文档库 最新最全的文档下载
当前位置:文档库 › 水体中氮对鱼的危害

水体中氮对鱼的危害

水体中氮对鱼的危害
水体中氮对鱼的危害

水体中氮对鱼的危害

氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氮和离子铵被合称为氨氮。水体中只有以NH4+、NH2-和NO3-形式存在的氮才能被植物所利用。水体中不能被浮游植物所利用而相对过剩,并且对池鱼产生危害,超过国家渔业水标准的那部分氮称为"富氮"。

一、水体氮的来源

1.鱼池中施入大量畜禽粪肥,分解产生无机氮。

2.注入含有大量氮化合物的生活和工业混合水。

3.水生生物和鱼类的代谢产物中含有氮。

池塘中氮主要来源于肥料和饲料。进入水体中的氮一般以氨的形式存在。这些氮来源于鱼鳃排泄物和细菌的分解作用。据研究,饲料中的氮有60~70%被排泄到水体中,因此水产养殖生态中

总氮浓度与投饲率及饲料蛋白含量有直接关系,在精养池中经常会出现对鱼类有害的"富氮"。

二、养殖水体中"富氮"与其它氮之间的转化和比例

精养高产池中,氨氮、亚硝酸盐、硝酸盐三者比例分别为60%、25%、15%。当池中有效氮含量不变而氨氮比例下降、硝酸盐比例上升时,说明池水中硝化作用强,水质条件好。因此三者的比例变化可以作为评价水质的指标之一。

三、水体中"富氮"对鱼的危害

水体中对鱼有危害作用的主要物质是氨氮和亚硝酸盐,我国水质标准规定氨氮小于0.5mg/L,亚硝酸盐小于0.2mg/L。

1.水体氨氮对鱼类毒性

氨氮由NH4+和NH3两部分组成,其中NH3对鱼类有毒性,NH4+对鱼类无毒性。两者在氨氮中所占百分比要受pH值、温度、盐度等因素决定。PH值、温度、盐度升高,都会引起氨氮中NH3比例增加,加重水体对鱼的毒性。

1 氨氮对各种鱼类的毒性

氨气对鲢、鳙鱼苗24小时半数致死浓度分别是1.106mg/L和0.559mg/L(雷衍之等,1983),随着鱼体的发育,氨的致死浓度也逐渐增大。NH3对47日龄、60日龄和125日龄草鱼种的48小时半数致死浓度分别为1.727mg/L、2.050mg/L和2.141mg/L,96小时半数致死浓度分别为0.570mg/L,1.609mg/L、1.683mg/L。对草鱼生长有抑制作用的NH3浓度为0.099~0.455mg/L,草鱼种最大允许NH3浓度为0.054~0.099mg/L。氨对杂交罗非鱼(平均体长7.5~9.5cm,体重6.14~11.09)24小时、48小时、96小时半数致死浓度分别为1.82mg/L、1.78mg/L和1.57mg/L,最大允许毒物浓度为0.035~0.171mg/L。氨对鲤鱼种96小时半数致死浓度是0.962mg/L,但超过0.66mg/L时就会产生毒性作用。氨气对体重25g的鳜鱼24小时、48小时、96小时半数致死浓度分别为0.763mg/L、0.663mg/L、0.525mg/L,而安全浓度为0.0525mg/L(高爱银等,1999)。氨气对体重为0.56~0.70g、体长为3.6~4.2cm加州鲈的24、48、96小时半数浓度为0.99mg/L、0.96mg/L 、0.86mg/L ,安全浓度为0.086mg/L (余瑞兰等,1999)。氨气对体重为0.94~1.32g、体长为4.9~5.8cm鲢鱼的24小时、48小时、96小时半数致死浓度为2.47mg/L 、1.95mg/L 、1.56mg/L ,安全浓度为0.156mg/L (余瑞兰等,1999)。

一般而言,同一鱼类的鱼种比成鱼对氨气耐受力弱;不同鱼类对氨氮的耐受力也不同,麦穗鱼耐受力最差,草胡子鲶相对较强,因此经常排放氨水的河段中以鲶、鳅科等无磷鱼为优势鱼群。

2环境条件对氨氮毒性的影响

氨氮毒性大小受环境条件的影响较大,不同浓度的氨氮与环境条件互作对鱼类的影响见下表:

资料来源:阮德明《河水氨污染争性死鱼模拟试验》1999年

实验鱼的规格,鲢鱼体长11~14.5cm,体重22~25g,鲤鱼体长23.5~32cm,体重225~600g,鲫鱼体长5~10cm,体重10~16g。

3氨氮急性中毒的症状

A.鱼群出现挣扎、游窜现象,并时而出现下沉、侧卧、痉挛等症状。

B.呼吸急促,口裂时而大张。

C.鳃盖部分张开,鳃丝呈紫黑色,有时出现流血现象。

D.鳍条舒展,基部出血。

E.体色变浅,体表粘液增多。

4氨氮中毒的原因

A.水体氨氮增加会抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力,血液CO2浓度升高。

B.NH3不带电,具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡。

C.NH3会引起鳃表皮细胞损伤而使鱼的免疫力降低。余瑞兰等1999年研究表明:鳜鱼血清碱性磷酸酶(AKP)活性和分子氨浓度呈抛物线变化关系,鲫鱼血清溶菌酶(LSZ)活性随分子氨浓度递增而下降。保持鲫鱼AKP和LSZ活力的NH3临界值为0.70mg/L(72小时)、0.56mg/L(96小时),而保持鳜鱼AKP活力的NH3临界值为0.143mg/L(96小时)。

2.NO2-对鱼类的毒性

1NO2-对各种鱼类的安全浓度是:团头鲂为2.5mg/L(王明学等,1997);鲢鱼为2.4mg/L (王明学,1989);鲤鱼为1.8mg/L;罗非鱼为2.8mg/L(赵云冈,1991);鲫鱼在48小时、96小时分别为1.82mg/L,0.80mg/L(魏泰莉,1999);鳜鱼苗为5.01mg/L。

2鱼类NO2-中毒后的症状

A.体色变深

B.鱼不大游动,触动时反应迟钝。

C.呼吸急速,经常上水面呼吸。

D.鳃丝呈暗红色。

3.NO2-引起鱼类中毒的机理

高浓度NO2-会使鱼体血液中含二价铁的血红蛋白(还原型血红蛋白)变成含三价铁的高铁血红蛋白,从而影响血液携带氧气的机能,造成组织缺氧,使鱼群体质下降甚至影响生长,为病原的入侵创造条件。

一般而言,当NO2-浓度在鱼的安全浓度以下时,鱼类可以通过自身的生理调节来补偿因高铁血红蛋白升高而引起的载氧能力不足问题。NO2-浓度超过鱼类的安全浓度时,鱼体自身的生理调节不能补偿因高铁血红蛋白的含量升高而引起鱼体组织缺氧即可表现中毒症状。与氨相比虽然NO2-对水生动物毒性要低得多,但是,当集约化养殖池中NO2-浓度过高时,也可能引起水生动物发生NO2-中毒症。与氨中毒相比,NO2-中毒没有乱撞,挣扎等剧烈活动的症状。

四、水体"富氮"的防治

1.饲料是水体氮的主要来源,通过提高饲料质量,降低饲料系数来减少鱼类氮排泄量是防治水体产生"富氮"的主要措施。通过准确测定鱼的需要量和饲料中可利用氨基酸的含

量;以可消化氨基酸含量为基础配制符合鱼类需要的平衡日粮;应用代谢调节剂如酶制剂,有机酸制剂、肉碱等提高氨基酸和磷的利用率;减少饲料中抗营养因子的不利影响来提高饲料的转化率、减少氮的排泄率。另外采用科学的投喂标准可减少残饵量,这些都可以降低水体氮的含量

