文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质

蛋白质

蛋白质
蛋白质

蛋白质是构成一切细胞和组织结构必不可少的成分。它是人类生命活动最重要的物质基础。在人体细胞中,蛋白质约占1/3,成年人体内平均约含蛋白质16.3%,皮肤和骨骼肌中约占80%,胶原约占25%,血液中约占5%,其总量仅次于水分。蛋白质由不同的氨基酸所组成,其中一部分可以由人体自己合成,称为非必需氨基酸;而另外约有八种氨基酸必需由食物供给,称为必需氨基酸。食物中如含有齐全的必需氨基酸,而且数量又多,这种食物蛋白质营养价值就高。如牛肉、鸡蛋、鱼、典豆等,其含完全蛋白质较丰富,所以营养价值就高。而米面等食物所含的蛋白质为不完全蛋白质,所以营养价值就低些。因此,饮食单调就会造成营养失调。平时注意各种食品的搭配,就可以发挥蛋白质互补作用。有实验表明,营养价值最高的食品是35%鸡蛋白和65%土豆蛋白的混制品。

蛋白质在人体内的主要功能是:

(1) 构成酶、激素、抗体以及机体组织。(2)促进人体生长发育。(3)维持毛细血管渗透压。(4)供给人体部分能量。

人体每天需要通过食物摄入一定量的蛋白质,用以常机体生长、更新、组织修补以及各种生理功能的需要。也就是说,生命的产生、存在与消亡,无一不与蛋白质有关。

人体的神经、肌肉、血液、骨骼、甚至毛发没有一处不含蛋白质,一个几公斤重的婴儿长成为一个几十公斤重的大人,体内各种组织成分的自我更新都离不开蛋白质。人体的新陈代谢是通过成千上万种化学反应来实现的,而这些反应都需要酶来催化,酶能在正常体温下,广泛参加人体各种各样的生命活动。如肌肉收缩、血液循环、呼吸、消化、生长、发育和繁殖以及各种各样的思维活动。如果没有酶的参加,生命活动就无法进行。而这些具有各种各样特异作用的酶,和调节生理功能的一些激素一样,本身也是蛋白质。

由此可见,在生命活动中蛋白质是无处不存在的,而且具有多种多样的重要功能。生物体一旦失去蛋白质,那么一切生命活动即将停止,生命终结。所以说,蛋白质是生命物质。

一个人每天需要多少蛋白质,要根据年龄、性别、劳动条件和健康情况而定,并因食物来源而有所不同。例如,一个体重65公斤的健康成年男子,根据其体力劳动强度的不同,每天约需要蛋白质75—100克。一般成年女子略微少些。而儿童、青少年在生长发育期,以及妇女怀孕和授乳期间所需要的蛋白质便多些。至于人在生病的情况下,如烧伤、骨折、感染、肾炎等,患者的蛋白质需要量可根据病情作相应增减。

一个体重65公斤,从事较轻劳动的成年男子,可以从他每天所吃的主副食(粮食500克,肉100克,蛋一个,豆制品50克,蔬菜500克)中获得所需要的75克蛋白质。根据需要与可能,他还可以适当地调剂副食,如增加些乳、蛋、肉类、豆制品、花生等提高蛋白质的质和量。如果调配得当,充分发挥各种植物蛋白质的“互补作用”,少加甚至不加动物性食品也可保证蛋白质的需要。

其他儿童、青少年、成年、老年男女以及孕妇、产妇和病人可以此为参考,调剂每天的主副食,酌情增减蛋白质的摄入量。

我们选择蛋白质食物,首先应考虑蛋白质含量的多少。如果食物中蛋白质含量很少,即使营养价值很高,也不能满足人体需要。在常用的每100克食物中,肉类含蛋白质10—20克,鱼类含15—20克,全蛋含13—15克,豆类含20—30克,谷类含8—12克,蔬菜、水果含1—2克”动物性食物比植物性食物含量多,豆类含量很多,质上比动物性食物也不差。判断蛋白质质的优劣有三点:(1)蛋白质被人体消化、吸收得越彻底,其营养价值就越高。整粒大豆的消化率为60%,做成豆腐、豆浆后可提高到90%,其他蛋白质在煮熟后吸收率也能提高,如乳类为98%,肉类为93%,蛋类为98%,米饭为82%。(2)被人体吸收后的蛋白质,利用的程度有高有低,利用程度越高,其营养价值也越高。利用的程度高低,叫蛋白质的生理价值。常用食物蛋白质的生理价值是:鸡蛋94%,牛奶85%,鱼肉83%,虾77%,牛肉76%,大米77%,白菜76%,小麦67%。动物蛋白质的生理价值一般比植物蛋白质高。(3)看所含必需氨基酸是否丰富,种类是否齐全,比例是否适当。种类齐全,数量充足,比例适当,叫完全蛋白质,如动物蛋白质和豆类蛋白质。种类齐全,便比例不适当,叫半完全蛋白质,在谷物中含量较多。种类不全,叫不完全蛋白质,如肉皮中的

胶质蛋白,平米中的平米胶蛋白。将两种以上的食物混合食用,使含的氨基酸相互补充,能更好适合人体的需求。多吃蛋白质也不好,会增加肾脏负担,增加额外的热能消耗,不经济。所以,要合理食用蛋白质。

什么是蛋白质,它有哪些生理功能?

蛋白质是一切生命的物质基础,这不仅是因为蛋白质是构成机体组织器官的基本成分,更重要的是蛋白质本身不断地进行合成与分解。这种合成、分解的对立统一过程,推动生命活动,调节机体正常生理功能,保证机体的生长、发育、繁殖、遗传及修补损伤的组织。根据现代的生物学观点,蛋白质和核酸是生命的主要物质基础。

蛋白质的生理功能:①蛋白质是构成组织和细胞的重要成分,如肌肉、骨骼及内脏主要由蛋白质组成。一切细胞的原生质都以蛋白质为主,动物的细胞膜及细胞间质也主要由蛋白质组成。②用于更新和修补组织细胞。③参与物质代谢及生理功能的调控。④氧化供能。1克蛋白质在体内氧化供能约1.67×104焦耳。

⑤其他功能。如多功能血浆蛋白质的生理功能。

组成蛋白质的氨基酸有20余种,体内只能合成一部分,其余则须由食物蛋白质供给。体内不能合成或合成速度太慢的氨基酸都必须由食物蛋白质供给,故又称为“必需氨基酸”。体内能自己合成的氨基酸则不必由食物蛋白质供给的又称为“非必需氨基酸”。在体内合成蛋白质的许多氨基酸中,有8种必需氨基酸须食物供给,即赖氨酸、色氨酸、苯丙氨酸、蛋氨酸、苏氨酸、亮氨酸、异亮氨酸及缬氨酸。食物中含有的必需氨基酸越多,其营养价值越高。动物蛋白如肉类、蛋、乳均含8种必需氨基酸,又称优质蛋白;植物蛋白如豆类蛋白质所含的必需氨基酸是不全的。但若把玉米、小米及大豆三种植物蛋白质混合组成的面食,其营养价值则明显提高。这种把几种营养价值较低的蛋白质,混合后使其营养价值提高的作用又称为不同蛋白质的互补作用。

