文档库 最新最全的文档下载
当前位置:文档库 › 定点数浮点数同步习题

定点数浮点数同步习题

定点数浮点数同步习题
定点数浮点数同步习题

计算机中数据的表示方法同步习题

姓名

一、选择题

1、下列数中最大的数是()。

A)11011000.01B B)267.46Q

C)D9.4AH D)215.79D

2、对两个二进制数1与1分别进行算术加、逻辑加运算,其结果用二进制形式分别表示为()。

A)1、10 B)1、1

C)10、1 D)10、10

3与二进制数110.01011等值的十六进制为()H。

A)C.B B)6.51

C)C.51 D)6.58

4、若X1的原码、X2的反码、X3的补码均为1111,则()。

A)X1最大B)X2最大

C)X3最大D)X1=X2=X3

5、下列数中最小的数为()。

A)(101001)2B)(52)8C)(2B)16 D)(50)10

6、在计算机中,一个字节最大容纳的十进制数为()。

A)127 B)128 C)256 D)255

7、八位二进制数补码为11111101,对应的十进制数为()。

A)509 B)253 C)-3 D)-2 8、一个数是152,它与6AH等值,该数是()。

A)二进制数B)八进制数

C)十进制数D)十六进制数

9、在机器数的三种表示形式中,符号位可以和数值位一起参与运算的是()。A)原码B)补码C)反码D)反码、补码

10、十六进制数25E.F6转换成二进制数为()。

A)101011110.1111110 B)1001011110.1111011

C)111101011.11101 D)111001011.11011

数的定点表示和浮点表示

计算机处理的数值数据多数带有小数,小数点在计算机常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。 1. 定点数表示法(fixed-point) 所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。在计算机常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。一般常称前者为定点小数,后者为定点整数。 定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。若数据x的形式为x=x0.x1x2… xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为: 一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2-n。如果各位均为1,则数的绝对值最大,即|x|max=1-2-n。所以定点小数的表示围是:

2-n≤|x|≤1 -2-n 定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。若数据x的形式为x=x0x1x2…xn(其中x0为符号位,x1~xn是尾数,xn为最低有效位),则在计算机中的表示形式为: 定点整数的表示围是: 1≤|x|≤2n-1 当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原

浮点数和定点数的区别

cloudseawang 定点数与浮点数区别 最近做HDR时,经常要用NV提供的16位纹理,它的说明书16位能达到24位的精度,就很奇怪?一直搞不懂浮点数的精度怎么算的? 今天认真看了一下IEEE float point的标准,终于明白是什么了 1. 什么是浮点数 在计算机系统的发展过程中,曾经提出过多种方法表达实数。典型的比如相对于浮点数的定点数(Fixed Point Number)。在这种表达方式中,小数点固定的位于实数所有数字中间的某个位置。货币的表达就可以使用这种方式,比如99.00 或者00.99 可以用于表达具有四位精度(Precision),小数点后有两位的货币值。由于小数点位置固定,所以可以直接用四位数值来表达相应的数值。SQL 中的NUMBER 数据类型就是利用定点数来定义的。还有一种提议的表达方式为有理数表达方式,即用两个整数的比值来表达实数。 定点数表达法的缺点在于其形式过于僵硬,固定的小数点位置决定了固定位数的整数部分和小数部分,不利于同时表达特别大的数或者特别小的数。最终,绝大多数现代的计算机系统采纳了所谓的浮点数表达方式。这种表达方式利用科学计数法来表达实数,即用一个尾数(Mantissa ),一个基数(Base),一个指数(Exponent)以及一个表示正负的符号来表达实数。比如123.45 用十进制科学计数法可以表达为1.2345 × 102 ,其中1.2345 为尾数,10 为基数,2 为指数。浮点数利用指数达到了浮动小数点的效果,从而可以灵活地表达更大范围的实数。 提示: 尾数有时也称为有效数字(Significand)。尾数实际上是有效数字的非正式说法。同样的数值可以有多种浮点数表达方式,比如上面例子中的123.45 可以表达为12.345 ×101,0.12345 × 103 或者1.2345 × 102。因为这种多样性,有必要对其加以规范化以达到统一表达的目标。规范的(Normalized)浮点数表达方式具有如下形式: ±d.dd...d × β e , (0 ≤ d i < β) 其中 d.dd...d 即尾数,β 为基数,e 为指数。尾数中数字的个数称为精度,在本文中用p 来表示。每个数字d 介于0 和基数之间,包括0。小数点左侧的数字不为0。 基于规范表达的浮点数对应的具体值可由下面的表达式计算而得: ±(d 0 + d 1β-1 + ... + d p-1β-(p-1))β e , (0 ≤ d i < β) 对于十进制的浮点数,即基数β 等于10 的浮点数而言,上面的表达式非常容易理解,也很直白。计算机内部的数值表达是基于二进制的。从上面的表达式,我们可以知道,二进制数同样可以有小数点,也同样具有类似于十进制的表达方式。只是此时β 等于2,而每个数字d 只能在0 和 1 之间取值。比如二进制数1001.101 相当于1 × 2 3 + 0 × 22 + 0 ×21 + 1 ×20 + 1 ×2-1 + 0 ×2-2 + 1 ×2-3,对应于十进制的9.625。其规范浮点数表达为1.001101 × 23。 2. IEEE 浮点数 计算机中是用有限的连续字节保存浮点数的。保存这些浮点数当然必须有特定的格式,Java 平台上的浮点数类型float 和double 采纳了IEEE 754 标准中所定义的单精度32 位浮点数和双精度64 位浮点数的格式。 注意: Java 平台还支持该标准定义的两种扩展格式,即float-extended-exponent 和double-extended-exponent 扩展格式。这里将不作介绍,有兴趣的读者可以参考相应的参考资料。 在IEEE 标准中,浮点数是将特定长度的连续字节的所有二进制位分割为特定宽度的符号域,指数域和尾数域三个域,其中保存的值分别用于表示给定二进制浮点数中的符号,