2.水体"富氮"的防治方法

(1)以磷带氮

水体中N、P比例严重失调,可引起大量氮不能被浮游植物利用而形成"富氮",并对鱼产生危害。江苏无锡市在夏季鱼类主要生长季节对精养鱼池水体测定结果表明:水体中有效磷的含量很低,在0.01mg/L以下,有效氮则在0.5~2.0mg/L,最高达到4mg/L。水体中N、P比例为300~500:1,出现严重失调现象。由于精养池塘中大量使用高蛋白饲料,使水体中氮含量很高,施用P肥可使水体中N、P比例降至较为适宜的水平,从而使浮游生物数量能够增长近1倍,易消化的藻类也明显增长。但是当浮游植物死亡之后,水体中的氨浓度将会突然升高,因为水中的氨除来自鱼类外,细菌分解死亡的浮游植物也能释放氮,因此浮游植物并不能真正将水体氮去掉。

(2)种植水生植物改良水体

在养殖水体中可适当种植浮萍,凤眼莲和水葫芦等水生植物,而且当这些植物收获时被吸收的氮也同时离开水体。

(3)增加水体中的溶氧

池水溶氧尤其是池底溶氧充足,可使水体有毒的氨氮,亚硝酸盐含量下降,硫化氢被消除,水质的pH值稳定。

A、合理使用增氧机。充分发挥增氧机的搅水功能,使池水发生上下对流。因此在天气晴朗的高温季节,中午应开机1~2小时,可使晚上发生浮头的鱼群比例减少。

B、合理施肥。精养池塘中应少施有机肥,因为其效果慢、耗氧大,如果肥水应以施化学肥为主,高温季节多施磷肥。

C、使用化学增氧剂。冬季是鱼非寄生虫和细菌病的发病季节,主要是由于水质尤其是底层水层不良引起。精养池用合适的化学增氧剂对水体"富氮"问题大有好处。笔者认为增氧剂最好选用过氧化钙和过硫酸铵,因为它们在水中分解缓慢,不会形成过氧化氢等有毒物质。据国外资料报道,当水温为20℃时,它们在水中能放氧200日以上,当水温为40℃时,在水中能放氧60~70日。在某越冬鱼池中施入35ppm浓度过氧化钙,两日后氨氮浓度可由原来的2.44ppm下降至1.44ppm,1个月后降至0.62ppm浓度。此外经常清除淤泥、换水、减少水体中浮游生物和有机物数量都可以增加水体溶氧。

D、使用微生态制剂

使用一些有益的微生态制剂,可以把水体特别是水体底层中的氨氮、硫化氢、油污物等有毒物质分解变成有益物质,从而达到净化水质的目的。常用的微生态制剂有光合细菌、硝化细菌、芽胞杆菌等。

光合细菌可吸收、降低水体中的氨氮等有毒物质,消除它们对水体的危害,从而达到净化水质、预防疾病的目的。光合细菌在鱼池中使用剂量,首次为15g/m3水体,以后每隔15天用2g/m3水体。

在水体中引入少量的硝化菌,使其在水体中自行繁殖,从而将氨氮转化为无毒成份。往水中添加硝化细菌(nitrifying bacteria)

E、吸附性矿物质的使用。石粉、麦饭石、膨润土都具有吸附作用,可减少水体中氨氮含量。

笔者认为精养池塘更应该使用水质改良剂,水质改良剂不像水产药物,施用后见效慢,也不是使用一次就能彻底解决水质问题。特别是在高温季节,更需要养殖者定期使用。

F、"富氮"中毒的防治

a.氨氮的防治。可用盐酸或醋酸调节水体pH值,使其低于7.0可以解除氨氮毒性,后使用每亩鱼池施用沸石粉等吸附剂200~300kg/1.5米水深,去除氨氮;抽去氨氮抽去池塘的底层水,然后加注新水。

b.亚硝酸的防治。

使用NaCl 25ppm,当水体中Cl-浓度和NO2-浓度比例为3:1时,可以防止鱼高铁血红蛋白血症。在饲料中加大Vc的用量也有一定作用,沸石粉清除NO2-无效

各种水质指标对水体及鱼类的影响一

各种水质指标对水体及鱼类的影响一、PH值 1、PH值对水生生物及水质的影响 PH值低于6.5时,鱼类血液的PH值下降,血红蛋白载氧功能发生障碍,导致鱼体组织缺氧,尽管此时水中溶氧量正常,鱼类仍然表现出缺氧的症状。另外,PH值过低时,水体中S2-、CN-、HCO3-等转变为毒性很强的H2S、HCN、CO2;而Cu2+、Pb2+等重金属离子则变为络合物,使他们对水生生物的毒性作用大为减轻。 PH值过高时,离子NH4+转变为分子氨NH3,毒性增大,水体为强碱性,腐蚀鱼类的鳃组织,造成呼吸障碍,严重时使鱼窒息。强碱性的水体还影响微生物的活性进而影响微生物对有机物的降解。 2、PH值对鱼类生长繁殖的影响 《渔业水质标准》中规定养殖水体PH值范围为6.5—8.5,这是鱼类生长的安全PH值范围,过高或过低都将造成养殖的低产量,大部分鱼类苗种培育阶段的最适PH值为7.5—8,成鱼养殖阶段的最适PH值为6.5—7.5。 二、溶氧 养殖水体中溶氧的含量一般应在5—8mg/L,至少应保持在4mg/L 以上,缺氧时,鱼类烦躁不安,呼吸加快,大多集中在表层水中活动,缺氧严重时,鱼类大量浮头,游泳无力,甚至窒息而死。溶氧过饱和时一般没有什么危害,但有时会引起鱼类的气泡病,特别是在苗种培育阶段。 水中充足的溶氧可抑制生成有毒物质,降低有毒物质的含量,而

当溶氧不足时,氨和硫化氢则难以分解转化,极易达到危害鱼类健康生长的程度。 三、氨氮 水中的氨氮以分子氨和离子氨存在,分子氨对鱼类是有很大毒性的,而离子氨不仅无毒,还是水生植物的营养源之一。水体中氨浓度过高时,会使鱼类产生毒血症,长期过高则将抑制鱼类的生长、繁殖,严重中毒者甚至死亡。 我国渔业水质标准规定分子氨浓度应小于0.02mg/L,这是理想、安全的水质氨指标;分子氨浓度0.2mg/L以下时一般不会导致鱼类发病;如浓度达到0.2—0.5mg/L,则对鱼类有轻度毒性,容易发病;如分子氨的浓度超过0.5mg/L,对鱼类的毒性较大,极易导致鱼类中毒、发病,甚至大批死亡。 四、亚硝酸盐氮 水体中亚硝酸盐浓度过高时,可通过渗透与吸收作用进入鱼类血液,从而使血液丧失载氧能力。 一般情况下,亚硝酸盐含量(以氮计)低于0.1mg/L时,不会造成损害;达到0.1—0.5mg/L时,鱼类摄食降低,鳃呈暗紫红色,呼吸困难,游动缓慢,骚动不安;含量高于0.5mg/L时,鱼类游泳无力,鱼体柔软,臀部底面呈黄色,某些器官功能衰竭,严重时导致死亡。 五、硫化物 硫化物的毒性主要指硫化氢的毒性,其浓度过高时,可通过渗透与吸收作用进入组织与血液,破坏血红素的结构,使血液丧失载氧能