蛋白质是构成人体组织的主要成分,是供给氮的唯一来源,其含量约占人体总固体量的45%。人体的一切细胞组织都由蛋白质组成。许多具有重要生理作用的物质,缺少蛋白质就不存在。如有催化作

用的酶;调节各种代谢过程的蛋白激素;输送各种小分子、离子、

电子的运输蛋白;肌肉收缩的肌动蛋白;有防御功能的免疫球蛋白;构成机体支架的胶原蛋白等。

在一般情况下供给热能不是蛋白质的主要功用。但是在组织细胞不断更新过程中,蛋白质分解成氨基酸后,有一小部分不再利用而

分解产热;也直二部分吸收的氨基酸,由于摄食过多或不符合体蛋

白合成的需要,则氧化产热。人体每天所需热能大约有10-15%来自

蛋白质。在特殊情况下,当糖和脂肪摄入不足时,蛋白质用于产生热能。

机体储存蛋白质的量很少,在营养充足时,也不过只有体蛋白总量的1%左右。这种蛋白质称为易动蛋白,主要储于肝脏、肠粘膜和胰腺,丢失后对器官功能没有改变。当膳食蛋白缺乏时,组织蛋白分解快、合成慢,导致如下一系列生化、病理改变和临床表现:

1.肠粘膜和消化腺较早累及,临床表现为消化吸收不良、腹泻;

2.肝脏不能维持正常结构与功能,出现脂肪浸润;

3.血浆蛋白合成发生障碍;

4.酶的活性降低,主要是黄嘌呤氧化酶和谷氨酸脱氢酶降低。

5.由于肌肉蛋白合成不足而逐渐出现肌肉萎缩;

6.因抗体合成减少,对传染病的抵抗力下降;

7.由于肾上腺皮质功能减退,很难克服应激状态;

8.胶原合成也会发生障碍,使伤口不易愈合;

9.儿童时期可见骨胳生长缓慢、智力发育障碍;

10.蛋白质长期摄入不足,可逐渐形成营养性水肿,严重时导致死亡。

蛋白质

在人体各个器官、组织和体液内,蛋白质都是必不可少的成分。成年人体重的16.3%是蛋白质。蛋白质是生命的物质基础,恩格斯曾指出,生命是蛋白质的运动形式。如果蛋白质长时间地摄入不足,正常代谢和生长发育便会无法进行,轻者发生疾病,重者甚至可以导致死亡。

蛋白质的化学组成:蛋白质主要由碳、氢、氧、氮四种元素组成。蛋白质元素组成的最大特点是含有氮。有些蛋白质还含有硫、磷、铁等其他元素。

上述这些元素按一定结构组成氨基酸。氨基酸是蛋白质的组成单位。自然

界中的氨基酸有20多种,这20 多种氨基酸以不同数目和不同顺序连接构成种类繁多,千差万别的蛋白质,发挥它们各自不同的生理功能。蛋白质的分子大小可相差几千倍,但它们含氮的百分率相当恒定,各种蛋白质每

100克中的氮含量都约是16 克。这样,我们要测定某一种食物的蛋白质含量便可以首先测定其氮含量,再乘以6.25 (100÷16 = 6.25 )即可得出该食

物的蛋白质含量。

必需氨基酸和非必需氨基酸:食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。

必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸和苯丙氨酸。对婴儿来说,组氨酸也是必需氨基酸。

非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、精氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。

蛋白质的分类:营养学上根据食物蛋白质所含氨基酸的种类和数量将食物蛋白质分三类:

1. 完全蛋白质这是一类优质蛋白质。它们所含的必需氨基酸种类齐全,数量充足,彼此比例适当。这一类蛋白质不但可以维持人体健康,还可以促进生长发育。奶、蛋、鱼、肉中的蛋白质都属于完全蛋白质。

2. 半完全蛋白质这类蛋白质所含氨基酸虽然种类齐全,但其中某些氨基酸的数量不能满足人体的需要。它们可以维持生命,但不能促进生长发育。例如,小麦中的麦胶蛋白便是半完全蛋白质,含赖氨酸很少。食物中所含与人体所需相比有差距的某一种或某几种氨基酸叫做限制氨基酸。谷类蛋白质中赖氨酸含量多半较少,所以,它们的限制氨基酸是赖氨酸。

3. 不完全蛋白质这类蛋白质不能提供人体所需的全部必需氨基酸,单纯靠它们既不能促进生长发育,也不能维持生命。例如,肉皮中的胶原蛋白便是不完全蛋白质。

蛋白质的生理功能:蛋白质在体内的多种生理功能可归纳为三方面:

1.构成和修补人体组织蛋白质是构成细胞、组织和器官的主要材料。婴幼儿、儿童和青少年的生长发育都离不开蛋白质。即使成年人的身体组织也在不断地分解和合成进行更新,例如,小肠黏膜细胞每1~2天即更新一次,血液红细胞每120天更新一次,头发和指甲也在不断推陈出新。身体受伤后的修复也需要依靠蛋白质的补充。

2.调节身体功能体内新陈代谢过程中起催化作用的酶,调节生长、代谢的各种激素以及有免疫功能的抗体都是由蛋白质构成的。此外,蛋白质对维持体内酸硷平衡和水分的正常分布也都有重要作用。

3. 供给能量虽然蛋白质的主要功能不是供给能量,但当食物中蛋白质的氨基酸组成和比例不符合人体的需要,或摄入蛋白质过多,超过身体合成蛋白质的需要时,多余的食物蛋白质就会被当作能量来源氧化分解放出热能。此外,在正常代谢过程中,陈旧破损的组织和细胞中的蛋白质也会分解释放出能量。每克蛋白质可产生.16.7千焦耳(4千卡)热能。

