化剂。用注射器加入4ml浓硫酸,放到通风柜内的消煮器上消煮1.5h左右。直至内容物呈清彻的淡蓝色为止。 2、蒸馏:消煮完毕后冷却。 将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2%的硼酸20ml作吸收剂),然后打开冷凝器中的水流,进行蒸馏。在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min,将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。 3、滴定:用0.01当量的盐酸标准溶液滴定至红色为止。记录所消耗的盐酸标准溶液的体积。 4、空白:除不加试样外其余步骤完全相同。 五、计算: 土壤含氮量(%)=(V-V )*N*0.014*100/W

三维荧光数据主成分分析

三维荧光数据主成分分析 在文献上看到有对三维荧光数据矩阵进行主成分分析,然后用主成分得分进行投影的内容,不知道对于一个三维荧光光谱(数据为一个两维的数据矩阵)是怎么得到主成分得分的。 以前一般做的都是针对一维数据的主成分分析,一个样本的数据就是一个行向量,把N个样本放在一起组成一个二维矩阵然后进行主成分分析。 对于二维的不知道是什么情况,是怎么得到单个三维荧光光谱的主成分得分的 三维荧光光谱数据矩阵行向量代表某个激发波长下的荧光发射光谱,列向量代表某个发射波长下的荧光激发光谱,样品中的复杂组分在多种激发,发射光谱条件下会有不同特性,对这个数据矩阵进行主成分分析等化学计量算法,就可分析其中的复杂组分了。 以前你做的是多个样品组成的数据矩阵,而三维荧光光谱数据是单个样品在多种激发,发射条件下的荧光强度数据矩阵,方法应该类似。 所谓三维荧光光谱,其实只是一个三维形式的展示,其数据仍为一个二维的数据矩阵。一些常规的化学计量学程序(如The Unscrambler 等)都有固定的PCA功能,将你的数据转成两维的数据矩阵后,直接输入,再依指示操作,就可得到主成分。 我认为和网友以前所做的是一样的,你所说的把N个样本放在一起组成一个二维矩阵,其实已经是一个三维展示(包括样本变量,波数或波长,强度三个变量)。 用Singular Value Decomposition,再加上基于模型的数据拟合可以实现。这是比较成熟的方法。 三维荧光光谱(即激发发射矩阵荧光光谱)技术,应用于一个样品所获得数据,虽可以三维显示,但本质为矩阵响应数。 对于这样的矩阵数据,应用一般的矩阵分析方法,如主成分分析或奇异值分解方法就可得到主成分数,但须注意其物理意义,并注意估计时,最好利用“零组分区”第一主成分的结果来做比较。 当三维荧光光谱(即激发发射矩阵荧光光谱)技术应用于多样本或多试验条件时,所得的响应值为三维及更高维数据阵。 而三维数阵的主成分数或成分数估计,国内外已有许多篇论文涉及这一内容,请上网搜索吴海龙简介资料。

精选-土壤有机质分解和转化

土壤有机质如何分解和转化

土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用。土壤有机质是指存在于土壤中所有含碳的有机物质,包括土壤中各种动物、植物残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分有机物质组成。原始土壤中微生物是土壤有机质的最早来源。随着生物的进化和成土过程的发展,动物、植物残体称为土壤有机质的基本来源。自然土壤经人为影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等有机物质。 土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种。新鲜有机质和半分解有机质,约占有机质总量的10%~15%,易机械分开,是土壤有机质的基本组成部分和养分来源,也是形成腐殖质的原料。腐殖质约占85%~90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质,也是土壤肥力水平的重要标志之一。耕作土壤表层的有机质含量通常<5%,一般在1%~3%之间,一般把耕作层有机质含量>20%——有机质土壤,耕作层有机质含量<20%——矿质土壤。 一、土壤有机质组成 土壤有机质由元素和化合物组成。 1、元素组成 主要元素组成是c、h、o、n,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是p、s。 2、化合物组成 (1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解产生co2和h2o,嫌气分解产生ch4等还原性气体。

(2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解。 (3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线菌分解。 (4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醚及苯中,抵抗化学分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解。 (5)含氮化合物,易被微生物分解。 (6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5%。主要成分有ca、mg、k、na、si、p、s、fe、al、mn等。 二、土壤有机质的分解和转化 进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过程与腐殖化过程 (一)矿质化 微生物分解有机质,释放co2和无机物的过程称矿化作用。这一过程也是有机质中养分的释放过程。土壤有机质的矿质化过程主要有以下几种。 1、碳水化合物的分解 土壤有机质中的碳水化合物如纤维素、半纤维素、淀粉等糖类,在微生物分泌的糖类水解酶的作用下,首先水解为单糖:

土壤全氮测定方法

一、土壤全氮的测定—凯氏定氮法 一、目的 1、掌握土壤中全氮含量测定的方法。 2、了解测定土壤全氮的原理 二、原理 土壤中的氮大部分以有机态(蛋白质、氨基酸、腐殖质、酰胺等)存在,无 机态(NH 4+ 、NO 3 -、NO 2 -)含量极少,全氮量的多少决定于土壤腐殖质的含量。 土壤中含氮有机化合物在还原性催化剂的作用下,用浓硫酸消化分解,使其中所含的氮转化为氨,并与硫酸结合为硫酸铵。 给消化液加入过量的氢氧化钠溶液,使铵盐分解蒸馏出氨,吸收在硼酸溶液中,最后以甲基红-溴甲酚绿为指示剂,用标准盐酸滴定至粉红色为终点,根据标准盐酸的用量,求出分析样品中的含氮全量。 三、试剂: 1、混合催化剂:称取硫酸钾100g、五水硫酸铜10g、硒粉1g。均匀混合后研细。贮于瓶中。 2、比重1.84浓硫酸。 3、40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶解。 4、2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入2.5ml混合指示剂。(按体积比100:0.25加入混合指示剂) 5、混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 6、0.01的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至1000ml,用基准物质标定之。 四、操作步骤 1、消煮:在分析天平上准确称取通过60号筛的风干土0.5000g左右,移入干燥的凯氏瓶中,加入1.5g的还原性混合催化剂。用注射器加入4ml浓硫酸,放到通风柜内的消煮器上消煮1.5h左右。直至内容物呈清彻的淡蓝色为止。 2、蒸馏:消煮完毕后冷却。 将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2%的硼酸20ml作吸收剂),然后打开冷凝器中的水流,进行蒸馏。在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min,将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。 3、滴定:用0.01当量的盐酸标准溶液滴定至红色为止。记录所消耗的盐酸标准溶液的体积。 4、空白:除不加试样外其余步骤完全相同。 五、计算: 土壤含氮量(%)=(V-V )*N*0.014*100/W

三维荧光光谱分析法【共2页】

三维荧光光谱分析法 三维荧光光谱分析法【内容摘要】 荧光强度与激发波长kex、发射波长kem、衰变时间(t)、荧光寿命(s)、吸光系数(e)、偏振度(p)及待测组分浓度(c)等因素有关。 荧光强度与激发波长Kex、发射波长Kem、衰变时间( t)、荧光寿命(S)、吸光系数(E)、偏振度(P ) 及待测组分浓度(c) 等因素有关。若主要研究荧光强度与Kex 和Kem 的关系, 就构成了Kex2K em2F 三维荧光光谱(EEM ) , EEM 光谱技术简化了复杂组分繁琐的分离过程, 提高了荧光分析的灵敏度、选择性和实用性, 还可进行指纹分析和技术鉴定。许金钩小组应用EEM 技术和方法,获得了生物大分子、有机小分子荧光探针、以及荧光探针分子与生物大分子相互作用的大量信息, 并运用Mon te2Carlo 数学模型对EEM 进行总体积分,建立了EEM 总体积分方法, 用于样品中有机物质和药物分子的定量分析, 获得满意的结果。除了使用EEM 技术和方法外, 还可以根据实际需要, 选择荧光衰变时间( t)、偏振度(P )、荧光寿命(S) 等参数,构成Kex2K em2x (待定参数) 三维荧光光谱, 从不同的角度出发来提高荧光分析的灵敏度、选择性。这种分析技术不仅被用来进行物质的定性和定量分

