文档库 最新最全的文档下载
当前位置:文档库 › 加氢脱硫催化剂的研究

加氢脱硫催化剂的研究

加氢脱硫催化剂的研究
加氢脱硫催化剂的研究

环境与化学工程学院

加氢脱硫催化剂的研究

1.概述 (1)

2.加氢脱硫催化剂 (1)

2.1加氢脱硫催化剂的介绍 (1)

2.2 负载型加氢脱硫催化剂的研究进展 (2)

2.2.1 负载型加氢脱硫催化剂的制备 (2)

2.2.2 助剂 (3)

2.2.3 载体 (3)

2负载型深度加氢催化剂 (4)

3.1 深度加氢改进 (4)

3.2载体的改进 (4)

结束语 (5)

加氢脱硫催化剂的研究

摘要:

介绍了加氢脱硫催化剂的现状,发展及所应用载体的种类和研究现状,以及在汽油脱硫中的运用。分析了不同载体所具有的各自的优缺点,对目前载体的各种研究进行了综述,同时也展望了未来载体的发展方向。

关键字:加氢脱硫催化剂载体

1.概述

近几年来,环保法规对车用燃料中的硫含量要求日益苛刻,并且将来有更加严格的趋势。欧洲汽、柴油标准及世界燃油规范对汽、柴油中的硫含量要求达到50×10-6甚至无硫。另一方面,石油工业面临的更大问题是一些石油输出国的重油中的杂质含量较高,而且二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)等成分较难加氢脱除,这些因素都对加氢脱硫催化剂提出了更高的要求。这意味着必须对加氢脱硫催化剂进行更广泛和更深入的研究,不断开拓新型催化剂,以满足工业生产的实际需要。但新型催化剂的研制比较困难,活性组分性能的提高空间不大,而对催化剂载体进行改性即可大大改善催化剂的活性,因此,众多的目光均集中于对加氢脱硫催化剂载体的研究。传统加氢脱硫是基于一定压力和温度下,单一组分载体进行催化加氢,使石油馏份中的硫以H2S的形式除去,单一组分载体主要集中在Al2O3、TiO2、ZrO2、活性炭和BaTiO3。

2.加氢脱硫催化剂

2.1加氢脱硫催化剂的介绍

加氢脱硫精制催化剂的活性组分一般是过渡金属元素如Mo、Co、Ni、Pt 和Pd 等及其化合物。这些金属元素都具有未充满的d电子轨道,且具有体心或面心立方晶格或六方晶格,无论是从电子特性还是几何特性上均具备作为活性组分的条件。由于这些金属元素间存在协同效应,几乎所有的加氢精制催化剂都由二元或多元活性组分组合而成。最常用的加氢精制催化剂金属组分的最佳搭配为Co-Mo、Ni-Mo、Ni-W,三组分的有Ni-W-Mo、Co-Ni-Mo等,选用哪种金属组分搭配,取决于原料的性质及要去达到的

主要目的。

加氢脱硫催化剂制备过程大多是将金属组分直接浸渍于γ- Al2O3载体上,然后进行干燥、焙烧即得氧化态的催化剂。使用时需先进行预硫化将其转化为硫化态才具有较高的催化活性。由于负载型催化剂中的载体没有活性或活性很低且载体所占比例很大,从而导致负载型催化剂的催化活性不是很高,难以满足生产超低硫柴油(硫含量低于50μg/g或30μg/g,甚至10μg/g)的要求,所以人们又逐渐把注意力转移到另一类全新的催化剂上,即非负载型加氢脱硫催化剂或称为Bulk催化剂。下面分别就负载型和非负载型加氢脱硫催化剂作一简要的介绍。

2.2负载型加氢脱硫催化剂的研究进展

负载型加氢脱硫催化剂已经工业应用有几十年的时间了。显然,随着运输燃料质量标准的提高和环保的需要,人们对于加氢催化剂的性能要求越来越高,于是便寻求进行各种改进,以满足油品生产的需求。经过几十年的努力,已取得了很多的进展。下面就从制备方法、助剂、载体等方面做简要的叙述。

2.2.1负载型加氢脱硫催化剂的制备

催化剂的制备条件(如浸渍方法、金属担载量、活化过程等)对HDS催化剂中的结构、形态和化学状态有一定的影响。

HDS催化剂通常用浸渍法制备,常用的浸渍法有等体积浸渍法和过量浸渍法。金属组分可以通过共浸渍或分布浸渍引入。对每种金属组分,还包括一次性引入法和阶段引入法。Tops?e和van V een 等人通过穆斯堡尔谱发现,由共浸渍法和分布浸渍法制备的Co-Mo/ Al2O3中,硫化后得到的Co相基本相同。还有许多研究结果表明,在浸渍液中加入螯合剂可提高催化剂的分散度和HDS活性。另外用硫代杂多阴离子有机金属络合物和含有硫和活性金属的金属簇合物代替无机盐浸渍制备催化剂逐渐引起了研究者的兴趣,因为在用以上化合物制备催化剂时,能比较准确的控制助剂与的比例和催化剂活性组分的分布,这样制备的催化剂硫化时很少进行结构重组。从理论上讲,可以得到较为完好的表面结构,减少助剂原子流失到载体上。

