文档库 最新最全的文档下载
当前位置:文档库 › 奥氏体不锈钢焊接接头的晶间腐蚀.

奥氏体不锈钢焊接接头的晶间腐蚀.

奥氏体不锈钢焊接接头的晶间腐蚀.
奥氏体不锈钢焊接接头的晶间腐蚀.

https://www.wendangku.net/doc/0617346214.html,

https://www.wendangku.net/doc/0617346214.html,

奥氏体不锈钢的焊接工艺

奥氏体不锈钢的焊接工艺 奥氏体不锈钢的焊接工艺 一、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,与氧亲和力强的元素,如钛、硼、铝等易烧损。 2. 氩弧焊 有钨极弧焊和熔化极氩弧焊两种,是焊接奥氏体不锈钢较为理想的焊接方法。因氩气保护效果好,合金元素过度系数高,焊缝成分易于控制;由于热源较集中,又有氩气冷却作用,其焊接热影响区较窄,晶粒长大倾向小,焊后不需要清渣,可以全位置焊接和[wiki]机械[/wiki]化焊接。缺点是设备较复杂,一般须使用直流弧焊电源,成本较高。 TIG有手工和自动两种,前者较后者熔敷率低些。TIG最适于3mm以下薄板不锈钢焊接,在奥氏体不锈钢[wiki]压力容器[/wiki]和管道的对接和封底焊等广为应用。对于厚度小于0.5mm的超薄板,要求用10~15A电流焊接,此时电弧不稳,宜用脉冲TIG焊。厚度大于3mm有时须开坡口和采用多层多道焊,通常厚度大于13mm,考虑制造成本,不宜再用TIG焊。 3. 等离子弧焊 是焊接厚度在10~12mm以下的奥氏体不锈钢的理想方法。对于0.5mm以下的薄板,采用微束等离子弧焊尤为合适。因为等离子弧热量集中,利用小孔效应技术可以不开坡口,不加填充金属单面焊一次成形,很适合于不锈钢管的纵缝焊接。 焊接工艺参数的选择 焊接时,为保证焊接质量,必须选择合理的工艺参数,所选定的焊接工艺参数总称为焊接工艺规范。例如,手工电弧焊的焊接工艺规范包括:焊接电流、焊条直径、焊接速度、电弧长

奥氏体不锈钢焊接接头的晶间腐蚀

奥氏体不锈钢焊接接头的晶间腐蚀 一、实验目的: 1、观察与分析奥氏体不锈钢焊接接头的显微组织。 2、了解奥氏体不锈钢焊接接头产生晶间腐蚀的机理及晶间腐蚀区显微组织特征。 二、实验装置及实验材料: 1、C 法电解浸蚀装置 2、金相显微镜 3、吹风机 4、腐蚀液稀释为10%的草酸(C2H4O4·2H2O 分析纯)水溶液1000ml 5、实验材料1Cr18Ni9Ti(或1Cr18Ni9)钢手弧焊或TIG 焊试片40×20×1.5~3mm 6对 6、A137焊条或A123焊条 7、秒表 8、乙醇、丙酮、棉花、各号金相砂纸等。 三、实验原理: 晶间腐蚀是沿晶粒边界发生的腐蚀现象 。现以18—8型奥氐体不锈钢中最常用的含稳定元素的1Cr18Ni9Ti 钢为例 ,来讨论晶间腐蚀的问题。 1Cr18Ni9Ti 钢含0.02%C 和0.8%Ti 。碳在室 温奥氏体中的最大溶解度低于0.03%,多余的碳则通过固熔处理与钛结合形成稳定的碳化物TiC 。由于钛对碳的固定作用,避免了在晶界形成碳化铬,从而防止了晶间腐蚀的产生。故1Cr18Ni9Ti 钢具有抗晶间腐蚀能力,一般不会产生晶间腐蚀现象。 然而在焊接接头中,情况有所不同。奥氏体不锈钢的焊接接头,通常可分为以下几个区域(见图1) (一)焊缝金属 主要为柱状树枝晶,是单 相奥氏体组织还 是δγ+双相组织,将取决于母材和填充金属的化学成分。 (二) 过热区 加热超过1200的近缝区,晶粒有明显的长大。 (三) 敏化区 加热 峰值温度在600—1000的区域,组织无明显变化。对开不含稳定化元素的18—8钢,可能出现晶界碳化铬的析出。产生贫铬层,有晶问腐蚀倾向。 (四)母材金属 对于含稳定化元素的18—8钢,如1Cr18Ni9Ti 钢,峰值温度超过1200的过热 区发生TiC 分解量愈大(图2-16),从而使 稳定化作用大为减弱,甚至完全消失。在随 后的冷却过程中,由于碳原子的体积很小,扩散能力比钛原子强,碳原子趋于向奥氏体晶界扩散迁移,而钛原子则来不及扩散仍保留在奥氏体点阵节点上。因此,碳原子析集于晶界附近成为过饱和状态。 1—焊缝金属; 2—过热 区; 3— 敏化区;4母材金属 图1 奥氏体不锈钢焊 接接头各区示意图