数的定点表示和浮点表示

计算机处理的数值数据多数带有小数,小数点在计算机中通常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。 1. 定点数表示法(fixed-point) 所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。在计算机中通常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。一般常称前者为定点小数,后者为定点整数。 定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。若数据x的形式为x=x0.x1x2… xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为: 一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2-n。如果各位均为1,则数的绝对值最大,即|x|max=1-2-n。所以定点小数的表示范围是:

2-n≤|x|≤1 -2-n 定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。若数据x的形式为x=x0x1x2…xn(其中x0为符号位,x1~xn是尾数,xn为最低有效位),则在计算机中的表示形式为: 定点整数的表示范围是: 1≤|x|≤2n-1 当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原

第7章DSP定点数和浮点数(重要)

第7章D S P定点数和浮点数(重要) 本期教程主要跟大家讲解一下定点数和浮点数的基础知识,了解这些基础知识对于后面学习ARM官方的DSP库大有裨益。特别是初学的一定要理解这些基础知识。 7.1 定点数和浮点数概念 7.2 IEEE浮点数 7.3 定点数运算 7.4总结 7.1定点数和浮点数概念 如果小数点的位置事先已有约定,不再改变,此类数称为“定点数”。相比之下,如果小数点的位置可变,则称为“浮点数”(定点数的本质是小数,整数只是其表现形式)。 7.1.1定点数 常用的定点数有两种表示形式:如果小数点位置约定在最低数值位的后面,则该数只能是定点整数;如果小数点位置约定在最高数值位的前面,则该数只能是定点小数。 7.1.2浮点数 在计算机系统的发展过程中,曾经提出过多种方法表达实数。典型的比如相对于浮点数的定点数(Fixed Point Number)。在这种表达方式中,小数点固定的位于实数所有数字中间的某个位置。货币的表达就可以使用这种方式,比如 99.00 或者 00.99 可以用于表达具有四位精度(Precision),小数点后有两位的货币值。由于小数点位置固定,所以可以直接用四位数值来表达相应的数值。SQL 中的 NUMBER 数据类型就是利用定点数来定义的。还有一种提议的表达方式为有理数表达方式,即用两个整数的比值来表达实数。 定点数表达法的缺点在于其形式过于僵硬,固定的小数点位置决定了固定位数的整数部分和小数部分,不利于同时表达特别大的数或者特别小的数。最终,绝大多数现代的计算机系统采纳了所谓的浮点数表达方式。这种表达方式利用科学计数法来表达实数,即用一个尾数(Mantissa ),一个基数(Base),一个指数(Exponent)以及一个表示正负的符号来表达实数。比如 123.45 用十进制科学计数法可以表达为 1.2345 × 102,其中 1.2345 为尾数,10 为基数,2 为指数。浮点数利用指数达到了浮动小数点的效果,从而可以灵活地表达更大范围的实数。 提示: 尾数有时也称为有效数字(Significand)。尾数实际上是有效数字的非正式说法。