水污染以及危害

水污染以及危害水体富营养化的原理及其危害? (一)水体富营养化的机理 1.概念 水体富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 2.水体富营养化的机理 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质

氨氮对养鱼的危害、预防、解决方案

解读水中杀手“氨” 养鱼要先养水,而养水的核心是培养硝化菌来分解水中的毒素。水中毒素一般是指氨和亚硝酸盐,它们都属于剧毒,可以造成鱼的慢性中毒或者急性死亡。这两种毒素被称为水中的第一杀手,只需要极少量就会造成鱼的暴毙。鱼是病从鳃入,氨和亚硝酸盐的慢性中毒会破坏鱼体组织的免疫系统,降低抵抗力。 第一节“氨” 一、氨的产生途径: 1、鱼的呼吸:鱼通过腮部可以直接将体内产生的氨排出体外。 2、鱼的尿液:鱼的尿液中含有氨。 3、有机物被异营菌分解后的代谢产物:鱼的粪便、残饵、死鱼等有机物被异营菌分解后,其代谢产物为氨,这是氨的主要来源。 二、氨的危害: 氨对鱼类的毒害反映非常强,在很低的浓度下即可使许多鱼类产生中毒症状,甚至死亡。氨对鱼类的毒害情形根据浓度和鱼类的不同会有所差异,大致情况如下: 在较低浓度下: 鱼类可以忍受一段时间,但长此以往会慢性中毒。氨会干预鱼类渗透调节系统,破坏鱼鳃的粘膜层,减低血红素携带氧气能力。鱼类慢性中毒症状表现有:常在水面喘气,鳃转为紫色或暗红,比较容易瞌睡,食欲不振,老停留在缸底不活动,鱼鳍或体表出现异常血丝等。 在低浓度下: 氨会和其他疾病一同加速鱼类死亡。 在略高浓度下: 会直接破会鱼类皮肤和肠道粘膜,造成体表和内部器官出血,同时伤害大脑和中枢神经系统,鱼类会因急性中毒迅速死亡。 三、氨的中毒机理: 毒素通过鱼的呼吸作用,由鳃进入血液,会使其丧失输氧能力,出现组织缺氧,窒息而死。 四、氨中毒的症状: 鱼出现窜游现象,并时而出现下沉、侧卧、痉挛等症状。 呼吸急促,大口挣扎,死前眼球突出。 鳃盖部分张开,鳃丝呈紫红色或紫黑色。 鱼鳍舒展,根基出血,体色变浅,体表粘液增多。 打开腹腔,血液不凝,血色发暗,紫而不红,肝脾肾的颜色呈紫色。 五、氨的存在形式: 水中的氨有两种不同的形式:一种是分子形态存在的“氨”(NH3);另一种是以离子形态存在的“铵”(NH4+)。氨有剧毒,铵无毒。一般氨测试所测的是氨和铵的总浓度,有时候测试出总浓度非常高,但鱼却很健康,这是因为水中铵的比例大,而有毒的氨(NH3)的百分比很小的原因。 氨与铵在水中是根据PH来互相转化的,PH越高,水中所含有毒的氨(NH3)的百分比也越高。例如在酸性水中,有毒的氨(NH3)基本不存在;PH=7时有毒氨的含量只占总氨含量的1%;PH=9时有毒氨的含量占总氨含量的25%,所以氨的毒性会因PH升高而增加。 水体中有毒氨(NH3)在总氨氮中的比例(%):

重金属具有高毒性

重金属具有高毒性、持久性、难降解性等特点已越来越受到国内外学者的关注。通过自然途径进入水体中的重金属一般不会对水体造成污染,但由于人类活动导致的大量含有重金属的污染 物进入水环境中,不但造成重大的经济损失,而且对生态系统和人类健康产生重大影响 工业革命以来,人类以前所未有的速度和规模改 变着世界,在创造巨大财富的同时也重创了人类赖以 生存的环境,水体作为人类生存和发展的重要环境要 素也不同程度的遭受了人类排放的各类物质的污染, 重金属作为其中一类污染物质,由于其一般具有较大 的毒性而成为水体污染中危害极大的一种。由于人类 的活动而使环境中重金属浓度逐步上升,它不仅对水 生生物构成威胁,而且通过食物链能够累积到较高的 毒性,最终危害人体的健康。我国80年代初的调查发 现在金沙江、湘江、蓟运河、锦州湾等许多水体均有 不同程度的重金属污染,其中严重地段的水相重金属 浓度高达几百μg/L,沉积物中重金属浓度达上千 mg/L[8],日本还曾出现由于汞污染引起的“水俣病” 和镉污染引起的“骨痛病”事件。为控制和治理河流 污染,保护人类生存环境,国内外开展了大量研究 工作。早在20世纪初,人们就已经开始利用水生生物 对水体进行监测,经过几十年的研究,已经证实了许 多水生生物的个体、种群或群落的变化都可以客观的 反映出水体质量的变化规律 由于人类活动的影响,进入水体环境中的污染物 质越来越多,这些污染物给环境和人体健康造成了 许多问题。特别是随着采矿、冶炼、化工、电镀、电子、 制革等行业的发展,以及民用固体废弃物不合理填 埋和堆放,重金属污染物事故性排放,使得各种重金 属污染物进入水体[1]。重金属污染物在水体中具有相 当高的稳定性和不能被降解,当它们在水体中积累到 一定的限度就会对水体———水生植物———水生动物 系统产生严重危害,并可能通过食物链直接或间接 地影响到人类的自身健康。 重金属污染水体的修复是一项艰巨的工程,以往 的物理及化学修复不仅投资巨大而且效果不甚理想, 而利用大型水生植物修复重金属污染水体不但投资 小、效率高,而且会带来较高的环境生态效益。 大型水生高等植物是一个生态学范畴上的类群, 是不同分类群植物通过长期适应水环境而形成的趋 同性适应类型,主要包括两大类:水生维管束植物和 高等藻类[2]。水生维管束植物具有发达的机械组织,植 物个体比较高大。通常具有 4 种生活型:挺水、漂浮、 浮叶和沉水[3]。它是水生态系统保持良性运行的关键 类群,也是整个水生生植群落多样性的基础。与藻类