奥氏体不锈钢焊接简介

奥氏体不锈钢焊接简介 一、奥氏体不锈钢的焊接性 金属材料的焊接性不仅取决于金属本身的成分与组织,同时与焊接的热作用直接相关。焊接性并不是金属材料的固有性能,而是随焊接技术的发展而变化的。金属材料的焊接性可分为工艺焊接性和使用焊接性: (1)工艺焊接性是指金属材料对各种焊接方法的适应能力。它不仅取决于金属本身的成分与性能,而且与焊接热源的性质、保护方式、预热及后热等工艺措施有关。 (2)使用焊接性是指焊接接头或整体结构,满足技术条件中所规定的使用性能的能力。显然,使用焊接性与产品的工作条件有密切关系。奥氏体不锈钢的焊接性工艺焊接性方面,很容易获得无缺陷的焊接接头,也不需要采用特殊的工艺措施即结合性能良好。 使用焊接性方面,如果处在腐蚀的介质中,焊接接头常常沿晶界被腐蚀,即使用性能不好。奥氏体不锈钢由于具有较高的变形能力并不可淬硬,所以总的来说焊接性能良好。 二、奥氏体不锈钢的焊接缺陷 奥氏体不锈钢虽用的最为广泛,但是焊接材料或焊接工艺不正确时,会出现以下缺陷:﹙1﹚晶间腐蚀,引起金属机械性能和耐腐蚀性能的下降。对应措施:选用合适焊条;减少危险温度范围停留时间;接触介质的那面焊缝最后焊接;焊后固溶 处理要妥当。 ﹙2﹚应力腐蚀开裂。相对应的处理措施:合理制定成型加工和组装工艺;合理选择焊材;采取合适的焊接工艺;采取合理的焊接顺序;焊后正确热处理。 ﹙3﹚焊缝成形不良,易造成表面成型不良。防治措施:对于焊缝成形不良及焊接热影响区的晶间腐蚀问题,可以通过焊接工艺来加以解决。 ﹙4﹚奥氏体不锈钢的焊接技术注意点 根据上述不锈钢的焊接特点,为保证接头的质量,应当采用以下焊接工艺:①焊前准备。做好焊条及焊缝的清洁工作。②焊接薄板和拘束度较小的不锈钢件,可选用氧化钛型药皮焊条。③对于立焊和仰焊位置,应采用氧化钙型药皮焊条。④气体保护焊和埋弧自动焊时,应选用锰铬含量比母材高的焊丝,以补偿焊接过程中合金元素的烧毁。⑤在焊接过程中,必须将焊件保持较低的层间温度,最好不超过150℃⑥手工电弧焊时,应在焊条说明书规定的电流范围内选择焊接电流。⑦在操作技术上应采用窄焊道技术,焊接时尽量不摆动焊条,在保持良好熔合的前提下,尽可能提高焊接速度。⑧不锈钢罕见焊接后一般不作消除应力处理。通过采用以上焊接工艺,可提高奥氏体不锈钢的焊接质量。 三、奥氏体不锈钢的焊接工艺 ①、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,

奥氏体不锈钢管道焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

2205双相不锈钢的焊接工艺规程完整

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。 1.1 我国双相不锈钢的应用 双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于