食物蛋白质营养价值的评定:蛋白质主要由碳、氢、氧、氮四种元素组成。

蛋白质元素组成的最大特点是含有氮。有些蛋白质还含有硫、磷、铁等其

他元素。上述这些元素按一定结构组成氨基酸。氨基酸是蛋白质的组成单

位。自然界中的氨基酸有20多种,这20 多种氨基酸以不同数目和不同顺序连接构成种类繁多,千差万别的蛋白质,发挥它们各自不同的生理功能。

蛋白质的分子大小可相差几千倍,但它们含氮的百分率相当恒定,各种蛋

白质每100克中的氮含量都约是16 克。这样,我们要测定某一种食物的

蛋白质含量便可以首先测定其氮含量,再乘以6.25 (100÷16 = 6.25 )即可

得出该食物的蛋白质含量。

蛋白质的互补作用:植物性蛋白质中各种氨基酸的含量和组成比例与人体

需要相比总有些不足。由于各种植物性蛋白质的氨基酸含量和组成各不相

同,因而可以通过植物性食物的互相搭配,取长补短,来使其接近人体需

要,提高其营养价值。这种食物搭配的效果叫做蛋白质的互补作用。在实

际生活中我们也常将多种食物混合食用,现在我们知道了这样做不仅可以

调整口感,还十分符合营养科学的原则。例如,谷类食物蛋白质内赖氨酸含量不足,蛋氨酸含量较高,而豆豆类食物的蛋白质恰好相反,混合食用

时两者的不足都可以得到补偿。

蛋白质的供给量和来源:蛋白质的供给量蛋白质的供给量与膳食蛋白质的质量有关。如果蛋白质主要来自奶、蛋等食品,则成年人不分男女均为每日每公斤体重0.75克。中国膳食以植物性食物为主,蛋白质质量较差,供给量需要定为每日每公斤体重1.0~1.2克。蛋白质供给量也可用占总能量摄入的百分比来表示。在能量摄入得到满足的情况下,由蛋白质提供的能量在成年

人应占总能量的10%~12%,生长发育中的青少年则应占14%。

蛋白质的来源膳食中蛋白质来源不外是植物性食物和动物性食物。动物性食物蛋白质含量高、质量好,如奶、蛋、鱼、瘦肉等。植物性食物主要是谷类和豆类。大豆含有丰富的优质蛋白质。谷类是我们的主食,蛋白质含量居中(约10%),是我国人民膳食蛋白质的主要来源。蔬菜水果等食品蛋白质含量很低,在蛋白质营养中作用很小。

第三章 蛋白质

3.氨基酸和蛋白质 罗勃特 P.威尔逊 3.1 简介 蛋白质约占鱼类干重的65-75%。鱼类不断利用氨基酸形成新的蛋白质或者替代已有的蛋白质。如果日粮中蛋白质含量过多,只有一部分将被用于形成新的蛋白质,其余的将被转变成能量。 最初的氨基酸实验日粮是根据鸡全卵蛋白、大鳞大麻哈鱼卵蛋白和大鳞大麻哈鱼卵黄蛋白来表示的。根据鸡全卵蛋白氨基酸组成配置的氨基酸实验日粮被用来测定大鳞大麻哈鱼氨基酸定性需求。 3.2 蛋白质需求 3.2.1 总需求 3.2.1.1 有鳍鱼 像其它动物一样,鱼类没有真实的蛋白质需求量,但是需要必需氨基酸和非必要或非必需氨基酸之间很好的平衡。测定的几种鱼类幼鱼的蛋白质需求量总结在表格3.1中。由于没有充分考虑下面这些因素:(a)日粮能量含量(b)日粮蛋白质的氨基酸组成(c)日粮蛋白质的消化,所以一些需求量值估计过高。 同其它动物一样,鱼类最理想的日粮蛋白质水平受到能蛋比平衡,氨基酸组成,测试蛋白的消化,和非蛋白能量来源的影响。实验日粮中能量过量会限制饲料的消耗,像其它动物一样,鱼类摄食是为满足能量需求。在许多鱼类中许多饲料原料的可代谢能量还没有被测定,研究者运用生理燃料值来表示蛋白质需求和日粮能量水平的关系。 表3.1中的数据表明鱼类的蛋白质需求量比其它脊椎动物更高(两到四倍)。用饲料摄入量(每千克体重每天摄入蛋白质克数)和活体重增加(每千克活体重所获得的蛋白质克数)表示时,鱼类的日粮蛋白质需求量并不与其它脊椎动物不同。 3.2.1.2 甲壳纲动物 研究的许多甲壳纲动物的蛋白质需求量很高,范围为日粮干重的30%到60%(表3.3)。这些测定的数据有些估计过高了。甲壳纲动物营养研究很复杂。一些生物体在消化之前同样弄碎食物粒子,这可能会增强消化使得饲料消耗测定很

蛋白质连接技术

蛋白质连接技术 人工抗原的合成是化学免疫的重要问题,化学免疫研究的对象,除上面提及的药物、毒物、激素外,还有多糖类、神经递质、肽类、核酸及生物体内其它小分子活性物质,总起来说,它们大多都是无免疫原性的半抗原,在对其进行免疫学及其它相关研究时,一方面要通过化学合成的手段,即蛋白质连接技术,经与载体蛋白交联合成制备人工抗原,继而用其免疫动物制备相应的抗体或单克隆抗体,作为研究用的探针;另一方面还必须将此探针用各种标记物进行标记,如本文论及的酶标记,以便用作研究工具;在分子生物学研究中,包括核酸或基因探针的研究及应用,多种类型探针的标记也都将涉及蛋白质连接技术。 半抗原分子量一般较小,其结构及化学功能团的性质多种多样,数量各不相同,在与酶蛋白或载体蛋白进行交联时,必须考虑交联双方的性质、交联剂、交联方法和载体. 2.混合酸酐法制备G6PDH(葡糖—6—磷酸脱氢酶)标记利多卡因(Lidocaine.Li)结合物[29] (1)Li—混合酸酐的制备首先将Li经化学修饰(琥珀酸酐法,略),在其分子中引入羟基(一COOH),制成Li—COOH(Li一琥珀酸半酯);然后,将此Li—COOHl0mg (0.0285mm0l)溶于375ul的DMF中,用电磁搅拌混溶。在一10℃条件下,边搅动边滴入21ul的三乙胺,再缓慢滴入14ul的卡必醇氯甲酸酯,于一10。C 继续搅拌反应1.5小时,此全部过程应保持无水,即获得Li—混合酸酐(Li—MA)。 (2)酶——底物溶液的制备在冰浴中,将G6FDH(L.m)lmg用50mmol/LpH8.1Tris—HCl溶解,同时加入G6P—Na(葡糖—6一磷·酸钠盐)10mg及NADH 3mg(底物一辅酶系统,用于保护酶活性),使其溶解,随后缓慢加入300ul卡必醇,用2m0l/LNaOH调pH至9.0。 (3)G6PDH—Li的交联将酶—底物溶液置于冰浴中,在搅拌条件下,每隔10~15分钟向此酶液中缓慢加入一定量(25ul,50ul,100ul……)的Li—MA溶液,反应10~15分钟后,分别取出反应液5u1测定酶活性及Li半抗原的抗体对标记酶活性的抑制率.直至加入Li—MA的量所引起酶活性的下降程度最低,而抗体对酶活性的抑制率又最高时,此标记过程即完成(表2—8) 表2—8 G6PDH—Lidocaine交联反应中酶活性变化及抗体抑制率 3.碳化二亚胺法(EDC)制备人工抗原 最近几年,在对无免疫原性小分子物质的化学免疫研究中,采用碳化二亚胺作为交联剂制备合成人工抗原的工作愈来愈多,因为用这种试剂进行交联最为方便,除交联的一方作为载体的蛋白质,具有多个氨基或羧基外,不少小分于化合物也具有此反应基团,或通过化学修饰引入羧基。因此,EDC交联法已被广泛应用,并为大家所熟悉。然而,在实践过程中,也遇到不少问题,给相关研究带来不少困难,以下就有关问题略加讨论。 使用EDC试剂进行化学交联虽然非常方便,但它除具有同型双功能交联剂的缺点外,在合成人工抗原时,还会出现异常情况。 如前所述,EDC是一类非常活泼的化学交联剂,据文献报道,它可以交联含有多种类型化学功能基团的化合物,包括羧酸、胺、磷酸、醇类、含巯基化合物等。交联过程至少可分为两步:如图2—l中的反应①和反应②,假定含氨基