养鱼水体中氨氮含量过高控制方法

养鱼水体中氨氮含量过高的控制方法 氮与养鱼生产关系极大,它不仅是水体中藻类必需的一种营养兀素,也是较常见的一种限制养鱼水体初级生产力的常量元素。水体中氨氮含量过高对鱼类的毒 性较强,会使鱼类红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐降低,而造成鱼类慢性中毒,抑制生长。此晌鱼类摄食量降低,鳃组织出现病变,呼吸困难、骚动不安或反应迟钝,严重时则发生暴发性死亡,是养鱼水域中诱发鱼类暴发性疾病的重要因素。氨氮毒性还与池水的pH值及水温有密切关系, 一般情况,温度和pH值愈高,毒性愈强。这样就会给养鱼生产带来很大的隐患,为此在生产中必须控制以减少氨的危害。E' w- J5 b9 k8 h+ A) C" F 0 05 w$ M8 g4 q r 一、养鱼水体中氨氮的主要来源 3 C* o; s( u% |6 @5 _# F; }$ X 氨氮产生主要原因是池水和底泥中含氮有机物的分解及水生生物的代谢作用,这是养鱼水体中氨含量增加的主要途径。尤其在高投入、高产出的养鱼水体中人为的大量投饵、施肥使水体中含氮有机废物数量增加;放养的密度大,生物代谢旺盛,排泄废物氨的数量增多。氨的增加速率大大超过了浮游植物利用极限,致使氨在水体中积累。氨态氮在水体中以氨和铵两种形态存在,pH值小于7时,水体中的氨几乎都以铵的形式存在,pH大于11时,则几乎都以氨的形式存在,温度升高氨的比例增大。也就是说在碱性条件下,水温越高氨分子所占的比例越大、毒性越强。近年来的研究表明,鱼类能长期忍受的最大限度的氨浓度为0.025毫克/升。中国锦鲤俱乐部,锦鲤;Y! N# }" o' i 中国锦鲤俱乐部,锦鲤,N1 w1 M# B3 ?( N. U/ B$ w A 二、养鱼水体中氨氮含量过高的控制措施 中国锦鲤俱乐部,锦鲤,h2 k: L. E3乙u2 f! J' W 1.定期加注新水降氨增加换水量是降低氨氮最有效的办法。有条件的可4?6天加注新水一次,每次加水10厘米:或每10?15天换底层水一次,每次换水量为1/5 ?1/3。# h,| T9 k* f4 '7 W: w 2.调节浮游生物的组成降氨中国锦鲤俱乐部,锦鲤'o. T( t'E) Y- B4 u4 K (1培植、种植水生植物:在池中一角围栏栽种水生植物,如水浮莲或凤眼莲等飘浮植物,培植、种植面积可占全池面积1/100,可有效地吸附氨氮等 有毒物质,降氨效果明显。 中国锦鲤俱乐部,锦鲤.t$ c2 X. V- _; }- U/ e( ? (2)控制浮游动物数量:浮游动物的代谢作用产生氨,适当地放养以浮游动物为 食的鱼类,或适时用药物杀火浮游动物可减少水中氨氮的积 累。https://www.wendangku.net/doc/0617765574.html,4 f2 t5 z2 S/ P( I# o7 r+ a5 K "E- S; F: ]* 17 G2 [ 3.改善水体中的溶氧状况降氨在溶氧多时有效氮以硝酸态氮为主,在缺氧状态下则以氨态氮为主。因而改善水体的溶氧状况在一定程度上可降低氨含量和氨的危害。 (1)使用增氧机械:增氧机具有增氧、搅水的作用。定期开动增氧机,使池水有充足的溶氧并能同时曝气,可促进氨的硝化使氨转化为硝酸态氮和亚硝酸态氮。排灌不

浅谈水体中重金属危害及检测技术论述

浅谈水体中重金属危害及检测技术论述 发表时间:2019-09-04T10:34:43.743Z 来源:《防护工程》2019年12期作者:石波[导读] 其中,原子光谱法又包括原子吸收光谱法、电感耦合等离子体原子发射光谱法和原子荧光光谱法这三种方法。 南京市浦口区环境监测站江苏南京 210000 摘要:本文先是分析了水体的污染现状;然后详细阐述了水体常见的重金属污染物的成分,分别论述了水体中主要的中金属污染物汞、铅、镉、铬对人体的危害;最后总结了检测水体中重金属的技术方法,主要包括:激光诱导击穿光谱法、X射线荧光光谱分析法和原子光谱法,其中,原子光谱法又包括原子吸收光谱法、电感耦合等离子体原子发射光谱法和原子荧光光谱法这三种方法。 关键词:重金属;水体;检测技术 1水体常见的重金属污染成分及其危害分析 水作为生命之源,是每个人的生命中必不可少的物质。有实验表明人可以三天不吃饭但不可以一天不喝水。现如今,水源遭到了越来越严重的污染,其中主要的污染物就是重金属,例如汞、铅、镉、铬等。危害过程如图1所示: 图1:重金属的污染 1.1汞污染 重金属汞对人体的危害是巨大的,在西安的秦始皇墓中就含有大量的重金属汞,正是由于这些重金属汞的存在,有关专才不敢对秦皇陵展开进一步的挖掘。重金属汞在自然界有两种形态,一种为有机汞,另一种为无机汞。相对于无机汞来说,有机汞的毒性更大,它在进入人体之后损害人体的大脑,能够让人在几分钟之内迅速死亡;无极汞的毒性没有那么强,但是它也能给人带严重的危害,他为主要是损害人的神经系统和肾脏功能。水体中的汞污染来源很多,主要的就是汞矿的开采。电池生产、制碱、土法炼金、化石燃料燃烧、有色金属冶炼等也都会造成水体的汞污染。 1.2铅污染 目前,水体的重金属污染中主要的污染物就是金属铅,占到了30%以上。重金属铅可以通过多种途径进入人的体内,包括消化道、呼吸道和皮肤等。铅对人的危害有一个累积的过程,他不会像汞那样在短短的时间内给人造成重大的威胁,而是在人体的组织内不断的累积,慢慢地入侵人体的免疫系统和造血系统,导致人体的免疫力下降、肝细胞损伤、贫血、铅性肾病等危害。水体中铅的污染主要来源于采矿行业和冶炼行业,另外汽车中的尾气也是一个重要的来源。 1.3镉污染 重金属镉对人的肾脏危害程度最大,研究表明,金属镉可以通过人的呼吸道和消化道而在人的体内聚集。当金属铬在人体内聚集到一定的程度时,就会直接损害人的肾小管,导致肾小管的功能不能正常发挥出来,因此蛋白质、氨基酸、糖类会随着人的尿液排出体外,最终可能会引发糖尿病和骨痛病。另外,镉对人体的神经系统和生殖系统也有一定的危害,还会促进肿瘤的生长。水体中的金属镉主要来源于电池,花式燃料等物质。 1.4铬污染 水体中铬化物中铬的化合价有三价和六价两种价态。在进入人体的方式上,多种重金属都类似,主要的途径就是通过人的消化道和呼吸道。少量的铬会引起人体的不适,感觉腹部胀痛或者出现大量的湿疹;大量的铬对人体的危害是巨大的,铬有强烈的腐蚀性,会腐蚀人的内脏,造成内脏受损,甚至会导致基因突变。工业生产中的废水和有关铬生产所排放的废水是导致水体铬污染的罪魁祸首。除此之外,水中还有很多其它的重金属污染物,其对人体的危害如图2所示: 图2:水体中重金属对人体的危害 2水体中重金属离子检测方法

水质氨氮超标的危害

氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4-)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 水中的氨氮主要来源于生活污水中含氮有机物的初始污染,如焦化废水和合成氨化肥厂废水等,受微生物作用,可分解成亚硝酸盐氮,继续分解,最终成为硝酸盐氮,完成水的自净过程。 当水中的亚硝酸盐氮过高,饮用此水将和蛋白质结合形成亚硝胺,是一种强致癌物质。长期饮用对身体极为不利。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。 亚硝酸盐是亚硝胺类化合物的前体物质。亚硝酸盐广泛存在于自然界环境中,尤其是在食物中。例如蔬菜中亚硝酸盐的平均含量大约为4mg/kg,肉类约为 3mg/kg,蛋类约为5mg/kg,而豆粉的平均含量可达10mg/kg,咸菜中的平均含量也在7mg/kg以上。在人们日常膳食中,绝大部分亚硝酸盐在人体内像“过客”一样随尿排出体外,只是在特定条件下才转化成亚硝胺。所谓特定条件,包括酸碱度、微生物和温度。所以,通常条件下膳食中的亚硝酸盐不会对人体健康造成危害,只有过量摄取,体内又缺乏维生素C的情况下,才会对人体引起危害。此外,长期食用亚硝酸盐含量高的食品,有可能诱发癌症。引亚硝胺化学式:亚硝胺的化学式为NH2NO。大量的动物实验已确认,亚硝胺是强致癌物,并能通过胎盘和乳汁引发后代肿瘤。同时,亚硝胺还有致畸和致突变作用。人群中流行病学调查表明,人类某些癌症,如胃癌、食道癌、肝癌、结肠癌和膀胱癌等可能与亚硝胺有关。由不致癌性的亚硝酸与二级胺在ph2-4的正常胃酸条件下生成亚硝酸胺。亚硝酸胺可以在人体中合成,是一种很难完全避开的致癌物质。实验证明,维生素c有抑制亚硝酸胺合成的功能。与上皮细胞分化密切相关的维生素C亦有抑癌作用,因此每天多吃胡萝卜和西红柿是非常有益的。