析,而且被用于测定生物大分子的形状、大小、构象, 以及固态物质、生物大分子与有机分子和金属离子相互作用等的研究, 在临床医学、环境检测、法医鉴定、生命科学以及有序介质中生物大分子荧光探针光谱特性的研究等方面, 发挥着极为重要的作用。但由于多维荧光光谱技术中需要处理大量的实验数据,因此在研制仪器的同时, 还要开发许多有实用价值的数学处理方法和多维光谱软件120 世纪70 年代发展起来的同步导数荧光技术在混合物的连续测定中发挥着重要作用, 这一方法的特点是同时扫描激发波长和发射波长, 并对得出的图谱进行微分处理, 使容易重叠的波峰彼此完全分开, 便于得出可靠的测量结果。有人对人血尿中temopo rt in2po lyethylene glyno l 共轭物分别用HPLC、C I 和荧光光谱分析法进行测定, 发现荧光光谱分析法是其中最简便、迅速、灵敏的分析方法, 新一代荧光指示剂如酪氨酸磷酸化胰岛素荧光指示剂的出现等,预示药物荧光分析法有着远大的发展前景。今后,药物荧光分析法研究的热点问题很可能是: 继续发扬传统药物荧光分析法的优点, 探索并提出常规药物荧光分析新方法; 将荧光分析仪器与计算机技术紧密结合, 研制出自动化程度和灵敏度高, 获得信息和处理信息速度快的荧光分析仪器; 发现和合成选择性优良的药物荧光试剂; 将荧光光谱分析法与其他各种现代化的分析仪器和方法联合使用, 以更准确、更灵敏、更专一和更低检测限地获得药物及药物与生物大分子相互作用的有关信息。

土壤有机质与氮磷钾的相关性

土壤有机质与氮磷钾的相关性 摘要:以庐山具垂直地带性分布的土壤为研究区,选择典型剖面,测定了山地棕壤、山地黄棕壤、赛阳红壤三处土壤的各种理化性质。本文主要讨论有机质与氮、磷、钾的影响关系和相关性浅析。主要运用相关性分析来说明结果。 关键词:土壤有机质;氮磷钾;空间相关性 作为土壤重要组成部分和代表一个主要碳库的土壤有机质在生态系统中扮演了一个十分重要的角色。土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它能使土壤具有保肥力和缓冲性,还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标[1]。因此,研究有机质对提高土壤肥力,了解全球碳循环有重要意义。有机质含量能影响到土壤的许多性质,其中包括供给氮、磷、钾和微量元素的能力[2]。 1材料与方法 1.1研究区概况 本次实验以庐山采集回的土壤为实验用土。庐山位于江西省北部九江市郊,位于东经115°5’~116°10’,北纬29°28’~29°45’。庐山是由断裂抬升而形成的断块山,主峰大汉阳峰海拔1 473.80m,相对高差1 440m;地处我国中亚热带北缘,属亚热带季风湿润气候;降水量1 833.50mm左右,比山下多500mm;由于山地气温随海拔增高而降低,降水随海拔增高而增多,水热状况随高度的变化导致气候上的差异,根据积温的不同,庐山的气候出现相当于从亚热带-暖温带-温带的垂直变化,生物、土壤的分布也随气候而呈规律的垂直变化;主要植被类型有(从下至上):常绿阔叶林、亚热带竹林、落叶常绿阔叶混交林、落叶阔叶林、亚热带针叶林、灌丛、山地草甸;母质在山区以坡积残积物为主,在海拔900~1 200m 处分布着网纹红土,在湖滨及河谷地区主要是第四纪近代沉积物[3]。 1.2土壤采集与分析 我们在庐山的3处采集了典型土样,土样基本情况如下:

三维荧光光谱的简单介绍光谱

一、三维荧光光谱的基本定义 三维荧光光谱(EEM)是将荧光强度以等高线方式投影在以激发光波长和发射光波长为纵横坐标的平面上获得的谱图,图像直观,所含信息丰富。 三维荧光光谱(EEMs)能同时获得激发和发射波长信息,且因有机物种类和含量不同而各异,具有与水样(溶液)一一对应的特点,就像人的指纹具有唯一性一样,所以被称为水的“荧光指纹”。 三维荧光光谱仪可快速检测液体中的有机化合物(DOM),每个样品仅需数十秒或者几分钟,即可及时识别液体中的有机物成分。 二、原理 由于三维荧光光谱具有与物质组成成分一一对应的光谱特性,根据此特性三维荧光光谱可广泛应用于水质检测、食品检测等领域。 能表征水中(特别是废水)有机物含量和性质的水质指标一直是水质研究领域的重要内容之一。传统表征水质有机污染的指标如化学需氧量(COD)和生化需氧量(BOD)的测量需耗时数小时甚至数天,不能及时反映水质变化,而且只能反映有机物总量,不能展现有机物成分,例如无法区分易降解、可降解和不易降解的有机物或者降解速率快和慢的有机物。这些不足使得污水处理设施的设计和运行长期只能依赖经验。三维荧光光谱为这些问题解决提供了近乎完美的方案。 三、应用领域 水质分析应用一:河水/湖水水质 溶解性有机质是(DOM)主要是由含氧、氮和硫的氨基酸、脂肪族、芳香族等功能团组成的异质碳氢化合物,遍存在于湖泊、河流等自然水体中,对污染物的溶解、吸附解吸、毒性以及迁移转化特性影响非常大,影响着水生环境中生化性质,被用来表征水质特征。三维荧光光谱研究的荧光溶解性有机物(FDOM)或者有色溶解有机(CDOM)是DOM的重要组成部分,其重要组成部分及其三维荧光发光峰位如表1所示 表1 DOM各类物质对应的特征峰