化工设备焊接接头晶间腐蚀与防护

化工设备焊接接头晶间腐蚀与防护 化工设备是组成一家石油化工企业的基本。其随着经济的发展,对化工产品的需求不断的增加,越来越多的设备在其设计能力下满负荷运行。因而目前对全球的化工企业而言,设备的防护保养方面,防止受到腐蚀发生故障而造成损失已成为非常重要的问题。许多专家也认为,材料保护和防腐措施是降低维护费用和使石油化工厂安全稳定运行的重要保证。 化工设备腐蚀破坏到处可见,腐蚀事故频频发生,这除了因腐蚀本身所具有的自发性质外,很大程度上是因为人们对腐蚀的危害性估计不足,对腐蚀防护的重要意义认识不深,对腐蚀与防护科学缺乏应有的知识,没有采取防腐蚀措施、或采取的防腐蚀措施不当所致。 而有关数据表明,各类设备类腐蚀现象中,焊接接头晶间腐蚀尤为突出严重。其造成的经济损失不可估量。所以本文着重介绍焊接接头腐蚀及晶间腐蚀的产生原因及防护。 下面就是一个典型的,由焊接接头腐蚀而引起的化工生产事故。 “山东赫达股份有限公司9.12爆燃事故” 2010年9月12日,山东赫达股份有限公司发生爆燃事故,造成2人重伤,2人轻伤,直接经济损失约230余万元。山东赫达股份有限公司位于淄博市周村区王村镇王村,注册资本1900万元,职工总数220人,主要从事纤维素醚系列产品、PAC精制棉、压力容器制造等产品的生产和销售。 1 事故经过 2010年9月12日11时10分左右,山东赫达股份有限公司化工厂纤维素醚生产装置一车间南厂房在脱绒作业开始约1小时后,脱绒釜罐体下部封头焊缝处突然开裂(开裂长度120cm,宽度1cm),造成物料(含有易燃溶剂异丙醇、甲苯、环氧丙烷等)泄漏,车间人员闻到刺鼻异味后立即撤离并通过电话向生产厂

奥氏体不锈钢304焊接性评定实验报告

奥氏体不锈钢304焊接性评定试验报告 奥氏体不锈钢304具有非常好的塑性和韧性,这决定了它具有良好的弯折、卷曲和冲压成型性,因而便于制成各种形状的构件、容器或管道;奥氏体型不锈钢304的耐腐蚀性能特别优良,是它获得最为广泛应用的根本原因。也正是这样,在评价焊接质量时必然特别强调焊接接头的开裂倾向、焊接缺陷敏感性和耐晶间腐蚀等的能力。 本报告结合奥氏体不锈钢304的焊接特点,进行了手工钨极氩弧焊评定性试验,现就试验结果作一介绍 一、奥氏体不锈钢的焊接特点: 奥氏体不锈钢韧性、塑性好,焊接时不会发生淬火硬化,尽管其线膨胀系数比碳钢大得多,焊接过程中的弹塑性应力应变量很大,却极少出现冷裂纹;尽管有很强的加工硬化能力,由于焊接接头不存在淬火硬化区,所以,即使受焊接热影响而软化的区域,其抗拉强度仍然不低。304钢的热胀冷缩特别大所带来的焊接性的问题,主要有两个:一是焊接热裂纹,这与奥氏体不锈钢的晶界特性和对某些微量杂质如硫、磷等敏感有关;二是焊接变形大。 1、焊接接头的热裂纹及其对策 1.1焊接接头产生热裂纹的原因 单相奥氏体组织的奥氏体型不锈钢焊接接头易发生焊接热裂纹,这种裂纹是在高温状态下形成的。常见的裂纹形式有弧坑裂纹、热影响区裂纹、焊缝横向和纵向裂纹。就裂纹的物理本质上讲,有凝固裂纹、液化裂纹和高温低塑性裂纹等多种。奥氏体型不锈钢易产生焊接接头热裂纹的主要原因有以下几点: 1)焊缝金属凝固期间存在较大的拉应力,这是产生凝固裂纹的必要条件。由于奥氏体型不锈钢的热导率小,线膨胀系数大,在焊接区降温(收缩)期焊接接头必然要承受较大的拉应力,这也促成各种类型热裂纹的产生。 2)方向性强的焊缝柱状晶组织的存在,有利于有害杂质的偏析及晶间液态夹层的形成。 3)奥氏体不锈钢的品种多,母材及焊缝的合金组成比较复杂。含镍量高的合金对硫和磷形成易熔共晶更为敏感,在某些钢中硅和铌等元素,也能形成有害的易熔晶间层。 1.2避免奥氏体型不锈钢焊接热裂纹的途径。 (1)冶金措施 1)焊缝金属中增添一定数量的铁素体组织,使焊缝成为奥氏体-铁素体双相组织,能很有效地防止焊缝热裂纹的产生。这是由于铁素体能够溶解较多的硫、磷等微量元素,使其在晶界上数量大大减少;同时由于奥氏体晶界上的低熔点杂质被铁素体分散和隔开,避免了低熔点杂质呈连续网状分布,从而阻碍热裂纹的扩展和延伸。常用以促成铁素体的元素有铬、钼、钒等。 2)控制焊缝金属中的铬镍比,对于304型不锈钢来说,当焊接材料的铬镍比小于1.61时,就易产生热裂纹;而铬镍比达到2.3~3.2时,就可以防止热裂纹的产生。这一措施的 实质也是保证有一定量的铁素体的存在。 3)在焊缝金属中严格限制硼、硫、磷、硒等有害元素的含量,以防止热裂纹的产生。对于不允许存在铁素体的纯奥氏体焊缝,可以加入适当的锰,少许的碳、氮,同时减少硅的含量。 (2)工艺措施 1)采用适当的焊接坡口或焊接方法,使母材金属在焊缝金属中所占的分量减少(即小的熔合比)。与此同时,在焊接材料的化学成分中加入抗裂元素,且其有害杂质硫、磷的含