原核生物蛋白质的合成

核糖体在进行的蛋白质生物合成分为起始,延伸和终止3个阶段.除了核糖体组成、各种因子、起始tRNA不同外,其余环节在真核生物和原核生物基本类似. 1.首先进行氨酰-tRNA的活化,这能使每个AA和tRNA分子共价连接,以确保加入正确的AA (即接头)作用;并能使aa与延伸中的多肽链末端反应形成新的肽链. 活化步骤:1)aa+ATP=aa-AMP+PPi 2)aa-AMP+tRNA→aa-tRNA+AMP+PPi 2.合成的起始: 1)起始tRNA识别AUG(起始密码子)编码甲硫氨基酸,以确定翻译的正确阅读框架. 2)30S核糖体小亚基中的16SrRNA与富含嘌呤并位于AUG起始密码子的5’端的Shine-Dalgarno序列结合,然后,核糖体沿着mRNA向3‘端移动,直到遇到AUG起始密码子.因而Shine-Dalgarno序列将核糖体亚基传送至正确的AUG用于起始翻译. 3)然后起始因子开始催化蛋白质的合成.原核生物中用三种起始因子IF1、IF2、IF3是必需的. a.三元复合物(IF3-30S亚基-mRNA三元复合物形成. b.30S前起始复合物(IF2-30S亚基-mRNA-fMet-tRNAMef复合物)形成,此步亦需要fGTP和Mg2+参与. c.70S起始复合物(70S initiation complex)形成.50S亚基与上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-fMer-tRNA Met复合物.此时fMet-tRNA Met占据着50S亚基的肽酰位(peptidyl site,简称为P位或给位),而50S的氨基酰(aminoacyl site,简称为A位或受位)暂为空位. 3.肽链合成的延长 这一过程包括进位、肽键形成、脱落和移位等步骤.肽链合成的延长需两种延长因子(Elongationfactor,简写为EF),分别称为EF-T和EF-G.此外尚需GTP供能加速翻译过程. ①进位 结合在mRNA上的fMet-tRNAiMet(或肽酰-tRNA)占着P位,新的氨酰-tRNA和EF-Tu及GTP形成的AA-tRNA·EF-Tu·GTP利用GTP水解的能量进入A位,并与mRNA上相应的密码子结合. EF-Tu·GDP由EF-Ts协助再生成EF-Tu·GTP. ②肽键形成 50S亚基上肽酰转移酶催化P位的肽(氨)酰-tRNA把肽(或氨酰基)转给A位的AA-tRNA,并以肽键相连.P位的氨基酸(或肽的C端氨基酸)的α-COOH基,与A位氨基酸的α-NH2形成肽链.催化肽键形成的是23SrRNA的肽酰转移酶活性. ③脱落 在A位上的tRNA负载着二肽酰基(或肽酰基),P位上成为无负载的tRNA脱落. ④移位 在EF-G协助下,由EF-G·GTP提供能量,核糖体构象改变,沿mRNA的5’→3’相对移动一个密码子距离,使下一个密码子定位于A位,原来处于A位上的肽酰tRNA转移到P位上,空出A位点. 再依次进位、形成肽键、脱落和移位循环返复,直到mRNA上的终止密码子进入A位,翻译终止. 肽链的延伸是从N端开始.延长过程每重复一次,肽链延伸一个氨基酸残基,多次重复使肽链增长到必要的长度. 4.肽链合成的终止(termination) 肽链合成的终止,需释放因子(releasing factor,RF)参与.原核生物的RF1识别UAA、UAG;RF2识别UAA、UGA,使肽链释放,核糖体解聚.

蛋白质序列分析

蛋白质序列、性质、功能和结构分析 基于网络的蛋白质序列检索与核酸类似,从NCBI或利用SRS系统从EMBL 检索。 1、疏水性分析 ExPASy的ProtScale程序(https://www.wendangku.net/doc/0615538303.html,/cgi-bin/protscale.pl)可用来计算蛋白质的疏水性图谱。输入的数据可为蛋白质序列或SWISS-PROT数据库的序列接受号。也可用BioEdit、DNAMAN等软件进行分析。 2、跨膜区分析 蛋白质跨膜区域分析的网络资源有: TMPRED:https://www.wendangku.net/doc/0615538303.html,/software/TMPRED_form.html PHDhtm: http:www.embl-heidelberg.de/Services/sander/predictprotein/predictpro tein.html MEMSAT: ftp://https://www.wendangku.net/doc/0615538303.html, 3、前导肽和蛋白质定位 一般认为,蛋白质定位的信息存在于该蛋白自身结构中,并且通过与膜上特殊受体的相互作用得以表达。这就是信号肽假说的基础。这一假说认为,穿膜蛋白质是由mRNA编码的。在起始密码子后,有一段疏水性氨基酸序列的RNA片段,这个氨基酸序列就称为信号序列(signal sequence)。 蛋白质序列的信号肽分析可联网到http://genome.cbs.dtu.dk /services/SignalP/或其二版网址 http://genome.cbs.dtu.dk/services/SignalP-2.0/。该服务器也提供利用 e-mail进行批量蛋白质序列信号肽分析的方案 (http://genome.cbs.dtu.dk/services /SignalP/mailserver.html),e-mail 地址为signalp@ genome.cbs.dtu.dk。 蛋白质序列中含有的信号肽序列将有助于它们向细胞内特定区域的移动,如前导肽和面向特定细胞器的靶向肽。在线粒体蛋白质的跨膜运输过程中,通过线粒体膜的蛋白质在转运之前大多数以前体形式存在,它由成熟蛋白质和N端延伸出的一段前导肽或引肽(leader peptide)共同组成。迄今有40多种线粒体蛋白质前导肽的一级结构被阐明,它们约含有20~80个氨基酸残基,当前体蛋白跨膜时,前导肽被一种或两种多肽酶所水解转变成成熟蛋白质,同时失去继续跨膜能力。前导肽一般具有如下性质:①带正电荷的碱性氨基酸(特别是精氨酸)含量较丰富,它们分散于不带电荷的氨基酸序列中间;②缺失带负电荷的酸性