关于浮点数与定点数的理解

定点数与浮点数 计算机处理的数值数据多数带有小数,小数点在计算机中通常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。 1. 定点数表示法(fixed-point) 所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。在计算机中通常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。一般常称前者为定点小数,后者为定点整数。 定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。若数据x 的形式为x = x0.x1x2…x n( 其中x0为符号位,x1~x n是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为: 一般说来,如果最末位x n = 1,前面各位都为0 ,则数的绝对值最小,即|x|mi n = 2-n。如果各位均为1,则数的绝对值最大,即|x|ma x =1-2-n 。所以定点小数的表示范围是: 2- n ≤ | x| ≤ 1 - 2- n 定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。若数据x 的形式为x = x0x1x2…x n ( 其中x0为符号位,x1~x n是尾数,x n为最低有效位),则在计算机中的表示形式为:

定点整数的表示范围是: 1≤ | x| ≤ 2n - 1 当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原成实际数值。若比例因子选择不当,往往会使运算结果产生溢出或降低数据的有效精度。 用定点数进行运算处理的计算机被称为定点机。 2. 浮点数表示法(floating-point number) 4与科学计数法相似,任意一个J进制数N,总可以写成 N = J E × M 式中M称为数N 的尾数(mantissa),是一个纯小数;E为数N 的阶码(e x ponent),是一个整数,J称为比例因子J E的底数。这种表示方法相当于数的小数点位置随比例因子的不同而在一定范围内可以自由浮动,所以称为浮点表示法。 底数是事先约定好的(常取2),在计算机中不出现。在机器中表示一个浮点数时,一是要给出尾数,用定点小数形式表示。尾数部分给出有效数字的位数,因而决定了浮点数的表示精度。二是要给出阶码,用整数形式表示,阶码指明

浮点运算转定点运算

与afreez一起学习DSP中浮点转定点运算 一:浮点与定点概述 1.1相关定义说明 定点数:通俗的说,小数点固定的数。以人民币为例,我们日常经常说到的如123.45¥,789.34¥等等,默认的情况下,小数点后面有两位小数,即角,分。如果小数点在最高有效位的前面,则这样的数称为纯小数的定点数,如0.12345,0.78934等。如果小数点在最低有效位的后面,则这样的数称为纯整数的定点数,如12345,78934等。 浮点数:一般说来,小数点不固定的数。比较容易的理解方式是,考虑以下我们日常见到的科学记数法,拿我们上面的数字举例,如123.45,可以写成以下几种形式: 12.345x101 1.2345 x102 0.12345 x103xi …… 为了表示一个数,小数点的位置可以变化,即小数点不固定。 1.2定点数与浮点数的对比 为了简单的把问题描述清楚,这里都是十进制数字举例,详细的分析,大家可以在后面的文章中看到。 (1)表示的精度与范围不同 例如,我们用4个十进制数来表达一个数字。对于定点数(这里以定点整数为例),我们表示区间[0000,9999]中的任何一个数字,但是如果我们要想表示类似1234.3的数值就无能为力了,因为此时的表示精度为1/100=1;如果采用浮点数来表示(以归整的科学记数法,即小数点前有一位有效位,为例),则可以表示[0.000,9.999]之间的任何一个数字,表示的精度为1/103=0.001,精度比上一种方式提高了很多,但是表示的范围却小了很多。 也就是说,一般的,定点数表示的精度较低,但表示的数值范围较大;而浮点数恰恰相反。 (2)计算机中运算的效率不同 一般说来,定点数的运算在计算机中实现起来比较简单,效率较高;而浮点数的运算在计算机中实现起来比较复杂,效率相对较低。 (3)硬件依赖性 一般说来,只要有硬件提供运算部件,就会提供定点数运算的支持(不知道说的确切否,没有听说过不支持定点数运算的硬件),但不一定支持浮点数运算,如有的很多嵌入式开发板就不提供浮点运算的支持。 1.3与DSP的关系 一般说来,DSP处理器可以分为两大类:定点与浮点。两者相比较而言,定点DSP处理器速度快,功耗低,价格也便宜;而浮点DSP则计算精度高,动态范围大。