对于HDS催化剂,硫化是一个非常重要的步骤。硫化过程除可将焙烧后的氧化态催化剂转化为具有活性的硫化态催化剂外,对此催化剂的结构也有很大的影响。硫化温度是硫化过程的重要参数。从EXAFS结果[15]可以很直观的看到,随着硫化温度的增加,MoS2棱边数量减少,在Co含量较高的区域,Co还会析出生成Co9S8。Tops?e等人还发现高温硫化会促使I型Co-Mo-S相转变为II型

Co-Mo-S相,转化温度取决于Co/Mo比,高的Co/Mo比有利于I型Co-Mo-S相向II型Co-Mo-S相转变。

2.2.2助剂

HDS催化剂常用的助剂为P、F、B等,目的是调节载体的性质,减弱金属与载体间强的相互作用,改善催化剂的表面结构,提高金属的可还原性,促使活性组分还原为低价态,以提高催化剂的催化性能。

硼与Al2O3反应生成Al-O-B键,B-OH的酸强度比Al-OH高,因而B的引入增加了载体的表面酸度。此外B的电负性比Al的大,因而Mo7O246-与B3+作用比Al3+的强,使八面体Ni2+或Co2+增多。在载体表面有更多的CoMoO或NiMoO,产生更多的加氢脱硫和加氢活性中心,从而提高催化剂的活性。

加氟能提高载体的酸性,增强催化剂的裂化和异构化能力,提高C-N、C-S、C-O 氢解反应活性,同时降低Al2O3的等电点,改善金属分布,提高催化剂的加氢活性。当F的含硫低时,F可以取代Al2O3表面羟基,抑制四面体Mo的形成,从而有利于八面体Mo的生产。Kwak等人认为F能促进苯环的加氢,CS键的断裂以及苯环上甲基的转移。此外加入F后降低Al2O3等电点,增加了Mo的分散度,提高了加氢性能。

2.2.3载体

加氢脱硫催化剂的载体用来担载并均匀分散活性组分,提供反应场所并起着股价支撑的作用,是催化剂的重要组成部分。载体的表面性质及其与金属活性组分的相互作用会影响金属活性组分的分散度和可硫化度。对于负载型过渡金属硫化物催化剂来说,分散度越大活性越高。一般认为,载体与金属组分的相互作用弱有利于活性组分的完全硫化,因而反应活性高。

由于Al2O3具有良好的机械性能、再生性能、优异的结构且价格低廉,被广泛地用作工业催化剂的载体。但Al2O3与过渡金属氧化物之间存在强的相互作用,这种强相互作用限制了金属活性组分催化活性的进一步提高。

活性炭与金属氧化物之间的相互作用较弱,易于生产较高活性的II型Co-Mo-S相,大部分的Co为八面体。许多研究结果表明,与传统的Al2O3载体的催化剂相比,活性炭担载的催化剂具有活性高和结焦第的优点。但活性炭微空多,不适宜大分子催化反应,而中空活性炭压碎强度低,表面积也低。

SiO2表面羟基和氧桥因处于饱和状态而呈中性,使SiO2与活性组分间相互作用很弱,不利于活性组分的分散,制约了SiO2的应用。但也有文献报道,在低负载量的情

况下,MoS2/SiO2活性高于相应以Al2O3作载体的催化剂。

2负载型深度加氢催化剂

3.1深度加氢改进

催化剂改进主要通过以下途径:添加钾、镁、惚等金属组分提高催化剂活性或抗毒化等;添加非金属助剂提高活性组分分散度和催化剂比表面积等;此外通过加入有机酸如柠檬酸等也可强化活性组分分散度。孙淑玲等网采用化学处理方法使催化剂的活性相类型发生变化,由Co-MO-Ⅰ类相变为Co-Mo-Ⅱ类相,提高了催化剂上活性位的本征活性,从而提高了催化剂的加氢脱硫活性。相对而言,非金属助剂在这方面的研究应用较多。

3.2载体的改进

( 1 对γ—A L2O3进行进一步研究,提高其表面积、孔结构等

( 2 )使用二氧化钦、二氧化错、活性炭、分子筛、碳纳米管、沸石、氧化镁等制作载体代替γ—A L2O3。

( 3 )在γ—A L2O3中添加T iO2、SiO2等构成复合载体,以提高催化剂活性组分的分散度或活性结构,从而提高催化剂的活性。

在上述载体中,二氧化钦单独制作载体或与γ—AL2O3、SiO2构成复合载体研究较多。二氧化钦载体提高催化剂HDS活性的理由如下:①二氧化钦在加氢脱硫反应中充当电子促进剂,尤其是Ti3+、作为供电子基团的存在,使电子更加容易从载体转移到Mo 3d轨道,从而降低Mo-S键能,提高催化剂活性;②T iO2/γ—AL2O3,复合载体中,二氧化钛的加入消除了AL2O3表面不起作用的经基,同时减少铝氧化物四面体结构,因此有利于硫化活性成分的增多,使催化剂活性提高。但二氧化钦固有的比表面小、热稳定性差使二氧化钦的制备方法变得更加重要。