水污染现状及危害

水污染现状及危害

————————————————————————————————作者:————————————————————————————————日期:

浅谈水污染现状及危害 摘要:水是生命的起源,水是地球上所有生命赖以生存的基础。随着工业的发展、人口的增加、城市化的加剧和化肥、农药使用量的增加,作为生命之源的水已经受到了严重的污染。水污染降低了水体的使用功能,加剧了水资源短缺;水污染严重破坏生态环境、影响人类生存.要想实现人类社会的可持续发展,首先要解决水污染问题。本文通过介绍水污染现状及其危害旨在引起人们对水污染的关注,珍惜并保护水资源。 关键词:水污染、危害、治理措施 水是生命的起源,水是地球上所有生命赖以生存的基础。从古至今,生命的存在仍然以水作为首要条件。没有水,一切生命创造的精彩都将不复存在。但是,随着工业的发展、人口的增加、城市化的加剧和化肥、农药使用量的增加,作为生命之源的水已经受到了严重的污染。我国水形势亦不容乐观:通过网上搜索,我国是世界20多个严重缺水国家之一,全国600多个城市中目前大约一半的城市缺水,水污染的恶化更使水短缺雪上加霜。我国江河湖泊普遍遭受污染,全国75%的湖泊出现了不同程度的富营养化;90%的城市水域污染严重,南方城市总缺水量的60%---70%是由于水污染造成的;对我国118个大中城市的地下水调查显示,有115个城市地下水受到污染,其中重度污染约占40%。21世纪将是一个水比油更宝贵的世纪,保护水资源迫在眉睫! 一、水污染分类

水的污染有两类:一类是自然污染;另一类是人为污染。而后者是主要的,人为污染大致可分为:工业污染、农业污染、生活污染。 1、工业污染是水污染的主要构成部分,主要包括:汞、 镉、铅等重金属和砷的化合物以及氰根离子、亚硝酸根离子。除 此之外,工业污染还有热污染。具有量大、面广、成分复杂、毒 性大、不易净化、难处理等特点。 2、农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。 3、生活污染是来自城乡居民日常生活中产生的各种污水的混合液。生活污水含有来自人类粪便的病原细菌和病毒,以及过量的氮和磷化合物。生活污水的成分99%为水,固体杂质不到1%,大多为无毒物质。 二、我国水污染现状 经过多年的建设,我国水污染防治工作取得了显著的成 绩,但水污染形势仍然十分严峻。近些年来发生的水污染事件依 旧触目惊心:1、淮河水污染事件:1994年7月,淮河上游的河 南境内突降暴雨,颍上水库水位急骤上涨超过防洪警戒线,因此 开闸泄洪将积蓄于上游一个冬春的2亿立方米水放了下来。水经 之处河水泛浊,河面上泡沫密布,顿时鱼虾丧失。下游一些地方 居民饮用了虽经自来水厂处理,但未能达到饮用标准的河水后, 出现恶心、腹泻、呕吐等症状。经取样检验证实上游来水水质恶 化,沿河各自来水厂被迫停止供水达54天之久,百万淮河民众 饮水告急,不少地方花高价远途取水饮用,有些地方出现居民抢

氨氮废水处理

氨氮废水处理 2氨氮废水的危害 水环境中存在过量的氨氮会造成多方面的有害影响。 (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工

水质中重金属危害及其检测方法

水质中重金属危害及其检测方法 水质中重金属危害及其检测方法 【摘要】本文概述了水中重金属的危害和测定重金属的常规方法 【关键词】水质;重金属;检测方法 水是人类的生命之源,在没有人为污染的情况,水中的重金属的含量取决于水与土壤、岩石的相互作用,其值一般很低,不会对人体健康造成危害。但随着工业的发展,工矿业废水、生活污水等未经适当处理即向外排放,污染了土壤,废弃物堆放场受流水作用以及富含重金属的大气沉降物输入,都使水中重金属含量急剧升高,导致水受到重金属污染。重金属通过直接饮水、食用被污水灌溉过的蔬菜、粮食等途径,很容易进入人体内,威胁人体健康。 一、重金属的危害 重金属是指密度4.0以上约60种元素或者是密度在5.0以上的45种元素,其中砷、硒是非金属,但是由于它的毒性及其某些性质与重金属非常相似,所以将砷、硒也列入重金属污染物范围内,在环境污染方面所说的重金属更注重它的毒性对生态的危害,主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括同样具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着现代工农业的发展,重金属污染问题日趋严重。重金属污染,不同与其它类型污染,具有隐蔽性、长期性和不可逆转性等特点。重金属既可以直接进入大气、水体和土壤,造成各类环境要素的直接污染;也可以在大气、水体和土壤中相互迁移,造成各类环境要素的间接污染。由于重金属不能被微生物降解,在环境中只能发生各种形态之间的相互转化,所以,重金属污染的消除往往更为困难,对生物引起的影响和危害也是人们更为关注的问题。 二、重金属的测定 我国《生活饮用水卫生标准》和《污水综合排放标准》分别对生活饮用水中重金属元素的含量和污水中重金属元素的最高容许排放

氨氮的危害及防治措施

水产养殖中氨氮的危害及防治措施 衢江区水利局王俏俏 随着工业污染排放、畜禽养殖业污水排放、生活污水排放、水产养殖中过量投喂饲料行为等,淡水养殖水体中氨氮超标致使水生生物中毒死亡的的事情频繁发生,给养殖户带来极大的经济损失。 一、水体中氨氮的积累和危害 池塘养鱼水体中的总氨氮一般以两种形式即非离子氨(NH3)和铵离子(NH4+)存在,在pH值小于7时,水中的氨几乎都以NH4+的形式存在,在pH大于11时,则几乎都以NH3的形式存在,温度升高,NH3的比例增大。氨氮对水生生物的危害主要是指非离子氨的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。另外,在生物体内富集的高浓度氨氮可转化为亚硝酸盐后对生物体产生危害,而亚硝酸盐又是强氧化剂,不仅会使生物体中毒,它还有致癌作用。 二、氨氮超标的防治措施 根据《渔业水质标准》,水产养殖生产中,应将氨的浓度控制在0.02mg/L以下。目前,可以从以下三个方面降低水体中氨氮的含量,防治氨氮中毒。 (一)科学进行养殖生产 1、做好清淤工作,经常换水,保持水体新鲜。