奥氏体不锈钢焊接

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。

不锈钢焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 1适用范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S

3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 见图1。 图1奥氏体不锈钢管道焊接控制流程图 3.3 焊接材料 3.3.1 奥氏体不锈钢管道焊接材料的采购和入库(一级库)由公司物资部负责,按《物资采购控制程序》和《焊接材料保管程序》执行。 3.3.2 奥氏体不锈钢管道焊接材料入二级库的保管、焊剂、烘干、发放、回收由各项目负责,按《焊接材料保管程序》执行

最新1奥氏体不锈钢管道焊接工艺规程

1奥氏体不锈钢管道焊接工艺规程

精品好文档,推荐学习交流 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

晶间腐蚀

不锈钢产品晶间腐蚀的危害和防止措施 自然界的腐蚀无处不在,腐蚀给人类带来的危害和损失远远的超过了火灾、水灾和地震等自然灾害的总合,它可以在不知不觉中毁掉你能看到的东西,腐蚀造成损失是非常巨大的,而由于腐蚀引起的突发恶性事故,不仅仅带来巨大经济损失,而往往会引发火灾、中毒、爆炸、人身伤亡等灾祸,造成严重的社会后果,应引起我们的高度重视。据资料统计在石油化工设备腐蚀失效设备中,我国每年因金属腐蚀造成的损失至少200亿,晶间腐蚀占了9%左右。 1.晶间腐蚀的特征: 晶间腐蚀与一般的腐蚀不同,它不是从金属外表面开始,而是集中发生在金属的晶界区,沿着金属晶界向内部扩展。这种腐蚀使得金属在外表面看不出任何迹象的情况下,完全丧失其力学性能,危害极大。已晶间腐蚀的不锈钢产品,表面看起来还是很光亮的,但是内部已经损坏,严重时已失去金属的声音,在外表面轻轻的敲击就会破碎成细粒。用显微镜观察,发现晶界已成网状,晶界区因腐蚀已造破坏,这时晶粒已接近分离状态,稍受外力作用即发生晶界断裂,成为粉末,造成设备破坏和人员伤亡。晶间腐蚀隐蔽性强是突发事故,危害巨大。 2.晶间腐蚀原因: 2.1介质:引起A氏体不锈钢晶间腐蚀的介质主要酸性介质,如工业醋酸、硫酸、硝酸、草酸、盐酸等,在强氧化性介质中,随着不锈钢中Cr含量的减少,出现晶界贫Cr,因此晶界的腐蚀速度远远大于晶粒本体的腐蚀速度。 2.2不锈钢是否产生晶间腐蚀以及腐蚀的程度取决于产品的受热过程,不锈钢在450°C~850°C范围内加热,有产生晶间腐蚀的倾向,其中在650°C~750°C范围内加热对晶间腐蚀最为敏感,此温度称为“敏化温度”,在敏化温度下产生的晶间腐蚀倾向的时间最短,加热时间越长,晶间腐蚀的倾向越大。 2.3晶界合金元素的贫Cr化是产生晶间腐蚀的主要原因,不锈钢在450°C~850°C范围内,Cr的碳化物主要在晶间析出,这种碳化物中Cr的含量远高于基体中的含Cr量,势必引起临近区域Cr 的集聚和扩散,从而形成贫Cr区(Cr<12%),贫Cr区不能抵抗某些介质的腐蚀,就形成晶间腐蚀。 2.4钢种的含碳量越高,碳向晶界扩散的倾向越大,晶间腐蚀的倾向就越大, 2.5发生晶间腐蚀的电化学条件 2.5.1晶粒和晶界区的组织不同,电化学性质存在显著差异,晶界为阳极,晶粒为阴极,两级的电位不同,形成电位差,这是产生晶间腐蚀的内因。 2.5.2腐蚀和应力、晶界间的不均匀性有关,晶粒和晶界间的差异要在一定的条件和环境温度下才能显露出来,在腐蚀介质和内外应力的作用下,晶界的电化学腐蚀就显现出来了,这是产生腐蚀的外因条件。