不同蛋白质水平的日粮对奶牛生产性能的影响

毕业论文 (2011届) 题目:不同蛋白质水平的日粮对奶牛生产性能 的影响 学院农学院 专业动物科学 年级 2007 级 学生学号 12007241517 学生姓名眭丹 指导教师张巧娥 2011年5月10日

不同蛋白质水平的日粮对奶牛生产性能的影响 摘要 本试验选用30头体况、年龄、胎次相近、健康的荷斯坦奶牛,采用完全随机单位组试验设计,随机分为三组, 每组10头。饲喂三种不同蛋白质水平的日粮, (试验I、II、III组CP分别为 16.7%、 18.6%、 20.6%),来研究对奶牛生产性能的影响。试验结果表明:随着日粮蛋白质水平的增加,奶牛的干物质采食量和产奶量增加,乳脂率和乳蛋白率反而降低,且三组间差异显著(P<0.05);乳糖随日粮蛋白水平的增加而升高(P<0.05),对乳中尿素氮无明显影响(P>0.05)。 关键词: 蛋白质水平产奶量乳成分荷斯坦奶牛

Effects of different dietary protein levels on performance of dairy cows in diet Abstract 30 similar body condition, age, parity, healthy Holstein cows were randomly divided into 3 groups of 10 head in this experiment adopting completely random design. 3 different protein levels in diet(CP 16.7%, 18.6%, 20.6% in experiment I, II III group repectively) were fed to study effects on performance of dairy cows.The results were shown that dry matter intake and milk yields were increased, fat contents and protein contents were decreased cows with dietary protein level was increased, which were significant different in the three groups (P<0.05). Lactose increased significantly (P <0.05), urea nitrogen in milk had no effect (P> 0.05) with increasing dietary protein level. Key words:Different protein levels Milk yields Milk composition Holstein cows

蛋白质分析解决方案蛋白质分析解决方案

蛋白质分析解决方案 https://www.wendangku.net/doc/0615538303.html, 蛋白质分析解决方案 https://www.wendangku.net/doc/0615538303.html, https://www.wendangku.net/doc/0615538303.html, info@https://www.wendangku.net/doc/0615538303.html,

目录 关于Advansta 关于Advansta 样品制备 Afyon 电泳与染色 AdvanStain Scarlet Visio 蛋白质转印 FLASHBlot Transfer Buffer AdvanStain Ponceau 检测 WesternBright ECL & Spray WesternBright Quantum WesternBright Sirius WesternBright MCF & MCF-IR ELISABright 其它 WesternBright ChemiPen Afyon TM Afyon SDS-PAGE样品制备试剂盒能够快速高效地浓缩蛋白质样品,去除缓冲液中可能干扰电泳的成分。只需不到10 min,样品即可用于SDS-PAGE或免疫印迹。Afyon的操作手册非常简单,可以作为最常用的蛋白质 电泳样品制备的工具。? 快速去除干扰电泳的缓冲液成分 (GuHCl, urea, Ammonium sulfate, etc)? 不到10 min,蛋白质样品即可上样? 安全,无毒性,无需DMSO ? 比超滤或透析等方法更加快捷 ? 兼容下游的SDS-PAGE和Western Blot 特点 Afyon 与Western Blotting能够很好地兼容。上图所示为两组Western Blotting实验,样本为A431细胞的抽提物。图a检测GAPDH,图b检测SRC,泳道2为A431细胞的抽提物,泳道3为稀释的细胞抽提物,泳道4为将稀释抽提物用Afyon浓缩后的样品。Western Blot采用荧光标记的二抗进行检测。可见,a和b中的泳道3均无信号,泳道2和4均可以检测 到靶蛋白的信号,信号强度用数字标出。 美国Advansta公司成立于2005年,总部位于加利福尼亚州,是专业的生命科学试剂制造商,致力于研发高效易用的蛋白质分析试剂。 Advansta的公司使命是:成为全球领先的蛋白质分析试剂的研发者与制造商。 其研发团队具有相当扎实的化学分析与蛋白质分析的应用背景,公司的旗舰产品之一为Western Blotting实验配套的相关试剂,其中 WesternBright化学发光底物产品线仅2014年一年就有超过200篇的文献引用量,并获得越来越多的全球使用者的青睐,被评为市场上最灵敏的化学发光底物。 订购信息高效样本制备试剂盒 货号描述 规格R-03018-B10Non-reducing protein sample loading buffer (2X) 1 mL K-02101-010Afyon SDS-PAGE Sample Preparation Kit 10 rxns K-02101-025 Afyon SDS-PAGE Sample Preparation kit 25 rxns 12233455677899101010 样品制 备

(高三生物核心素养教案) 蛋白质和核酸

第3讲蛋白质和核酸 一、考纲要求: 蛋白质的结构和功能(Ⅱ)。 核酸的结构和功能(Ⅱ)。 实验:观察DNA、RNA在细胞中的分布。 二、教学目标: 1.说明氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 2.概述蛋白质的结构和功能。 3.掌握和蛋白质相关的计算方法。 4.简述核酸的种类、结构和功能。 5.学会观察DNA、RNA在细胞中的分布。 三、教学重、难点: 1.教学重点: 氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 蛋白质的结构和功能。 核酸的结构和功能。 糖类、脂质的种类和作用。 2.教学难点 氨基酸形成蛋白质的过程。 蛋白质的结构多样性的原因。 蛋白质的相关计算题。 核酸的结构和功能 观察DNA、RNA在细胞中的分布 四、课时安排:3课时 五、教学过程: 考点一蛋白质的结构、功能及相关计算(一)知识梳理: 1.组成蛋白质的氨基酸及其种类 巧记“8种”必需氨基酸

甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸)。 2.蛋白质的合成及其结构、功能多样性 (1)二肽的形成过程 ①过程a :脱水缩合,物质b :二肽,结构c :肽键。 ②H 2O 中H 来源于氨基和羧基;O 来源于羧基。 (2)蛋白质的结构层次 氨基酸――→脱水缩合多肽――→盘曲、折叠 蛋白质 小贴士 蛋白质的盐析、变性和水解 (1)盐析:是由溶解度的变化引起的,蛋白质的空间结构没有发生变化。 (2)变性:是由于高温、过酸、过碱、重金属盐等因素导致的蛋白质的空间结构发生了不可逆的变化,肽链变得松散,丧失了生物活性,但是肽键一般不断裂。 (3)水解:在蛋白酶作用下,肽键断裂,蛋白质分解为短肽和氨基酸。水解和脱水缩合的过程相反。 3.蛋白质分子多样性的原因 (1)氨基酸???? ? ①种类不同②数目成百上千③排列顺序千变万化 (2)肽链的盘曲、折叠方式及其形成的空间结构千差万别。 4.蛋白质的功能(连线) 拓展: 下图表示蛋白质的结构层次示意图,据图分析: (1)组成蛋白质的化学元素中通常含有S ,S 元素在b 中存在于哪部分?