结束语

随着环境的日益恶化,人们环保意识的不断增强,政府立法对排放在大气中的尾气标准也越来越苛刻,对石油产品的质量标准的要求也越来越高,即允许的S、N含量越来越低。因此,开发新型高效的深度HDS催化剂成为解决这一难题的最为有效和经济的手段。

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

加氢脱硫催化剂的研究

环境与化学工程学院 加氢脱硫催化剂的研究 1.概述 (1) 2.加氢脱硫催化剂 (1) 2.1加氢脱硫催化剂的介绍 (1) 2.2 负载型加氢脱硫催化剂的研究进展 (2) 2.2.1 负载型加氢脱硫催化剂的制备 (2) 2.2.2 助剂 (3) 2.2.3 载体 (3) 2负载型深度加氢催化剂 (4) 3.1 深度加氢改进 (4) 3.2载体的改进 (4) 结束语 (5)

加氢脱硫催化剂的研究 摘要: 介绍了加氢脱硫催化剂的现状,发展及所应用载体的种类和研究现状,以及在汽油脱硫中的运用。分析了不同载体所具有的各自的优缺点,对目前载体的各种研究进行了综述,同时也展望了未来载体的发展方向。 关键字:加氢脱硫催化剂载体 1.概述 近几年来,环保法规对车用燃料中的硫含量要求日益苛刻,并且将来有更加严格的趋势。欧洲汽、柴油标准及世界燃油规范对汽、柴油中的硫含量要求达到50×10-6甚至无硫。另一方面,石油工业面临的更大问题是一些石油输出国的重油中的杂质含量较高,而且二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)等成分较难加氢脱除,这些因素都对加氢脱硫催化剂提出了更高的要求。这意味着必须对加氢脱硫催化剂进行更广泛和更深入的研究,不断开拓新型催化剂,以满足工业生产的实际需要。但新型催化剂的研制比较困难,活性组分性能的提高空间不大,而对催化剂载体进行改性即可大大改善催化剂的活性,因此,众多的目光均集中于对加氢脱硫催化剂载体的研究。传统加氢脱硫是基于一定压力和温度下,单一组分载体进行催化加氢,使石油馏份中的硫以H2S的形式除去,单一组分载体主要集中在Al2O3、TiO2、ZrO2、活性炭和BaTiO3。 2.加氢脱硫催化剂 2.1加氢脱硫催化剂的介绍 加氢脱硫精制催化剂的活性组分一般是过渡金属元素如Mo、Co、Ni、Pt 和Pd 等及其化合物。这些金属元素都具有未充满的d电子轨道,且具有体心或面心立方晶格或六方晶格,无论是从电子特性还是几何特性上均具备作为活性组分的条件。由于这些金属元素间存在协同效应,几乎所有的加氢精制催化剂都由二元或多元活性组分组合而成。最常用的加氢精制催化剂金属组分的最佳搭配为Co-Mo、Ni-Mo、Ni-W,三组分的有Ni-W-Mo、Co-Ni-Mo等,选用哪种金属组分搭配,取决于原料的性质及要去达到的

废催化剂项目可行性研究报告

废催化剂项目 可行性研究报告 xxx(集团)有限公司

废催化剂项目可行性研究报告目录 第一章基本情况 第二章建设背景及必要性分析第三章项目市场调研 第四章建设规模 第五章项目选址规划 第六章土建方案说明 第七章工艺技术分析 第八章项目环境影响情况说明第九章项目生产安全 第十章风险性分析 第十一章节能 第十二章项目实施进度 第十三章项目投资方案分析 第十四章项目经济收益分析 第十五章招标方案 第十六章综合评价结论

第一章基本情况 一、项目承办单位基本情况 (一)公司名称 xxx(集团)有限公司 (二)公司简介 未来,在保持健康、稳定、快速、持续发展的同时,公司以“和谐发展”为目标,践行社会责任,秉承“责任、公平、开放、求实”的企业责任,服务全国。 公司生产的项目产品系列产品,各项技术指标已经达到国内同类产品的领先水平,可广泛应用于国民经济相关的各个领域,产品受到了广大用户的一致好评;公司设备先进,技术实力雄厚,拥有一批多年从事项目产品研制、开发、制造、管理、销售的人才团队,企业管理人员经验丰富,其知识、年龄结构合理,具备配合高端制造研发新品的能力,保障了企业的可持续发展;在原料供应链及产品销售渠道方面,已经与主要原材料供应商及主要目标客户达成战略合作意向,在工艺设计和生产布局以及设备选型方面采用了系统优化设计,充分考虑了自动化生产、智能化节电、节水和互联网技术的应用,产品远销全国二十余个省、市、自治区,并部分出口东南亚、欧洲各国,深受广大客户的欢迎。

优良的品质是公司获得消费者信任、赢得市场竞争的基础,是公司业 务可持续发展的保障。公司高度重视产品和服务的质量管理,设立了品管部,有专职质量控制管理人员,主要负责制定公司质量管理目标以及组织 公司内部质量管理相关的策划、实施、监督等工作。 (三)公司经济效益分析 上一年度,xxx投资公司实现营业收入8770.70万元,同比增长21.64%(1560.36万元)。其中,主营业业务废催化剂生产及销售收入为8277.92万元,占营业总收入的94.38%。 根据初步统计测算,公司实现利润总额2187.22万元,较去年同期相 比增长355.41万元,增长率19.40%;实现净利润1640.41万元,较去年同期相比增长349.15万元,增长率27.04%。 上年度主要经济指标