DSP浮点转定点方法总结

CII Technologies, Inc. 目录 目录 定点运算方法 (2) 1.1数的定标 (2) 1.2 C语言:从浮点到定点 (3) 1.2.1 加法 (3) 1.2.2乘法 (5) 1.2.3除法 (6) 1.2.4 三角函数运算 (7) 1.2.5 开方运算 (8) 1.3附录 (9) 1.3.1 附录1:定点函数库 (9) 1.3.2附录2:正弦和余弦表 (18)

CII Technologies, Inc. 浮点转定点方法总结 定点运算方法 1.1 数的定标 对某些处理器而言,参与数值运算的数就是16位的整型数。但在许多情况下,数学运算过程中的数不一定都是整数。那么,如何处理小数的呢?应该说,处理器本身无能为力。那么是不是就不能处理各种小数呢?当然不是。这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。这就是数的定标。 通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。数的定标用Q表示法。表1.1列出了一个16位数的16种Q表示能表示的十进制数值范围和近似的精度。 Q表示精度(近似) 十进制数表示范围 Q15 0.00002 -1≤X≤0.9999695 Q14 0.00005 -2≤X≤1.9999390 Q13 0.0001 -4≤X≤3.9998779 Q12 0.0002 -8≤X≤7.9997559 Q11 0.0005 -16≤X≤15.9995117 Q10 0.001 -32≤X≤31.9990234 Q9 0.002 -64≤X≤63.9980469 Q8 0.005 -128≤X≤127.9960938 Q7 0.01 -256≤X≤255.9921875 Q6 0.02 -512≤X≤511.9804375 Q5 0.04 -1024≤X≤1023.96875 Q4 0.08 -2048≤X≤2047.9375 Q3 0.1 -4096≤X≤4095.875 Q2 0.25 -8192≤X≤8191.75 Q1 0.5 -16384≤X≤16383.5 Q0 1 -32768≤X≤32767 表1.1 Q表示、S表示及数值范围 从表1.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。例如: 16进制数2000H=8192,用Q0表示 16进制数2000H=0.25,用Q15表示 从表1.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。例如,Q0的数值范围是-32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为

浮点数定点运算

DSP芯片的定点运算 1.数的定标 在定点DSP芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。一个整型数的最大表示范围取决于DSP芯片所给定的字长,一般为16位或24位。显然,字长越长,所能表示的数的范围越大,精度也越高。如无特别说明,本书均以16位字长为例。DSP芯片的数以2的补码形式表示。每个16位数用一个符号位来表示数的正负,0表示数值为正,1则表示数值为负。其余15位表示数值的大小。因此 二进制数0010000000000011b=8195 二进制数1111111111111100b=-4 对DSP芯片而言,参与数值运算的数就是16位的整型数。但在许多情况下,数学_运算过程中的数不一定都是整数。那么,DSP芯片是如何处理小数的呢?应该说,DSP芯片本身无能为力。那么是不是说DSP芯片就不能处理各种小数呢?当然不是。这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。这就是数的定标。 通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。数的定标有Q表示法和S表示法两种。表3.1列出了一个16位数的16种Q表示、S表示及它们所能表示的十进制数值范围。 从表3.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。例如: 16进制数2000H=8192,用Q0表示 16进制数2000H=0.25,用Q15表示 但对于DSP芯片来说,处理方法是完全相同的。 从表3.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。例如,Q0的数值范围是-32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为 1/32768 = 0.00003051。因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想提高精度,则数的表示范围就相应地减小。在实际的定点算法中,为了达到最佳的性能,必须充分考虑到这一点。 浮点数与定点数的转换关系可表示为: 浮点数(x)转换为定点数( ): 定点数( )转换为浮点数(x): 例如,浮点数 x=0.5,定标 Q=15,则定点数=,式中表示下取整。反之,一个用 Q=15 表示的定点数16384,其浮点数为16384×2-15 =16384/32768=0.5。 表3.1 Q表示、S表示及数值范围 Q表示 S表示十进制数表示范围 Q15 S0.15 -1≤X≤0.9999695 Q14 S1.14 -2≤X≤1.9999390 Q13 S2.13 -4≤X≤3.9998779 Q12 S3.12 -8≤X≤7.9997559 Q11 S4.11 -16≤X≤15.9995117 Q10 S5.10 -32≤X≤31.9990234 Q9 S6.9 -64≤X≤63.9980469 Q8 S7.8 -128≤X≤127.9960938 Q7 S8.7 -256≤X≤255.9921875 Q6 S9.6 -512≤X≤511.9804375 Q5 S10.5 -1024≤X≤1023.96875 Q4 S11.4 -2048≤X≤2047.9375 Q3 S12.3 -4096≤X≤4095.875 Q2 S13.2 -8192≤X≤8191.75 Q1 S14.1 -16384≤X≤16383.5 Q0 S15.0 -32768≤X≤32767