外源性蛋白在大肠杆菌中的高效表达

提高外源性蛋白在大肠杆菌中的高效表达策略 本世纪60至70年代对大肠杆菌的研究使之成为自然界中最普遍为人们所认识的生物体。大肠杆菌具有操作简单和能在廉价的培养基中高密度培养的特点,它的这些特征加上十多年外源基因表达的经验使其在大多数科研应用中成为高效表达异源蛋白最常用的原核表达系统。尽管大肠杆菌有众多的优点,但并非每一种基因都能在其中有效表达。这归因于每种基因都有其独特的结构、mRNA的稳定性和翻译效率、蛋白质折叠的难易程度、宿主细胞蛋白酶对蛋白质的降解、外源基因和E.coli在密码子利用上的主要差别以及蛋白质对宿主的潜在毒性等等。影响大肠杆菌中蛋白表达量的因素有载体启动子结构、质粒拷贝数、质粒稳定性、mRNA结构、密码子的偏爱性和宿主菌的生长状态等因素。在分析了国内外有关在原核系统中表达蛋白的实验资料的基础上,对在大肠杆菌中高效表达外源蛋白的策略所涉及的内容进行总结,以期有助于研究。 1.有效表达载体的构型 构建表达质粒需要多种元件,需要仔细考虑它们的组合,以保证最高水平的蛋白质合成。其主要构件包括启动子、终止子、抗终止子、弱化子、绝缘子和增强子等。 1.1启动子 理想的启动子具有以下特性:作用强;可以严格调控;容易转导入其他E.coli以便筛选大量的用于生产蛋白的菌株,而且对其诱导是简便和廉价的[1]。在启动子下游是RBS,其跨度约为54个核苷酸,两端限定在 -35(±2)和mRNA编码序列的+19到+22之间[2]。Shine-Dalgarno(SD)位点在翻译起始阶段与16S rRNA的3’端相互作用[3]。SD与起始密码子间的距离约为5-13bp,而且此区的序列在mRNA转录物中应避免出现二级结构,否则将会降低翻译起始的效率[4]。在RBS的5’和3’端均为A丰富区。转录终止子位于编码序列的下游,作为转录终止的信号和组成发卡结构的保护性元件,阻止核酸外切酶对mRNA的降解,从而延长mRNA的半衰期。但目前发现在转录过程中部分启动子在转录为RNA后可引起导致转录后基因沉默,从而减少目的蛋白量(a)。某些启动子还识别特异性的RNA聚合酶( rnap ),特异性的RNA聚合酶( rnap )可以分辨出不同的启动子结构,优先启动推动者与目的序列。(c)还有研究表明有关基因表达的假设增强子与启动子之间相互作用发生分子间的结构独立功能联合的复合体增强启动子功能,该结构具有特异性。并不是所有增强子与启动子都能发生功能联合的复合体(b)。 目前在E.coli中发挥作用的启动子很多。通常常被使用的可调控的启动子有Lac(乳糖启动子)、Trp(色氨酸启动子)、Tac(乳糖和色氨酸的杂合启动子) 、lP L(l噬菌体的左向启动子)、T7噬菌体启动子等。 1.2 终止子 在一个基因的3末端或是一个操纵子的3末端往往有特定的核苷酸序列,且具有终止转录功能,这一序列称之为转录终止子,简称终止子(terminator)。在原核生物中,转录终止有两种不同的机制。一种是依赖六聚体蛋白rho的rho依赖性转录终止,rho蛋白能使新生RNA转录本从模板解离,它是一种环状hexameric蛋白质和ATP解旋酶的活动。nusg ,nusa和nusb是以附加因素的形式参与终止进程。 rho依赖性终止作用是当rho与游离核糖体中富含C 的位点相结合后产生的, rho的ATP酶激活rho - mRNA的终止子作用,并为其提供能量,使rho能够在mRNA上向前移行;移行过程中是mRNA上的讯息进入六聚体的中心孔,当移行到转录底物释放rho的解旋酶时聚合酶停止工作转录终止(d,e)。

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

常见蛋白质

自然界常见蛋白质的成分 (1)大部分酶:酶是活细胞产生的一类具有生物催化作用的有机物,除少数的酶是RNA,绝大多数的酶是蛋白质。 (2)胰岛素、生长激素:成分为蛋白质。 (3)载体:位于细胞膜上,在物质运输过程中起作用,其成分为蛋白质。 (4)抗体:指机体受抗原刺激后产生的,并且能与该抗原发生特异性结合的具有免疫功能的球蛋白。主要分布于血清中,也分布于组织液等细胞外液中。 (5)抗毒素:属于抗体,成分为蛋白质。一般指用外毒素给动物注射后,在其血清中产生的能特异性中和外毒素毒性的成分。 (6)凝集素:属于抗体,成分为蛋白质。指用细菌给动物注射后,在其血清中产生的能使细菌发生特异性凝集的成分。另外,人体红细胞膜上存在不同的凝集原,血清中则含有相应种类的凝集素。 (7)部分抗原:引起机体产生抗体的物质叫抗原,某些抗原成分是蛋白质。如红细胞携带的凝集原、决定病毒抗原特异性的衣壳,其成分都是蛋白质。 (8)神经递质的受体:突触后膜上存在的一些特殊蛋白质,能与一定的递质发生特异性的结合,从而改变突触后膜对离子的通透性,激起突触后神经元产生神经冲动或发生抑制。 (9)朊病毒:近年来发现的,其成分为蛋白质,可导致疯牛病等。 (10)糖被:位于细胞膜的外表面,由蛋白质和多糖组成,有保护、润滑、识别等作用。 (11)单细胞蛋白:指通过发酵获得的大量微生物菌体。可用作饲料、食品添加剂、蛋白食品等。 (12)丙种球蛋白:属于被动免疫生物制品。 (13)细胞色素C:是动、植物细胞线粒体中普遍存在的一种呼吸色素,由一条大约含有110个氨基酸的多肽链组成。 (14)血浆中的纤维蛋白原和凝血酶原:均为蛋白质。在凝血酶原激活物的作用下,凝血酶原转变成凝血酶,在凝血酶的作用下纤维蛋白原转变成不溶性纤维蛋白,起到止血和凝血作用。 (15)血红蛋白:存在于红细胞中的含Fe2+的蛋白质。其特性是在氧浓度高的地方与氧结合,在氧浓度低的地方与氧分离。 (16)肌动蛋白:存在于肌细胞中,为肌细胞储存氧气的蛋白质。 (17)细胞骨架:是细胞内由微管、微丝和中等纤维构成的蛋白质纤维网架系统。不仅在维持细胞形态、保持细胞内部结构的有序性方面起重要作用,而且与细胞运动、物质运输、能量转换、信息传递、细胞分裂、基因表达、细胞分化等生命活动密切相关。 (18)微管:由微管蛋白组装成的长管状结构,参与组成纺锤体、中心体、鞭毛、纤毛、神经元的轴突等结构。 (19)微丝:在细胞中分散或成锁或交织成网,与微管共同构成细胞的支架,与细胞的收缩运动直接相关。 (20)干扰素:由多种细胞产生的具有广泛的抗病毒、抗肿瘤和免疫调节作用的可溶性糖蛋白。正常情况下组织或血清中不含干扰素,只有在某些特定因素的作用下,才能使细胞产生干扰素。 (21)动物细胞间质:主要含有胶原蛋白等成分,在进行动物细胞培养时,用胰蛋白酶处理才能获得单个细胞。 (22)含蛋白质成分的实验材料:黄豆研磨液、豆浆、蛋清、蛋白胨、牛肉膏等。