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

催化剂项目可行性报告

催化剂项目可行性报告 投资分析/实施方案

承诺书 申请人郑重承诺如下: “催化剂项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、 隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由 此导致的所有后果。 公司法人代表签字: xxx投资公司(盖章) xxx年xx月xx日

项目概要 催化剂在化工生产中具有重要而广泛的应用,例如生产化肥、农药、 多种化工原料等都要使用催化剂。催化剂用于催化环氧化物与二氧化碳的 共聚反应合成聚烷撑碳酸酯,可广泛应用于低温隔氧薄膜、生物降解塑料、弹性体、胶粘剂、涂料等领域。合成该类聚合物不仅能有效利用工业上大 量废弃且给环境带来极大危害的温室气体——二氧化碳加以有效利用,同 事产物还具有生物降解性,不会带来通常塑料导致的白色污染,因而具有 十分广阔的市场前景。 该催化剂项目计划总投资6324.95万元,其中:固定资产投资4651.66万元,占项目总投资的73.54%;流动资金1673.29万元,占 项目总投资的26.46%。 达产年营业收入14666.00万元,总成本费用11223.27万元,税 金及附加120.24万元,利润总额3442.73万元,利税总额4037.83万元,税后净利润2582.05万元,达产年纳税总额1455.78万元;达产 年投资利润率54.43%,投资利税率63.84%,投资回报率40.82%,全部投资回收期3.95年,提供就业职位251个。 坚持节能降耗的原则。努力做到合理利用能源和节约能源,根据 项目建设地的地理位置、地形、地势、气象、交通运输等条件及“保 护生态环境、节约土地资源”的原则进行布置,做到工艺流程顺畅、

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

聚丙烯催化剂研发进展及发展趋势

聚丙烯催化剂研发进展及发展趋势(一) 自20世纪50年代Ziegler-Natta(Z-N)催化剂问世以来,聚丙烯催化剂经过不断 改进得到了很大的发展,目前已经从需要脱灰、脱无规物的第一代催化剂发展到高活性、高立构规整性的高效第五代催化剂。催化剂的活性已由最初的几十倍提高到几百万倍,聚丙烯等规指数已达98%以上,生产工艺得到了简化。目前,催化剂仍是推动聚丙烯技术发展的主要动力,Z-N催化剂和单活性中心催化剂都将继续发展。Z-N催化剂将在高活性、高定向性的基础上向系列化、高性能化发展,不断开发性能更好的新产品;茂金属和非茂单活性中心催化剂(SSC)在聚丙烯领域的应用得到深入发展,其发展目标是进一步实现技术的工业化和启动需求量较大的通用产品市场。 1 Ziegler-Natta催化剂 目前,世界上PP生产所用的大多数催化剂仍是基于Ziegler-Natta(Z-N)催化体 系,即TiCl 3 沉积于高比表面和结合Lewis碱的MgCl 2 结晶载体上,助催化剂是 Al(C 2 H 5 ) 2 Cl等烷基铝类化合物,其特点是高活性(通常在50kgPP/g催化剂左右)、 高立构规整性、长寿命和产品结构的稳定性好。20世纪90年代以来,美国、西欧和日本等世界主要的PP生产商研究开发工作的重点主要集中于该类催化剂体系的改进上。 早在第一代Z-N催化剂出现后,人们就发现添加第三组分(多为给电子体,又称 为Lewis碱)对烯烃聚合行为和聚合物性能都会产生很大的影响。只有改变催化剂中的给电子体(分为内给电子体和外给电子体两类),才能最大可能地改变催化剂活性中心的性质,从而最大程度地改变催化剂的性能。因此,新型给电子体的开发一直是5开发的热点。 1.1内给电子体 目前,内给电子体主要有1,3-二酮、异氰酸酯、1,3-二醚、烷氧基酮、烷氧基 酯、丙二酸酯、琥珀酸酯、1,3-二醇酯、戊二酸酯、邻苯二甲酸高级酯、卡宾类化合物以及环烷二元酸酯等,其中使用最多的是1,3-二醚、琥珀酸酯和1,3-二醇酯类。 (1)以1,3-二醚类化合物为内给电子体的催化剂。1,3-二醚类化合物内给 电子体是由Basell公司开发的。以1,3-二醚类化合物为内给电子体的丙烯聚合 催化剂具有高活性、高氢调敏感性及窄相对分子质量分布等特点,并且在聚合过程中不加入外给电子体时仍可以得到高等规度的PP。在较高温度和较高压力下,用该类催化剂可使丙烯抗冲共聚物中的均聚PP基体具有较高的等规度,提高了结晶度。即使熔体流动指数很高时,PP的刚性也很好,非常适合用作洗衣机内桶专用料。目前,Basell公司已经开发了一系列基于二醚类内给电子体的催化剂,据称催化剂的活性超过100 kg/g(以每克催化剂生产的聚合物的质量计),聚合物的等规指数大于99%。