定点数和浮点数表示

定点数 目录[隐藏] 定点数 1 定点数的表示 1.1 无符号数的表示 1.2 带符号数的表示 (1) 定点整数 (2) 定点小数 (3) 原码表示 (4) 补码表示 定点数 1 定点数的表示 1.1 无符号数的表示 1.2 带符号数的表示 (1) 定点整数 (2) 定点小数 (3) 原码表示 (4) 补码表示 ?(5) 反码表示 ?(6) 移码 ?定点数与浮点数的比较

原码乘法 [编辑本段] 定点数 【dìng diǎn shù 】 计算机中采用的一种数的表示方法。参与运算的数的小数点位置固定不变。 [编辑本段] 1 定点数的表示 [编辑本段] 1.1 无符号数的表示 指整个机器字长的全部二进制位均表示数值位,相当于数的绝对值。若机器字长为n+1为,则数值表示为:

X=X0X1X2...Xn 其中Xi={0,1}, 0<=i<=n 即X0*2^n + X1*2 ^(n-1) + X2*2^(n-2) + ... + Xn-1*2 + Xn 数值范围是0≤X≤2^(n+1) - 1 例如:1111表示15。 [编辑本段] 1.2 带符号数的表示 最高位被用来表示符号位,而不再表示数值位。 [编辑本段] (1) 定点整数 小数点位固定在最后一位之后称为定点整数。若机器字长为n +1为,数值表示为: X=X0X1X2...Xn,其中Xi={0,1},0≤i≤n 即(-1)^X0 * (X1*2^(n -1) + X2*2^(n-2) + ... + Xn-1*2 + Xn) 数值范围是-(2^n-1)≤0≤2^n-1 例如:1111表示-7。 [编辑本段] (2) 定点小数 小数点固定在最高位之后称为定点小数。若机器字长为n+1为,数值表示为: X=X0.X1X2...Xn,其中Xi={0,1},0≤i≤n (这里X0不表示数字,只表示符号,若X0=0,则代表X=0.X1X2...Xn,X0=1,则代表-0.X1X2...Xn)。

定点与浮点运算的比较

定点与浮点运算DSP的比较 定点运算DSP在应用中已取得了极大的成功,而且仍然是DSP应用的主体。然而,随着对DSP处理速度与精度、存储器容量、编程的灵活性和方便性要求的不断提高、自80年代中后期以来,各DSP生产厂家陆续推出了各自的32bit 浮点运算DSP。 和定点运算DSP相比,浮点运算DSP具有许多优越性: 浮点运算DSP比定点运算DSP的动态范围要大很多。定点DSP的字长每增加1bit,动态范围扩大6dB。16bit字长的动态范围为96dB。程序员必须时刻关注溢出的发生。例如,在作图像处理时,图像作旋转、移动等,就很容易产生溢出。这时,要么不断地移位定标,要么作截尾。前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。总之,是使整个系统的性能下降。在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。而32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。 由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP。这一优点在实现高精度复杂算法时尤为突出,为复杂算法的实时处理提供了保证。 32bit浮点DSP的总线宽度较定点DSP宽得多,因而寻址空间也要大得多。这一方面为大型复杂算法提供了可能、因为省的DSP目标子程序已使用到几十MB存储器或更多;另一方面也为高级语言编译器、DSP操作系统等高级工具软件的应用提供了条件。 DSP的进一步发展,必然是多处理器的应用。新型的浮点DSP已开始在通信口的设置和强化、资源共享等方面有所响应。

浮点转定点方法总结

浮点转定点方法总结 —孔德琦

目录 定点运算方法................................................ 错误!未定义书签。 数的定标 ............................................... 错误!未定义书签。 C语言:从浮点到定点 ................................. 错误!未定义书签。 加法.................................................... 错误!未定义书签。 乘法..................................................... 错误!未定义书签。 除法..................................................... 错误!未定义书签。 三角函数运算............................................ 错误!未定义书签。 开方运算................................................ 错误!未定义书签。 附录...................................................... 错误!未定义书签。 附录1:定点函数库...................................... 错误!未定义书签。 附录2:正弦和余弦表..................................... 错误!未定义书签。

相关文档
相关文档 最新文档