2、饲料过量投喂是造成氨氮污染的主要原因之一,因此要减少饵料系数,提高饲料使用率,减少养殖生物的粪便排泄量。 3、用盐酸或醋酸调节PH值,降低PH值至7.0以下,降低氨氮毒性,再用沸石粉、麦饭石等吸附剂去除水体中的氨氮。 (二)利用微藻减少水体中的氨氮 微藻是一种单细胞藻类,以水为电子供体,以光能作为能源,利用氮、磷等营养物质合成有机质。能吸收水体中的氨氮并将其转换合成氨基酸等含氮物质,是水生生物的天然饵料。微藻还能产生大量的氧气,水体中充足的氧气能促进亚硝酸盐向硝酸盐的转化,同时可减少水体因缺氧而形成的恶臭气味,改善水体生态环境,抑制和减轻氨氮对鱼类的毒害作用,提高鱼类食欲和饲料利用率,促进鱼类生长发育。 (三)利用微生物制剂减少水体中的氨氮 微生物制剂是从天然环境中筛选出来的微生物菌体经培养、繁殖后制成的含有大量有益菌的活性菌制剂。一般微生物制剂分为液态、固态(粉状)两大类。养殖水体是一个由多种微生物组成的动态平衡系统,有益菌和有害菌共存。当向水体添加有益微生物,通过大量繁殖成为优势种群可抑制有害病菌的生长,同时通过有益微生物的新陈代谢,可降低水中过剩的营养物质和其他有害物质,对去除水体中的氨态氮、有机质、增加溶解氧等方面有明显的调节作用,同时也调节水体的pH值,促进底泥中氮磷的释放,促进浮游生物

水体的重金属污染与防治

水体的重金属污染与防治 摘要: 近年来江河湖泊重金属含量呈逐年上升趋势,同时累积于蔬菜、肉类、鱼类、海鲜中,富集于动植物体内,已严重威胁着人们的健康,水体重金属污染已成为全球性的环境问题。本文主要介绍了水体重金属污染的来源,水体重金属污染对水生植物、水生动物的致毒作用和人体健康的危害,同时探讨相应的防治对策,为保持和重建健康水生生态系统及保障人体健康提供参考依据。水体重金属污染的防治途径主要包括两方面,即:源头控制和污染修复。污染修复的方法主要有河流稀释法,化学混凝、吸附法,离子还原、交换法,生物修复法,电动力学修复法,生物膜修复法,其中生物膜修复法具有较好的应用前景。 一、国内水体的重金属污染现状 中国水体重金属污染问题十分突出,江河湖库底质的污染率高达80.1%。黄河、淮河、松花江、辽河等十大流域的流域片,重金属超标断面的污染程度均为Ⅴ类;太湖底泥中TPb,TCd 含量均处于轻度污染水平;黄浦江干流表层沉积物中,Cd超背景值2倍、Pb超1倍;苏州河中,Pb全部超标、Cd为75%超标、Hg为62.5%超标。城市河流有35.11%的河段出现THg超地表水Ⅲ类水体标准,18.46%的河段TCd超过Ⅲ类水体标准,25%的河段TPb有超标的样本出现。由长江、珠江、黄河等河流携带入海的重金属污染物总量约为3.4万,对海洋水体的污染危害巨大。在全国近岸海域海水采样的样品中,Pb的超标率达62.9%,最大值超一类海水标准49.0倍。大连湾60%测站沉积物的Cd

含量超标,锦州湾部分测站排污口邻近海域沉积Cd、Pb的含量超过第三类海洋沉积物质量标 二、水体中重金属污染的来源 (一)工业污染源排放 据研究,煤、石油中含有Ce、Cr、Pb、Hg、Ti等金属,因此,火力发电厂排放的废气和汽车排放的尾气中含有大量的重金属,随烟尘进入大气,其中10%~30%沉降在距排放源十数公里的范围内。据估算,全世界约有1600t/a的Hg通过煤和其他石化燃料的燃烧而排放到大气中。另外,电镀、机械制造业仍是重金属污染的一大来源。 (二)废旧电池的污染 《中国环境报》记者王娅于1999年12月9日报道,1998年中国电池的产量以及消费量高达140亿节,占世界总量的1/3,每年报废的数百亿节废电池绝大部分没有回收,废电池中含有大量的Hg、Cd、Pb、Cr、Ni、Mn等重金属有害物质,泄漏到环境中,造成了极大的污染和危害。1节1号废干电池可使1㎡的土地失去利用价值,1粒纽扣电池可污600m3的水。 (三)城市化的问题 城市化的夜景缤纷灿烂,然而损坏的高压汞灯、霓虹灯、日光灯管等未能很好地处置,成为重金属污染的又一大来源;遍街的塑钢门窗、不锈钢等的切割、打磨粉末碎屑,或随垃圾混装,或入下水道排入江河,造成污染;汽车修理业废弃蓄电

氨氮超标的危害

氨氮的危害与预防措施 健康的水产养殖生产,一般不会发生氨氮中毒。但是由于水产养殖实用技术还没有得到广泛普及,养殖户也没有按照行业操作规范进行操作,常会发生池塘氨氮含量偏高而引起鱼类免疫力和抵抗力下降,生长缓慢,甚至发生急性、慢性中毒死亡等现象的发生。 一、氨氮产生的原因 氨氮是由鱼虾蟹的残饵、排泄物、生物尸体和底层有机物等分解的产生。由于放养数量多,品种单一,饵料得不到充分利用,将残饵、粪便及各种生物尸体等含蛋白质的物质分解,造成含氨氮大量积累在水和池底,将引起氨氮积累过量而超标。 二、氨氮对鱼蟹的危害 氨氮是水体中存在的物质,氨氮超标可引起养殖鱼、蟹的生存和生长,轻者导致鱼、蟹生长缓慢,吃食量减弱,引发各种疾病,食用品质差;重者将引起鱼类中毒死亡。 三、预防氨氮积累的措施 1、清除池塘中过多的淤泥,干池冰冻和暴晒10-15天,并且让空气与池塘底泥充分接触,使底质有机质充分氧化,矿化成无机盐,为蟹塘中生物提供营养源,降低池塘有机质含量。 2、定期加注新水,水质要符合国家渔业用水标准,如果是虾、蟹池可在池塘中种植伊乐藻、苦草、轮叶黑藻、水花生等水生植物,可有效吸收氨氮等有害物质。 3、放养的密度适宜,搭配比例科学合理。通过池塘中自然生物和投放的苗种之间的生物链和食物链的关系,来直接或间接地降低或控制氨氮的含量。 4、使用优质优质饲料:饲料营养全面,新鲜适口,易消化吸收,饵料系数低,投饵后残饵少,粪便少,氨氮产生的浓度也就相对的低。 5、使用底层微孔曝气,遵循“三开、二不开”的原则。一般情况下,适宜的开机时间多为黎明前3-4点钟,因这一时间由于水生植物不能进行光合作用制造氧气,且产生氨氮等有毒物质再增多,也是一天中最多、最集中的时候。使用底层微孔曝气,就是通过微孔曝气作用,可有效地将水体下层中的粪便、碎屑、残饵分解的产物以及硫化氢、氨氮、亚硝基氮等有毒气体带出水面,改善水体和底质环境。