金属催化剂的研究进展

金属催化剂的研究进展 1前言 催化技术作为现代化学工业的基础,正日益广泛和深入地渗透于石油炼制、化学、高分子材料、医药等工业以及环境保护产业中,起着举足轻重的作用。长期以来,工业上使用的传统催化剂往往存在着活性低、选择性差等缺点,同时常需要高温、高压等苛刻的反应条件,且能耗大,效率低,不少还对环境造成污染。为此人们在不断努力探索和研究新的高效的环境友好的绿色催化剂[1]。本文重点讲解金属催化剂的作用机理,以及金属催化剂在甲醇气相羰基化合成碳酸二甲酯的应用、茂金属催化剂的应用以及金属催化剂在乙烯环氧化合成环氧乙烷的应用。 2金属催化剂的作用机理 2.1 金属催化剂的吸附作用 众所周知,吸附是非均相催化过程中重要的环节,过渡金属能吸附O2、C2H4、C2H2、CO、H2、CO2、N2等气体,强化学吸附能力与过渡金属的特性有关,是因为过渡金属最外层电子层中都具有d空轨道或不成对d电子,容易与气体分子形成化学吸附键,吸附活化能较小,能吸附大部分气体,需主要的是d轨道半充满或者全充满,较稳定,不易与气体分子形成化学吸附键。由此可知,过渡金属的外层电子结构和d轨道对气体的化学吸附起决定作用,有空穴的d轨道的金属对气体有较强的化学吸附能力,而没有d轨道的金属对气体几乎没有化学吸附能力,由多相催化理论,不能与反应物气体分子形成化学吸附的金属不能作催化剂的活性组分。 催化反应中,金属催化剂先吸附一种或多种反应物分子,从而使后者能够在金属表面上发生化学反应,金属催化剂对某一种反应活性的高低与反应物吸附在催化剂表面后生成的中间物的相对稳定性有关,一般情况下,处于中等强度的化学吸附态的分子会有最大的催化活性,因为太弱的吸附使反应物分子的化学键不能松弛或断裂,不易参与反应;而太强的吸附则会生成稳定的中间化合物将催化剂表面覆盖而不利于脱附[2]。 2.2 金属-载体间的相互作用 我们课题组研究的是甲醇气相氧化羰基化合成碳酸二甲酯,使用的是负载型

年产1200吨催化剂(融资投资立项项目可行性研究报告(非常详细)

年产1200吨催化剂(立项投资融资项目可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司 地址:中国〃广州

目录 第一章年产1200吨催化剂(项目概论 (1) 一、年产1200吨催化剂(项目名称及承办单位 (1) 二、年产1200吨催化剂(项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、年产1200吨催化剂(产品方案及建设规模 (6) 七、年产1200吨催化剂(项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (6) 十一、年产1200吨催化剂(项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章年产1200吨催化剂(产品说明 (15) 第三章年产1200吨催化剂(项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (16) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (20) 一、原辅材料供应条件 (20) (一)主要原辅材料供应 (20) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (22) 第七章工程技术方案 (23) 一、工艺技术方案的选用原则 (23) 二、工艺技术方案 (24) (一)工艺技术来源及特点 (24) (二)技术保障措施 (24) (三)产品生产工艺流程 (25) 年产1200吨催化剂(生产工艺流程示意简图 (25) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (27) 第八章环境保护 (28) 一、环境保护设计依据 (28) 二、污染物的来源 (29) (一)年产1200吨催化剂(项目建设期污染源 (30) (二)年产1200吨催化剂(项目运营期污染源 (30)