不同蛋白质水平的日粮对奶牛生产性能的影响

.. . … 毕业论文 (2011届) 题目:不同蛋白质水平的日粮对奶牛生产性能 的影响 学院农学院 专业动物科学 年级2007 级 学生学号 学生眭丹 指导教师巧娥

2011年5月10日 不同蛋白质水平的日粮对奶牛生产性能的影响 摘要 本试验选用30头体况、年龄、胎次相近、健康的荷斯坦奶牛,采用完全随机单位组试验设计,随机分为三组, 每组10头。饲喂三种不同蛋白质水平的日粮, (试验I、II、III组CP分别为16.7%、18.6%、20.6%),来研究对奶牛生产性能的影响。试验结果表明:随着日粮蛋白质水平的增加,奶牛的干物质采食量和产奶量增加,乳脂率和乳蛋白率反而降低,且三组间差异显著(P<0.05);乳糖随日粮蛋白水平的增加而升高(P<0.05),对乳中尿素氮无明显影响(P>0.05)。 关键词: 蛋白质水平产奶量乳成分荷斯坦奶牛

Effects of different dietary protein levels on performance of dairy cows in diet Abstract 30 similar body condition, age, parity, healthy Holstein cows were randomly divided into 3 groups of 10 head in this experiment adopting pletely random design. 3 different protein levels in diet(CP 16.7%, 18.6%, 20.6% in experiment I, II III group repectively) were fed to study effects on performance of dairy cows.The results were shown that dry matter intake and milk yields were increased, fat contents and protein contents were decreased cows with dietary protein level was increased, which were significant different in the three groups (P<0.05). Lactose increased significantly (P <0.05), urea nitrogen in milk had no effect (P> 0.05) with increasing dietary protein level.

外源性蛋白质的补充与运动能力的关系

外源性蛋白质的补充与运动能力的关系 摘要:外源性蛋白质是为了补充补充体内蛋白质的不足和满足必须氨基酸的需求,体内蛋白质的代谢方式主要是以氨基酸为主的。 从食物中摄取的蛋白质,经过消化水解成为氨基酸,吸收进入体内,参与各种生命活动。 关键词:外源性蛋白质运动能力氨基酸蛋白酶 生命活动是物质运动的最高级形式,而这种运动形式是通过蛋白质(protein)和核酸(Nucleic acid)来实现的,因此,蛋白质和核酸有着极其重要的生物学意义。蛋白质及蛋白质的代谢是人体生命活动的重要组成部分。外源性蛋白质是为了补充补充体内蛋白质的不足和满足必须氨基酸的需求,因此外源性蛋白质及其代谢对人体的生命活动有着重要的意义。 1.外源性蛋白质的概述 1.1外源性蛋白质的概念 外源性蛋白质是指通过食物途径摄入体内的蛋白质。它是指由氨基酸(Amino acids)组成的高分子化合物,人体内大约含有30万种蛋白质,而整个生物界中约有101o—1012种蛋白质。 1.2蛋白质的基本组成 蛋白质的基本组成单位是氨基酸,虽然蛋白质的种类非常多,但

研究表明所有的蛋白质是由20种基本氨基酸所组成,而在这20种氨基酸中有8种是必需氨基酸;即,赖氨酸、色氨酸、异亮氨酸、苯丙氨、缬氨酸、亮氨酸、甲硫氨酸、苏氨酸。这8种必需氨基酸必须通过食物的途径方能获得。 2.外源性蛋白质的功能 外源性蛋白质的作用是为了补充体内蛋白质资源的不足,并且满足体内必需氨基酸的需求,因此外源性蛋白质可以提供蛋白质代谢所需要的原材料,保障蛋白质能够顺利的合成。 3.外源性蛋白质的代谢 从食物中摄取的蛋白质,经过消化水解成为氨基酸,吸收进入体内,与体内组织蛋白质分解成生的氨基酸混合在一起。在肝内的一部分氨基酸进行蛋白质的合成或进一步分解;另一部分随血液分布到全身各个组织器官中。在组织中,氨基酸一方面合成组织蛋白、酶和激素,另一方面则分解成为a-酮酸及氨。 这些合成及分解一般都是可逆反应,并且构成一个动态平衡。但是血浆中氨基酸的含量总是维持着恒定的;因此,血浆氨基酸是体内各组织之间氨基酸转运的的主要形式,即各组织器官总是不断的向血浆释放或摄取氨基酸。

蛋白-细胞核蛋白提取方法

提取细胞核蛋白的步骤: 1.向培养细胞的平皿中加入少量(保证在1.5ml TUBE内能放下)冷PBS(或1*D-Hanks) 2.,用细胞刮刀尽可能多的刮下细胞,收集到1.5ml的离心管中。 在预冷的离心机中,4度,1000rcf,1-3分钟,沉降细胞。 为尽可能多的获得细胞,可将一次离心后的上清再重复刮细胞一次; 2. 将细胞重悬于cell lysis buffer中(加入体积106细胞/200uL,体积估计方法还是没确 定,should be sufficient; 一般就是一个10cm平皿加1ml cell lysis buffer),添加蛋白酶抑 制剂;先破细胞膜,得到细胞核(没有用B DOUNCE); 冰上放置(不震荡,可偶尔用枪轻吹)30分钟至1小时(此时核膜没有破,有核染色为证),充分裂解; cell lysis buffer: 5mM PIPES pH 8.0 85mM KCL, 0.5% NP40, 1% protein inhibitor; 3. 4度,1000rcf,20分钟,上清为胞质蛋白(蛋白浓度比较低,如需要检测,建议先 浓缩一下),沉淀为细胞核; 此时可以将沉淀冻存于-70℃; 4. 将沉淀重悬于100-200 ul nucleai lysis buffer(体积视目的蛋白表达丰度而定,一般 50-100ul)中,添加蛋白酶抑制剂,冰上放置30分钟至1小时(每5分钟震荡一次),充分裂解;可以观察到沉淀慢慢消失,溶液变澄清; nucleai lysis buffer:成分同SDS lysis buffer; 50mM Tris-Cl pH 8.1, 10mM EDTA, 1% SDS, 1% protein inhibitor; 5. 四度,最大转速离心,10分钟以上(尽可能沉淀完全),上清即为细胞核蛋白; (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持) 编辑版word