水体污染的危害

水体污染对人体健康的影响。 引起急性和慢性中毒。水体受有毒有害化学物质污染后,通过饮水或食物链便可能造成中毒。著名的水俣病、痛痛病是由水体污染引起的。 致癌作用。某些有致癌作用的化学物质如砷(shēn)、铬(gè)、镍(niè)、铍(pī)、苯胺(àn)、苯并芘(bì)和其他多环芳烃(tīng)、卤代烃污染水体后,可被悬浮物、底泥吸附,也可在水生生物体内积累,长期饮用含有这类物质的水,或食用体内蓄积有这类物质的生物(如鱼类)就可能诱发癌症。 发生以水为媒介的传染病。人畜粪便等生物污染物污染水体,可能引起细菌性肠道传染病如伤寒、痢疾、肠炎、霍乱等;肠道内常见病毒如脊髓灰质类病毒、柯萨奇病毒、传染性肝炎病毒等,皆可通过水体污染引起相应的传染病。1989年上海的"甲肝事件",就是由水体污染引起的。在发展中国家,每年约有6000万人死于腹泻,其中大部分是儿童。 间接影响。水体污染后,常可引起水的感官性状恶化,如某些污染物在一定浓度下,对人的健康虽无直接危害,但可使水发生异臭、异色,呈现泡沫和油膜等,妨碍水体的正常利用。铜、锌、镍等物质在一定浓度下能抑制微生物的生

长和繁殖,从而影响水中有机物的分解和生物氧化,使水体自净能力下降,影响水体的卫生状况。 水体污染既可严重危害生态系统,还可造成严重的经济损失。 主要污染物的影响: 铅:对肾脏、神经系统造成危害,对儿童具高毒性,致癌性已被证实 镉:对肾脏有急性之伤害 砷:对皮肤、神经系统等造成危害,致癌性已被证实 汞(gǒng):对人体的伤害极大,伤害主要器官为肾脏、中枢神经系统 硒:高浓度会危害肌肉及神经系统 亚硝酸盐:造成心血管方面疾病,婴儿的影响最为明显(蓝婴症),具致癌性 总三卤甲烷:以氯仿对健康的影响最大,致癌性方面最常发生的是膀光癌 三氯(lǜ)乙烯(有机物):吸入过多会降低中枢神经、心脏功能,长期暴露对肝脏有害

谈重金属铅在水体中的迁移与转化特征

谈重金属铅在水体中的迁移与转化特征 (武汉大学) 一,前言 铅是一种重金属,由铅组成的盐类大部分是不溶于水的,当水体中铅的浓度达到一定范围时就会对人体、渔业、农业灌溉等等都会产生极大的危害,铅在人体内富集可以使铅中毒。伴随着社会上出现的一系列铅污染问题,例如儿童铅中毒、孕妇铅中毒等,科学家对铅的了解和研究进一步的加深。水圈与大气圈和岩石圈共同组成了生物圈,可见水环境的重要,铅在水体中的迁移与转化也必然随之成为社会的焦点问题。 二,铅在水体中的存在形态 关于铅元素在水体中的存在形态,一般按其总量分为“可溶态”和“颗粒态”,一些+2价铅和+4价铅离子都是可溶态的,可溶态的铅毒性较大,可以为人、生物直接吸收,储积性强。悬浮物和沉积物中的铅是颗粒态的。 三,铅在水体中迁移转化的类型和规律 和其他重金属一样,铅在水体中不能为生物所降解,只能产生各种形态之间的相互转化、分散和富集,这就是铅的迁移与转化,按照其运动的形式可以分为机械迁移转化、物理化学迁移转化、生物迁移转化。⑴对于铅的机械迁移转化,主要是铅在水体中被包含于矿物质或是有机胶体中,或是被吸附在悬浮物上,以溶解态或是颗粒态的形态随水流迁移转化。⑵铅在水体中的物理化学迁移转化主要分为沉淀作用、吸附作用和氧化还原作用。在此笔者详细的讨论一下其转化过程。从高中的知识我们知道铅盐的溶解度都非常小,在偏酸性的水体中Pb 的浓度被PbSO 和PbS等限制着,水体中氢离子浓度大于氢氧根离子浓度,Pb +SO ─PbSO (沉淀),Pb +S ─PbS(沉淀),生成的PbSO ,PbS不溶于酸;在偏碱性的水体中铅的浓度受Pb(OH) 的限制,Pb(OH)─Pb + 2OH ,此反应是可逆的,水中OH 较多,使得平衡向逆向移动,又水解反应Pb +2H O─Pb(OH)+H ,OH 中和H 使得平衡向正向移动。另外铅离子在水体中会发生络合反应生成一些络合物,所以铅通过沉淀作用可以使铅在水体中的扩散速度和范围得到限制。铅离子带正电被水中带负电的胶体吸附,发生聚沉现象,这也如沉淀作用有着相同之处,最后大量的铅沉积在排污口的底泥中,实现了铅从水体转化到表层沉积物中,在一些

水污染危害及其防治

保护生命之源 ——论水污染及其防治众所周知,水是地球上所有生命赖以生存的基础。水是生命的起源,远古时期最 早的生命诞生在古老的海洋里,即使实现登陆,生命的存在仍然以水作为首要条件。 即使在当今代表了最尖端科技的航天领域,对外太空生命的探索仍然以水作为第一判 断条件,可以说:没有水,一切生命创造的精彩都将不复存在。当今世界,经济在高 速发展,我们对于水需求更大,然而我们却在面临前所未有的水危机。 全世界196个国家中,有超过100个国家缺水,其中20多个国家严重缺水,可 见我们面临的形势有多么危急。联合国估计:到2050年,全世界将有超过20亿的人 口缺水,21世纪将是一个水比油更宝贵的世纪,保护水资源迫在眉睫! 我国水形势亦不容乐观:中国是世界13个缺水国家之一,全国600多个城市中目前大约一半的城市缺水,水污染的恶化更使水短缺雪上加霜:我国江河湖泊普遍遭受污染,全国75%的湖泊出现了不同程度的富营养化;90%的城市水域污染严重,南方城市总缺水量的60%---70%是由于水污染造成的;对我国118个大中城市的地下水调查显示,有115个城市地下水受到污染,其中重度污染约占40%。水污染降低了水体的使用功能,加剧了水资源短缺,对我国可持续发展战略的实施带来了负面影响。 我们的水资源正在遭受各种污染的侵袭,水污染严重破坏生态环境、影响人类生 存,要想实现人类社会的可持续发展,首先要解决水污染问题。 一、简单了解水污染 由有害化学物质造成水的使用价值降低或丧失称之为水污染。水的污染有两类: 一类是自然污染;另一类是人为污染。而后者是主要的。水污染可根据污染杂质的不 同而主要分为化学性污染、物理性污染和生物性污染三大类。化学性污染物又可分为: 无机污染物、无机有毒物、有机有毒物、需氧污染物、植物营养物、油类物质等;物 理性污染又可分为:悬浮物污染、放射性污染、热污染;生物污染主要指造成疾病的 病原体对水体的污染。 二、著名的水污染事件 水污染既然有那么大的危害,有证据吗?答案是肯定的。

污染物的危害.doc

污染物的危害 一、COD 化学需氧量. 是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗 的氧化剂量。它是表示水中还原性物质多少的一个指标。水中 的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。 但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。 COD是化学需氧量的代号,表示在强酸性条件下重铬酸钾 氧化一升污水中有机物所需的氧量,可大致表示污水中的有机 物量。 它是表示水中还原性物质多少的一个指标。水中的还原性物质 有各种有机物(为主)、亚硝酸盐、硫化物、亚铁盐等。因此, 化学需氧量(COD)又往往作为衡量水中有机物质含量多少的 指标。COD越高,说明水体受有机物的污染越严重。 有毒的有机物进入水体),不仅危害水体的生物如鱼类,而且 还可经过食物链的富集,最后进入人体,引起慢性中毒。如滴 滴涕的慢性中毒能影响神经系统,破坏肝功能,造成生理障碍,甚至可能影响生殖和遗传,产生怪胎和引起癌症等。 我们常说的富营养化就是水体中营养物质(主要是氮磷