催化裂化汽油加氢脱硫技术及工艺流程分析

催化裂化汽油加氢脱硫技术及工艺流程分析 发表时间:2019-12-30T13:27:29.667Z 来源:《科学与技术》2019年 15期作者:陈飞宇[导读] 经济与社会不断发展、进步,人们生活水平不断提升,摘要:经济与社会不断发展、进步,人们生活水平不断提升,我国机动车数量也在快速攀升,与此同时,由机动车尾气排放对环境造成的污染也越来越明显,因此对催化裂化汽油加氢脱硫技术进行研究极具现实意义。基于此,文章对汽油燃烧排放的硫化物种类及其危害进行了阐述,分析了催化加氢脱硫(HDS)反应原理,并对催化裂化汽油加氢脱硫技术及其工艺流程进行可分析,以期能够为提升汽油脱硫处 理质量提供有效参考。关键词:催化裂化;汽油;加氢脱硫;应用低硫含量是当前世界车用汽油应用发展的主要趋势之一。对于我国的车用汽油而言,其四分之三以上是催化裂化汽油,也称为FCC汽油。然而,FCC汽油具备烯烃、硫含量较高,安定性不高的缺陷,对车用汽油指标造成不良影响,此类汽车用油的污染物排放标准难以达到国际先进标准,甚至与国内最新的机动车污染物排放指标相去甚远。虽说汽油中硫化物含量值不是最高,但是其产生的危害却极大。一方面,硫化物燃烧生成物主要是SOx的形式,也是引发酸雨的主要因素,而且SOx排放过大也会刺激NO,、CO这些有毒有害气体的生产与排放。另一方面,硫化物还会使汽油燃烧时还会导致汽车尾气转化器催化剂失效,NO、SOx、CO等有害气体的排放量进一步增加,降低城市空气质量。除此之外,硫化物也会对金属设备产生一定程度腐蚀危害,影响汽油泵等相关部件的使用寿命,提高了事故概率。 一、催化加氢脱硫(HDS)反应原理分析 HDS反应原理,主要是利用在石油中加氢使得含硫化合物氢解形成相应的烃合物与H2S,进而脱去石油中的硫原子,其过程中C—S键的断裂与相应断裂物的饱和是最为基本的化学反应。例如噻吩和苯并噻吩的HDS过程通常包含了加氢与裂解两途径。通过加氢使噻吩环双键饱和接着开环脱硫形成烷烃,再通过裂解反应使开环脱硫形成丁二烯,丁二烯在氢环境中饱和。噻吩经过加氢脱硫处理后主要产生丁二烯、丁烯,丁烷、C2、C3产物则少得多。硫化物主要以非杂环与杂环两种类型存在于原油中。非杂环类硫化物以硫醇、硫醚等结构为主,具备较高的反应活性,加氢脱除较为容易。而噻吩、甲基、苯基等杂环类硫化物具备与芳烃相似的稳定结构,所以去除较为困难。 二、催化裂化汽油加氢脱硫技术工艺流程分析催化裂化汽油加氢脱硫处理,要求其过程能够最大限度地完成脱硫工作,并将汽油辛烷值损失控制在最低范围。此外,催化裂化汽油加氢脱硫处理流程还应满足一下要求:①装置要能够实现长周期运转,且单周期要和催化裂化装置检修周期相同;②装置选择应经济、适用,有效降低加氢脱硫成本;③基于确保反应质量的前提制定工艺流程;④使工艺流程和国I、国IV标准要求最大限度地保持一致;⑤采取有效技术方法提高工艺流程可行性与可衔接性;⑥确保技术在产品中的应用稳定与高质量,并具备一定灵活性。将催化裂化汽油的烯烃集中在轻馏分中,汽油中的硫则集中在重馏分中。结合烯烃与硫在催化裂化汽油中分布特点,有选择地展开预加氢反应,混氢原料油经过催化剂作用把二烯烃转化成单烯烃,如此便可避免在后续加氢脱硫反应器发生结焦问题。其中一些轻含硫物与轻疏醇会在硫醚化反应中转化为重含硫化合物,同时还催生了烯烃异构化反应使得辛烷值得到了一定程度的增加。催化裂化汽油分馏,应把预加氢催化裂化汽油划分出重汽油与轻汽油。对于重汽油处理环节借助催化剂作用脱硫与烯烃饱和反应,同时实现了将重汽油以分馏比例调和。 三、常见的FCC汽油脱硫技术现阶段,在汽油脱硫处理方面应用较为成熟,较为广泛的脱硫技术无疑是催化加氢脱硫工艺,许多发达国家的FCC汽油处理采用了这一技术。HDS技术主要分为了传统型与选择性型HDS技术。前者应用虽然能够使汽油硫含量有效减少,然而在脱硫过程中国烯烃饱和率也会大幅提升,使得汽油辛烷值出现较大损失。而后者应用的最大优势能够在满足汽油脱硫要求的同时烯烃饱和率不至于过高,辛烷值损失较少,因此具备较好的应用发展前景。现阶段应用较为成熟选择性HDS技术主要下面几种工艺: (一)SCANFining技术这一技术应用始于美国,使用的RT-225催化剂。核心工艺在于把全馏分催化轻汽油分为低硫高烯烃、硫和烯烃含量中等、高硫低烯烃3个组分的催化重汽油,进而针对性的选择合适脱硫技术生成调和油,达到92%~95%的汽油脱硫率,并且将抗爆指数损失控制在可2个单位以下。 (二)ISAL技术这一技术由美国UOP公司与委内瑞拉石油研究及技术中心联合开发,运用了常规固定床工艺,与最新型的沸石催化剂,可解决现阶段炼化企业面临的大部分共性难题,不但有效减少了汽油硫与烯烃含量,而且确保辛烷值不会减小。这一技术主要是通过调整催化剂大小、表面积、孔容孔径、酸度等对反应烃链长度进行有效控制,避免了辛烷值出现损失。ISAL技术可应用与含硫在30μg/g清洁汽油生产,并且操作周期大于2年。(三)Prime-G和Prime-G+技术该技术由法国石油研究院最先开发,关键点在于对FCC汽油选择性加氢脱硫处理时采用双催化剂工艺,脱硫率较高,甚至实现汽油硫含量小于10μg/g,并且工艺应用条件相对缓和,烯烃饱和率也比较小,不会出现芳烃饱和及裂化反应现象,有着98%以上的脱硫率,耗氢较少且辛烷值损失低。(四)OCTGAIN技术该技术由Mobil公司开发,具备较高的FCC汽油脱硫处理效率,并且产物辛烷值的可控性较高。在脱硫方面采用了固定床催化工艺,脱硫率大于95%,然而会发生5%~10%的汽油损失率。(五)CDTECH技术这一脱硫工艺应用了两个催化蒸馏塔,采用两段式反应。第一阶段是在催化蒸馏加氢脱己烷塔中的反应,在催化剂作用下,轻汽油馏分中二烯烃与硫醇发生反应,得到高沸点产物进入重馏分,从塔顶形成的C5、C6馏分中硫醇含量控制在1μg/g以下,并对剩余的二烯烃进行选择加氢。第二阶段应用CDHDS技术,将催化汽油中C7以上组分的硫去掉,总脱硫率达高于95%,辛烷值损失可控制在1.0以下。(六)RIDOS技术