结构变构和蛋白表达水平

结构变构和蛋白表达水平。 尽管多数研究是结构变异和mRNA表达水平的变化,确定这些涉及到的蛋白质水平如何变化是至关重要的。最近在秀丽隐杆线虫,果蝇和不同的哺乳动物物种中的几项研究,已经通过测量的mRNA和蛋白水平之间的相关性解决了这一问题。这些研究报道mRNA 和蛋白水平总体相关性,尤其是在哺乳动物之间的,其中基因组范围不超过40 %的蛋白质丰度可以通过mRNA的丰度进行说明,虽然翻译率比例增大时或影响这些消耗因素都考虑在内。因此,在mRNA拷贝数的变化所造成的变化不一定是在蛋白水平的相应变化的结果,作为蛋白质水平的转录后调控,翻译控制另外调节,蛋白质折叠和稳定性,以及高阶的调节基因和蛋白质之间的相互作用。在这种不完全相关中,研究所负责的QTL定位蛋白丰度(pqtls)发现了许多基因位点,不是由eQTL映射观察到的。尽管mRNA水平和蛋白表达之间的不完全相关,从eQTL研究结果可以方便建立变异细胞系和有机体的表型结构之间的联系。例如,eQTL映射已链接的乙二醛1(GLO1 )的重复到小鼠品系特异性焦虑行为和结构变体相关eQTLs也已成功连结至代谢性状的小鼠,包括体重和胆固醇水平。 连接结构的变异与表型 桥接结构变体和表型之间的水平差距,需要精确的结构变体的信息,并且要负责观察到识别元件的性状。这尤其对于许多功能元件相交结构变体具有挑战性。 确定结构变异断点和等位基因状态 结构变异经常发生在重复富含序列,最近节段性重复在基因组区域。因此,映射断点可以并发降低信号与噪音比的高通量基因组学技术。此外,结构变异可以产生于复杂的变化,涉及众多断点。巨大的染色体改建,称为染色体变异,其中几十到几百的断点被认为构成一个单一的结构,结构变体戏剧性的形成时,构成这样的复杂性的结构是一个极端的例子。虽然在最初观察几种类型的癌症中,证明类似的事件在种属之间已经呈现。划定的结构变体,包括这种复杂的重排的精细尺度结构,是通过促进配对末端DNA排序进展数据分析的。 除了断点精度,等位基因结构变异状态的知识也是至关重要的。据估计,常见11 %以上的基因座的窝藏,遗传结构变体是多等位基因的改变;即,各基因座进行多个独立或并发的DNA重排事件。在最近复制的基因组区域分配的位点的拷贝数的形式与夹层等结构变异的表型贡献具有相当大的问题。尽管如此,少数情况下反复重复的功能意义已经阐明。例如,在AMY1轨迹,该基因编码唾液淀粉酶的2至10已被检测到,这与蛋白质丰度成比例地关联,并显示与食用淀粉人口特异性的关联。最近开发的计算方法为同源基因的特异性复制基因分型,使用短的高通量测序数据读取也应促进在其他区域的基因组拷贝数状态的特定性状的推理。 映射最小的关键区域 在查明所影响的结构的基因组区域变型中,剩余的挑战是确定内部或周围的结构变体是与功能相关的基因。在所造成的罕见的基因疾病的情况下,递归结构的变异,具有相同的表型,表现为患者的基因组重排的映射,但不同的,部分重叠的变异,被用来确定最小的基因组重叠临界区域。最小的临界区域映射的值一般最大化,具有由重叠的和非相同的断点表型患者的可用性。使用这样的原理有助于描绘了可能是致病的基因组区域,对于观

(完整版)蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

8大肠杆菌中高效表达外源蛋白的策略++

基 因 库 非盈利性基因、菌种保藏中心 基因酷保藏中心资源共享专区 基 因 酷 学术科研、人才项目交流平台 实验技术交流、基础实验专题区 在大肠杆菌中高效表达外源蛋白的策略 赵军 侯云德 (病毒基因工程国家重点实验室 100052 北京) 本世纪60至70年代对大肠杆菌的研究使之成为自然界中最普遍为人们所认识的生物体。大肠杆菌具有两个显著特征:操作简单和能在廉价的培养基中高密度培养,它的这些特征加上十多年外源基因表达的经验使其在大多数科研应用中成为高效表达异源蛋白最常用的原核表达系统。尽管大肠杆菌有众多的优点,但并非每一种基因都能在其中有效表达。这归因于每种基因都有其独特的结构、mRNA 的稳定性和翻译效率、蛋白质折叠的难易程度、宿主细胞蛋白酶对蛋白质的降解、外源基因和E.coli 在密码子利用上的主要差别以及蛋白质对宿主的潜在毒性等等。但知识的大量积累还是有助于为表达方面某些特定的困难提供一般的解决方法。大肠杆菌作为表达系统的主要障碍包括:不能象真核蛋白那样进行翻译后修饰、缺乏将蛋白质有效释放到培养基中的分泌机制和充分形成二硫键的能力。另一方面,许多真核蛋白在非糖基化的形式下能保留其生物学活性,因而也就可以用大肠杆菌来表达。如何实现外源基因在原核细胞中的有效表达,自60年代以来,对影响外源基因在其表达体系中表达效率的各个因素作了大量实验研究,并有多篇归纳性综述发表[1,2,3]。国内针对外源基因在原核细胞中高效表达的关键因素,构建了高效表达载体[4],并在此基础上成功表达了 一系列细胞因子的基因[5,6,7]。我们在分析了国内外有关在原核系统中表达蛋白的实验资料 的基础上,对在大肠杆菌中高效表达外源蛋白的策略所涉及的内容进行全面的总结,以期有助于我国在这方面的研究。 有效表达载体的构型 构建表达质粒需要多种元件,需要仔细考虑它们的组合,以保证最高水平的蛋白质合成。E.coli 表达载体的基本结构如图1所示[8]。 RBS P R -35 -10 SD coding sequence TT Tet Ori mRNA 5' UAAGGAGG(N)8 AUG(91%) 16S rRNA 3'HO AUUCCUCC GUG(8%) UUG(1%) 启动子(以杂和的tac 启动子为例)位于核糖体结合位点(RBS )上游10-100bp 处,由

相关文档
相关文档 最新文档