等)过多所引起的。有机物过高超过水体的自净能力会导致湖 泊湿地退化,打破水生态平衡,导致水生生物大量死亡。从而 影响到整个生态圈的能量流动与物质循环。 2、氨氮 我国氨氮排放量远远超出受纳水体的环境容量、污染负荷 压力大是造成目前地表水体氨氮超标的最主要原因。氨氮已超 过COD成为影响地表水水环境质量的首要指标,氨氮是否纳入 污染减排约束性指标,直接影响COD污染减排工作的环境质量绩效。 氨氮污染物对水环境的综合影响较大 水体中的氨氮是指以氨(NH3)或铵(NH4+) 离子形式存在 的化合氨。氨氮是各类型氮中危害影响最大的一种形态,是水 体受到污染的标志,其对水生态环境的危害表现在多个方面。 与COD一样,氨氮也是水体中的主要耗氧污染物,氨氮氧化分 解消耗水中的溶解氧,使水体发黑发臭。氨氮中的非离子氨是 引起水生生物毒害的主要因子,对水生生物有较大的毒害,其 毒性比铵盐大几十倍。在氧气充足的情况下,氨氮可被微生物 氧化为亚硝酸盐氮,进而分解为硝酸盐氮,亚硝酸盐氮与蛋白 质结合生成亚硝胺,具有致癌和致畸作用。同时氨氮是水体中 的营养素,可为藻类生长提供营养源,增加水体富营养化发生 的几率。 氨氮是总氮在自然水体中的存在形式之一,控制氨氮有利

重金属在水体中的存在形态及污染特征分析

重金属在水体中的存在形态及污染特征分析 摘要阐述了重金属在水体中的存在形态类型及迁移性质,介绍了重金属迁移规律的研究方法,并分析了重金属在水体中的污染特征。 关键词重金属;水体;存在形态;迁移规律;污染特征 1重金属在水体中的存在形态 1.1存在形态的类型 要分析污染物在水体中的迁移转化规律,首先就要了解污染物在水体中以何种形式存在以及各存在形态之间的关系,对重金属污染物的研究也不例外。汤鸿霄提出“所谓形态,实际上包括价态、化合态、结合态和结构态4个方面,有可能表现出来不同的生物毒性和环境行为”,这里所分析的存在形态主要指重金属在水体中的结合态。水体中重金属存在形态可分为溶解态和颗粒态,即用0.45μm滤膜过滤水样,滤水中的为溶解态(溶解于水中),原水样中未过滤的为颗粒态(包括存在于悬移质中的悬移态及存在于表层沉积物中的沉积态)。用Tessier等[1]提出的逐级化学提取法又可将颗粒态重金属继续划分为以下5种存在形态:一是可交换态,指吸附在悬浮沉积物中的黏土、矿物、有机质或铁锰氢氧物等表面上的重金属;二是碳酸盐结合态,指结合在碳酸盐沉淀上的重金属;三是铁锰水合氧化物结合态,指水体中重金属与水合氧化铁、氧化锰生成结合的部分;四是有机硫化物和硫化物结合态,指颗粒物中的重金属以不同形式进入或包括在有机颗粒上,同有机质发生螯合或生成硫化物;五是残渣态,指重金属存在于石英、黏土、矿物等结晶矿物晶格中的部分。 1.2迁移性质 不同存在形态的重金属在水体中的迁移性质不同。溶解态重金属对人类和水生生态系统的影响最直接,是人们判断水体中重金属污染程度的常用依据之一。颗粒态重金属组成复杂,其形态性质各不相同。可交换态是最不稳定的,只要环境条件变化,极易溶解于水或被其他极性较强的离子交换,是影响水质的重要组成部分;碳酸盐结合态在环境变化,特别是pH值变化时最易重新释放进入水体;铁锰水合氧化物结合态在环境变化时也会部分释放;有机硫化物和硫化物结合态不易被生物吸收,利用较稳定;残渣态最稳定,在相当长的时间内不会释放到水体中。

关于土壤和地下水污染的危害及治理措施

地下水与土壤污染防治措施: (1)源头上控制对土壤及地下水的污染。 企业应从设计、管理中防止和减少污染物料的跑,冒,滴,漏而采取的各种措施,主要措施包括工艺、管道、设备、土建、给排水、总图布置等防止污染物泄露的措施。在处理或贮存化学品的所有区域设置防渗漏的地基并设置围堰,以确保任何物质的冒溢均能被回收,从而防止土壤和地下水环境污染。 设计强酸或强碱操作的区域的地基、地面、围墙、排水沟均通过耐酸碱混凝土或耐酸碱胶泥或花岗岩处理;其他操作区域的地基、地面均铺设防渗漏地基。严格按照化工环境保护设计规范设计施工。设计化学物质的输送管线均设置在地面上,不设地下贮罐。地下集水池经过酸性防腐和防渗漏处理。 企业危险废物临时堆场设置应符合《危险废物贮存污染控制标准》(GB18597-2001)要求,固废临时堆场应采取防雨淋、防扬散、防渗漏、防流失等措施,以免对地下水和土壤造成污染。 企业与污水集中处理厂的危险废物仓库应安装视频监控设施,并与产业园监控中心及地方环保主管部门联网。 (2)地下水污染监控 建立企业地下水环境监控体系,包括建立地下水监控制度和环境管理体系、制定监测计划、配备必要的检测仪器和设备,以便及时发现问题,及时采取措施。要求企业在运行期严格管理,加强巡检,及时发现污染物泄漏;一旦出现泄漏及时处理,检查检修设备,将污染物泄漏的环境风险事故降到最低。 (3)应急预案及应急处置 建立企业污染事故应急预案,当发生异常情况时,按照装置制定的环境事故应急预案,启动应急预案。在第一时间内尽快上报主管领导,启动周围

社会预案,密切关注地下水水质变化情况。组织装专业队伍负责查找环境事故发生地点,分析事故原因,尽量将紧急时间局部化,如可能应予以消除。对事故现场进行调查,监测,处理,对事故后果进行评估,采取紧急措施制止事故的扩散,扩大,并制定防止类似事件发生的措施。 事件诱因:因人为因素导致某种物质(废气中的污染物质、废水中污染物质、固体废物中的污染物或其渗透液)进入陆地表层土壤,引起土壤化学、物理、生物等方面特性的改变,影响土壤功能和有效利用,危害公众健康或者破坏生态环境的现象 事件类型: 1、大气污染物通过干、湿沉降过程污染水体和土壤; 2、工业废水、生活污水对水体和土壤的污染; 3、固体废物堆积、掩埋等处理污染水体和土壤; 4、企业使用的原辅材料发生泄漏处理不当污染水体和土壤。 对人体健康的影响: 1、重金属污染的危害:土壤中重金属或类金属污染对居民的危害通过农作物和水进入人体;(痛痛病) 2、农药污染的危害:农业生产中大量使用农药,首先使土壤受到污染,通过食物链进入人体,可引起急、慢性中毒极致突变、致癌和致畸作用; 3、生物性污染:是当前土壤污染的重要危害,影响面广,可引起肠道传染病和寄生虫病;可引起钩端螺旋体病、炭疽病、破伤风及肉毒中毒等。 对环境的影响: 地下水与土壤污染是具有隐蔽性和潜伏性、不可逆性和长期性两大特点。地下水与土壤污染是长期积累的过程,危害也是持续的、具有积累性的;使地下水与土壤质量下降,造成污染,影响动植物的生长、大气环境质量和危害人体健康。

相关文档