土壤有机质高光谱特征及其反演研究

Vol. 37 No. 4Aug2019上海交通大学学报(农业科学版)JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (AGRICULTURAL SCIENCE )第37卷第4期 2019年8月文章编号:1671-9964(2019)04-0037-08 DOI : 10. 3969/J. ISSN. 1671-9964. 2019. 04. 007 土壤有机质高光谱特征及其反演研究 吴 裕12,申广荣123,刘 璐12,支月娥13 (1.上海交通大学农业与生物学院,低碳农业研究中心,上海200240; 2.国家林业局上海城市森林生态系统国家 定位观测研究站,上海200240; 3.农业部都市农业重点实验室,上海200240) 摘 要:具有精细的光谱分辨率,可获取地物纳米级连续光谱信息的高光谱技术以其简便、快速、 精度高和无损等优势成为获取土壤有机质(soil organic matter,SOM )含量的重要手段,在精确农 业发展中发挥着重要作用%本文阐述了高光谱反演土壤有机质的机理,概述了土壤有机质含量的 光谱反射特征,包括不同土壤类型、不同土壤有机质含量的光谱响应波段,以及土壤有机质含量的 光谱反演方法和模型的研究进展。进一步分析了土壤有机质光谱特征研究中存在的问题并对发展 趋势进行了展望和分析,以期为以后的研究提供一定的参考。 关键词:土壤有机质;高光谱;遥感;特征波段;反演方法 中图分类号:S15 文献标识码:A Hyperspectral characteristics of soil orga n ic matter and in v ers i o n methods WUYu 1,, SHEN Guang-rong 123, LIU Lu 1,, ZHI Yue-e 1, (1. Research Center for Low-Carbon Agriculture,School of Agriculture and Biology ,Shanghai Jiaotong University, Shanghai 200240,China ; 2. Shanghai Urban Forest Ecosystem Research Station of National Positioning and Observation,State Forestry Administration,Shanghai 200240,China ; 3. Key Laboratory of Urban Agriculture (South ),MinistryofAgriculture ,Shanghai200240,China ) Abstract : Hyperspectral technology is playing an important role in precision agriculture. With high spectral resolution and continuous spectral information of objects in nanoscale, it has become a reliable means of monitoringsoilorganic ma t er (SOM )foritssimplicity ,rapidity ,highprecisionandnon-destructiveness measurement. This article explains the mechanism of predicating SOM content with hyperspectral technology and summarizes the spectral reflection characteristics of SOM ? including the spectral sensitive bandOofdi f erentOoiltypeO &di f erentSOM content &andthe modeling methodOin predicating SOM< Furthermore it points out the current problems in the study of hyperspectral characteristics of SOM and showsthedevelopmenttrendofthistechnologyinordertoprovidesomereferenceforfutureresearch< Key words : soil organic matter ; hyperspectral soil ; remote-sensing ; sensitive band ; modeling method 土壤有机质(soil organic matter,SOM )是指存 在于土壤中的含碳有机物质,主要包括动物、植物残 体和微生物体及其分解或合成的各种有机质,是土 壤碳库的重要组成部分土壤碳库是陆地生态系 统最大的碳库,其中土壤有机质作为土壤碳库主要 的存在形式,对全球碳循环的平衡起着重要作用2) 收稿日期:2018-12-11 基金项目:国家重点研发计划(2017YFD0800204);上海交大农工交叉项目(Agri-X2015004) 作者简介:吴裕(1994-),男,硕士生,研究方向:农业高光谱遥感,email :1973613621@sjtu. edu. cn ; 申广荣(1964-)为本文通讯作者,女,博士,副教授,研究方向侬业遥感,email :sgrong@sjtu. edu cn

相关文档
相关文档 最新文档