(完整版)催化剂与催化作用试题副本

名词解释(10~15分,4~6题)填空(10~15分,5~10题)简要回答问题(45~55分,6~8题)论述题(25~35,2~3题) 第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性; ⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。(1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)

催化剂LNEH用于催化裂化轻汽油选择性加氢脱二烯烃的中试研究_孙世林

第28卷 第1期2010年1月 石化技术与应用 Petr oche m ical Technol ogy&App licati on  Vol128 No11 Jan.2010 研究与开发(31~33) 催化剂L NEH用于催化裂化轻汽油选择性 加氢脱二烯烃的中试研究 孙世林,张松显,任海鸥,王洛飞,李金阳,薛英芝,樊英杰 (中国石油兰州化工研究中心,甘肃兰州730060) 摘要:在中试装置上对催化剂LNEH-1进行了醚化原料催化裂化轻汽油选择性加氢脱除二烯烃的应用研究,考察了该催化剂的加氢性能、异构化能力及稳定性。结果表明,在进料空速为2h-1,反应器入口温度为50℃,氢油体积比为15,反应压力为1.5M Pa的操作条件下,产物中单烯和二烯烃含量明显下降,单烯减小量在4个百分点以下,二烯烃质量分数低于0.02%,3-甲基-1-丁烯异构化率大于70%,叔碳烯烃含量增加。经过1500h稳定性试验,产物中的二烯烃质量分数小于0.010%,单烯加氢率小于4个百分点。 关键词:催化剂;选择性加氢;催化裂化轻汽油;单烯;二烯烃;异构化 中图分类号:TE624.41 文献标识码:B 文章编号:1009-0045(2010)01-0031-03 将催化裂化(FCC)轻汽油中的叔碳烯烃与甲醇通过醚化反应生成低蒸汽压和高辛烷值的醚类化合物,不但能降低汽油烯烃含量,而且可以提高辛烷值[1]。但是FCC轻汽油中含有少量的二烯烃,其在酸性条件下极易发生齐聚反应生成胶质被吸附在催化剂上,从而堵塞催化剂孔道,造成催化剂失活,因此在醚化前需将原料中的二烯烃质量分数降至0.02%以下,以延长其寿命[2]。本工作采用中国石油大学(北京)研制的LN EH-1选择性加氢催化剂,以4家炼厂的FCC轻汽油为原料,分别在中试装置上进行了选择性加氢脱除二烯烃的研究,考察了该催化剂的加氢性能、异构化能力及稳定性。 1 实验部分① 1.1 原料及催化剂主要性质 原料汽油,由4家炼厂提供,分别记为A,B, C,D,其主要性质见表1。催化剂,中国石油大学开发的LNEH-1选择性加氢催化剂,其物性见表2。 表1 FCC轻汽油的性质 项目A B C D 20℃密度/(g?cm-3)0.71730.72300.70200.7116 w(烷烃)/%36.2334.7130.0432.62 w(环烷烃)/%8.588.3415.268.18 w(烯烃)/%30.1027.8735.0237.47 w(环烯烃)/% 3.348.928.61 4.75 w(芳烃)/%21.7520.1611.0716.98 表2 L NEH-1催化剂的性质 项目数据项目数据直径/mm2~3压碎强度/(N?mm-1)≥39外观球型磨损率/%≤0.4孔容/(mL?g-1)0.37~0.41载体A l2O3比表面积/(m2?g-1)120~130w(N i)/%12~17堆积密度/(g?mL-1)0.7 1.2 实验装置及主要操作条件 催化轻汽油切割在多功能精馏塔中进行,内装θ环填料,填料层高为4m,塔内径为50mm,进料量为5L/h,操作条件见表3。选择性加氢实 ①收稿日期:2009-07-27;修回日期:2009-07-30 作者简介:孙世林(1977—),男,山东东阿人,硕士研究生,工程师。已发表论文4篇。

基本有机催化剂漕泾生产新基地融资投资立项项目可行性研究报告(中撰咨询)

基本有机催化剂漕泾生产新基地立项投 资融资项目 可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司

地址:中国〃广州

目录 第一章基本有机催化剂漕泾生产新基地项目概论 (1) 一、基本有机催化剂漕泾生产新基地项目名称及承办单位 (1) 二、基本有机催化剂漕泾生产新基地项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、基本有机催化剂漕泾生产新基地产品方案及建设规模 (6) 七、基本有机催化剂漕泾生产新基地项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、基本有机催化剂漕泾生产新基地项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章基本有机催化剂漕泾生产新基地产品说明 (15) 第三章基本有机催化剂漕泾生产新基地项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (18)