奥氏体不锈钢焊接要求

奥氏体不锈钢组对及焊接要求 概述: 科莱恩17000T化工助剂项目中有304L和316奥氏体型不锈钢管道,奥氏体型不锈钢是现代化工行业中采用的比较多的材质,奥氏体不锈钢具有良好的可焊性,但是焊接材料或焊接工艺不正确时,会出现晶间腐蚀,热裂纹,应力腐蚀开裂,焊缝成形不良。 为保证焊接质量中核中原项目部所有管工以及焊工必须按照以下的《奥氏体不锈钢焊接工艺作业指导书》进行不锈钢的组对以及焊接工作。 不锈钢焊接工艺作业指导书 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:母材为304L材质和母材为316L时均采用ER316L焊丝 焊丝直径:φ1.6,φ2.0、φ2.5 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.99%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流高频电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:焊渣锤、扁铲、锉刀、不锈钢钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数

不锈钢焊接工艺

焊接工艺指导书 一氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0 2 30-50 6 1 6 正接 1 3 2 1.2 2 40-60 6 1 6 正接 1 4 3 1.6-2. 4 3 60-90 8 1-2 8 正接1-2. 5 5 4 1.6-2.4 3 80-100 8 1-2 8 正接1-2.0 6 5 1.6-2.4 3 80-130 8 2-3 8 正接1-2.5 7-8 6 1.6-2.4 3 90-140 8 2-3 8 正接1-2.0 8-9

不锈钢管道焊接工艺规程(1)

奥氏体不锈钢管道焊接工艺规程 1范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求:

3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S 3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 图1奥氏体不锈钢管道焊接控制流程图

SA213―TP304钢焊接接头耐晶间腐蚀性能研究

SA213―TP304钢焊接接头耐晶间腐蚀性能 研究 摘要:本文通过对不锈钢焊接接头一系列晶间腐蚀试验和分析,提出了增强不锈钢焊接接头耐晶间腐蚀能力的有效途径。 关键词:不锈钢晶间腐蚀焊接接头贫铬区 1、引言 某核电厂汽机岛的不锈钢管道在施工前,根据其所处的地理环境及《核电厂常规岛焊接工艺评定规程》DL/T1117-2009,材质为SA213-TP304、规格为Φ51×6的焊接接头试样需要做晶间腐蚀试验。 2、试件焊制 2.1母材化学成分见下表1所示 2.2焊接工艺参数见下表2所示 2.3焊接过程控制 2.3.1焊前准备。将坡口表面20~30mm用不锈钢砂轮片和钢丝刷清理干净,焊丝表面除锈、油、垢,管件内部通氩气,焊缝四周用高温胶带密封,留一小口,使内部氩气流动平稳。 2.3.2施焊过程。焊接时采用直线送丝,不做横向摆动、层间温度低于150℃,接头错开15mm,收弧弧坑填满,

3、试验结果 对试件进行线切割后,试样按照DL/T1117-2009规定进行拉伸、弯曲、微观金相检验,均合格,但两个规格为80×20×4mm的试样,按GB/T4334-2008中方法E进行的晶间腐蚀试验不合格,结果见图1所示。 4、改进工艺后试验 之后我们改进了工艺:采用焊丝为ER308L,化学成分及机械性能,层间温度控制在60℃以下,焊接过程管内加铜垫板以加快冷却速度的措施,其他参数不变,试件进行线切割后,根据DL/T1117-2009规定对试样进行拉伸、弯曲、微观金相检验,均合格,从中截取的两个规格为80×20×4mm的试样,按GB/T4334-2008中方法E进行的晶间腐蚀试验合格,见图2所示。 5、试验结果分析 5.1化学成分 从表1、表3化学成分上看母材SA213-TP304及焊丝ER308L的含碳量均在0.03%以下,奥氏体钢中含碳量为0.02~0.03%时,全部的碳均会溶解在奥氏体中,即使在450℃~850℃加热也不会形成贫铬区,故不会产生晶间腐蚀;另当焊材中含有钛、铌等稳定剂时,钛、铌与碳的亲和力比铬强,这些元素能够与碳形成稳定的碳化物,从而避免在奥氏体晶界产生贫铬,故通常选用超低碳(含碳量在0.03%