六、项目选址综合评价 (19) 第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (20) (二)设备购臵 (20) 二、建设规模 (21) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (25) (三)产品生产工艺流程 (25) 基本有机催化剂漕泾生产新基地生产工艺流程示意简图 (26) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (28) 第八章环境保护 (28) 一、环境保护设计依据 (29) 二、污染物的来源 (30) (一)基本有机催化剂漕泾生产新基地项目建设期污染源 (30)

煤焦油加氢催化剂的研究进展_雷振

Jan.2014现代化工 第34卷第1期Modern Chemical Industry 2014年1月 煤焦油加氢催化剂的研究进展 雷 振1,胡冬妮2,潘海涛3,陆江银 1*(1.新疆大学石油天然气精细化学品教育部重点实验室,新疆乌鲁木齐830046; 2.中国石油新疆培训中心,新疆乌鲁木齐830046; 3.中国神华煤制油化工有限公司新疆煤化工分公司,新疆乌鲁木齐830049) 摘要:介绍了煤焦油的性质及特点,以及国内外煤焦油加工的现状。从加氢催化剂载体的角度,阐述了传统γ-Al 2O 3、改性 γ-Al 2O 3、多孔材料的特征以及它们在加氢催化反应中的应用。最终结合煤焦油催化加氢特点,展望了介-微孔复合材料作为催化剂载体的优势所在一具有适当的孔径、比表面积及酸性。 关键词:煤焦油;加氢催化剂;载体中图分类号:TE621文献标志码:A 文章编号:0253-4320(2014)01-0030-04 Research progress of coal tar catalytic hydrogenation LEI Zhen 1,HU Dong-ni 2,PAN Hai-tao 3,LU Jiang-yin 1* (1.Key Lab of Oil &Gas Fine Chemicals ,Ministry of Education ,Xinjiang University ,Urumqi 830046,China ; 2.Xin Jiang Training Centre of CNPC ,Urumqi 830046,China ;3.Shenhua Xinjiang Coal Chemical Co.,Ltd.,Urumqi 830049,China )Abstract :The properties and characteristics of coal tar and the present situation of coal tar processing are introduced in this paper.The characteristics of traditional γ-Al 2O 3, modified γ-Al 2O 3,porous materials and their application in catalytic reactions are elaborated from the perspective of the carrier of hydrogenation catalyst.Finally ,combining with the characteristics of catalytic hydrogenation of coal tar ,the advantages of meso-micro pore composite materials as carrier of the catalyst ,having proper pore diameter ,specific surface area and acidity ,are prospected. Key words :coal tar ;hydrogenation catalysts ;supporter 收稿日期:2013-08-05;修回日期:2013-11-12基金项目:国家自然科学基金项目(21163019) 作者简介:雷振(1987-), 男,硕士生;陆江银(1964-),男,教授,从事石油天然气加工及多相催化的研究,通讯联系人,jiangyinlu6410@163.com 。 目前中国能源的基本情况是“缺油、少气、富煤”,石油燃料油品的消费量逐年增加。据国家统 计局2011年的数据[1] 显示, 国内石油消费量2011年达到4.56亿t 。石油进口依存度由2010年的58.7%提高到59.8%,成品油净进口量比2010年增长48.1%,柴油呈现净进口。在这样一个严峻的能源格局下,寻找新途径发展新能源成为解决能源短缺及单一性的重要举措。而我国是煤炭大国,发展煤化工工业,利用低温煤焦油和发展中高温煤焦油深加工燃料产品,具有非常重要的战略和现实意义。 煤焦油加氢轻质化包括加氢裂化和加氢精制,即对煤焦油加氢脱金属、脱硫和脱氮,加氢饱和,最终实现轻质化达到国家燃料油环保要求。加氢催化剂在加氢轻质化中扮演着重要的角色,高性能加氢催化剂的开发显得尤为重要,而新型材料的研究开发则是加氢催化剂性能提升的基础。本文中通过对近几年煤焦油加氢轻质化的研究以及加氢催化剂的发展做一综述,为煤焦油轻质化的更高效利用提供 一定的理论方向。 1我国煤焦油的性质及特点 煤焦油是煤干馏过程中得到的黑褐色黏稠产 物,主要含有苯、甲苯、二甲苯等芳烃,以及芳香族含氧化合物(如苯酚等酚类化合物)、含氮和含硫的杂环化合物等很多有机物。按焦化温度不同,可分为高温焦油(900 1000?)、中温焦油(600 1000?)和低温焦油(450 650?)。相比石油原料,其具有较高的C /H 比,还富含好多重金属、含氮 化合物以及胶质。表1[2] 显示了典型的中低温煤焦油性质及组分 [2] 。 表1 典型中低温煤焦油的性质及组成 项目 密度 (20?)/(kg ·m -3) 质量分数/% 残炭 酚 硫 氮 饱和烃 芳烃胶质+沥青质中低温煤焦油 980.0 4.01 5.30.330.7921.0 54.0 25.0 ·03·

相关文档