晶间腐蚀的定义

晶间腐蚀 英文名称:intergranular corrosion;intercrystalline corrosion 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝合金和一些不锈钢、镍基合中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。 产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。数据表明,铬沿晶界扩散的活化能力162~252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的敏化及预防措施 含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳

奥氏体不锈钢焊接

奥氏体不锈钢焊接公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。

焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P 等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C 等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般

不锈钢焊接接头晶间腐蚀断裂分析

不锈钢焊接接头晶间腐蚀断裂分析 我公司经常发生不锈钢产品试板焊接接头按国标GB/T4334-2008E法晶间腐蚀试验不合格情况(部分产品试样发生微小裂纹,部分试样直接弯曲断裂),为证明此裂纹是否为晶间腐蚀裂纹及为了减少公司内部人员不同观点,现准备专项试验,并用光学显微镜观察判定裂纹属性及形成原因。结果表明:断裂出现的裂纹非晶间腐蚀裂纹,而是试样弯曲时产生的塑性断裂,所以试验判定时不应简单的以断裂或出现裂纹为判定试验结果的唯一标准,应通过光学显微镜确认裂纹是否是由于晶间腐蚀产生。 标签:晶间腐蚀;金相焊接接头;断裂 1概述 我公司不锈钢产品试件及焊接工艺评定试件在按照 B/T4334-2008E做硫酸-硫酸铜晶间腐蚀试验时,经常在焊缝区发生试样断裂或有局部细微裂纹的情况(图1),因GB/T4334-2008标准内对于试样断裂该如何判定试样合格与否的阐述并不明确,所以造成我公司理化检测人员多次以不合格判定产品试件的质量,因此给生产及进度造成了极大的耽误,同时因为不合格后返修及重新制备产品试件大大增加了生产成本。因此现针对此项问题做专门针对试验,以明确此现象的实质问题也为了消除公司内部技术人员的不同观点。 2影响晶间腐蚀速率的焊接因素分析 2.1焊接接头是由母材和焊材(填充金属),按照一定的熔合比组成的特殊形式接头,其机械性能和耐蚀性能直接受其二者化学成份的影响。以300系列不锈钢为例,通常其主要合金成份Cr、Ni、Mo是提高其抗腐蚀性的主要因素,在主要合金成份不变的情况下,通过控制不锈钢材料的C、S、P等杂质的含量也可以提高其抗腐蚀性能,因此,在选择标准范围内的材料时,尽可能要求选择杂质含量偏低的材料。不锈钢晶间腐蚀主要是由于晶界处形成(FeCr)23C6,而导致晶间贫铬造成的,而Diebold和Weingner认为,增加镍(镍超过20%)和加入Mo含量,可以降低C的活性,加入18%的铬和增加镍含量降低了纯铁中碳的溶解度。 2.2焊接线能量是影响焊接接头腐蚀性能的一个重要指标,其包括了电流、电压和焊接速度三个焊接参数,计数公式如下: 焊接线能量计算公式:q=IU/υ 式中:I—焊接电流A U—电弧电压V

奥氏体不锈钢焊接

?奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 ?奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: ? 1.1 晶间腐蚀 ?奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 ?为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 ? 1.2 焊接热裂纹 ?热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: ?(1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; ?(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 ? 1.3 应力腐蚀开裂 ?应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 ?应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 ? 1.4 焊缝金属的低温脆化 ?对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。 ? 1.5 焊接接头的σ相脆化 ?焊件在经受一定时间的高温加热后会在焊缝中析出一种脆性的σ相,导致整个接头脆化,塑性和韧性显著下降。σ相的析出温度范围650-850℃。在高温加热过程中,σ相主要由铁素体转变而成。加热时间越长,σ相析出越多。 ?防止措施: ?(1)限制焊缝金属中的铁素体含量(小于15%),采用超合金化焊接材料,即高镍焊材; ?(2)采用小规范,以减小焊缝金属在高温下的停留时间; ?(3)对已析出的σ相在条件允许时进行固溶处理,使σ相溶入奥氏体。 二、奥氏体不锈钢的焊条选用原则

相关文档
相关文档 最新文档