文档库 最新最全的文档下载
当前位置:文档库 › MESH和星型网络结构

MESH和星型网络结构

MESH和星型网络结构
MESH和星型网络结构

mesh

Mesh网络即””,它是“(multi-hop)”网络,是由网络发展而来,是解决“最后一公里”问题的关键技术之一。在向演进的过程中,无线是一个不可缺的技术。mesh 可以与其它网络。是一个动态的可以不断扩展的网络架构,任意的两个设备均可以保持无线互联。

目录

1

1.

2.

3.

4.

2

1.

2.

3.

3

4

5

1简介

.无线网状网(WMN)技术是面向基于IP接入的新型无线移动通信技术,适合于区域环境覆盖和高速无线接入。基于呈网状分布的众多间的相互合作和协同,具有高速和高频谱效率的优势,具有动态自组织、自配置、自维护等突出特点

Mesh网络的五大优势引

1.快速部署和易于安装

2.非视距传输()

3.健壮性

4.结构灵活

5.高带宽

MESH组网方案

Mesh组网需综合考虑信道干扰、跳数选择、频率选取等因素。本节将以基于的WLAN MESH为例,分析实际可能的各种组网方案。下面重点分析单频组网和双频组网方案及性能。

单频MESH组网

单频组网方案主要用于设备及频率资源受限的地区,分为单频单跳及单频多跳。单频组网时,所有的Mesh AP和有线接入点Root AP的接入和回传均工作于同一频段,以图2为例,可采用上的信道g进行接入和回传。按照产品实现方式及组网时信道干扰环境的不同,各跳之间采用的信道可能是完全独立的无干扰信道,也可能是存在一定干扰的信道(实际环境中多为后者)。此时由于相邻之间存在干扰,所有节点不能同时接收或发送,需要在多跳范围内用CSMA/CA的MAC机制进行协商。随着跳数的增加,每个Mesh AP分配到的将急剧下降,实际单频组网性能也将受到很大限制。

双频MESH组网

双频MESH组网

双频组网中每个的回传和接入均使用两个不同的频段,如本地接入服务用GHz b/g信道,骨干Mesh回传网络使用GHz 信道,互不存在干扰。这样每个Mesh AP就可以在服务本地接入用户的同时,执行回传转发功能。双频组网相比单频组网,解决了回传和接入的信道干扰问题,大大提高了网络性能。但在实际环境和大规模组网中,回传链路之间由于采用同样的频段,仍无法完全保证信道之间没有干扰,因此随着跳数的增加,每个Mesh AP分配到的仍存在下降的趋势,离Root AP远的Mesh AP将处于信道接入劣势,故双频组网的跳数也应该谨慎设置。

双频MESH组网

应用

MESH技术在煤矿行业的意义

为建设现代化矿井,数字化矿山,国内各个技术公司都在努力与此目标.基于WIFI

技术研发的煤矿用井下无线通讯系统已经开始投入使用. 其中包含使用了MESH 技术通信的系统,如KT109R等.

在煤矿井下复杂恶劣的环境下,常规通信技术经常受到诸如,断电等情况的困扰,

如若在无线通讯系统中使用了MESH技术,即使通讯线缆受到损害,井下各通信基

站之间仍可利用MESH技术进行通信.此举同时也为矿井紧急救援提供了一个可靠的平台.

安全方案

有线网络自诞生之日起就不断受到安全专家的考验、的侵袭和病毒的困扰,也是在这场攻与防、矛与盾的斗争中,有线网络不断成熟,安全机制不断加强。时至今日,有线网络的安全技术已日臻完美。要想攻破一个配置得当的有线网络是非常困难的,然而的出现是网络安全水平退到了20世纪80年代的水平。即使在比较先进的欧美国家,在一个应用比较普及的城市,一个经验丰富的进行一次“”就能找到大量存在严重安全漏洞的无线网络,并轻而易举地入侵。无线网络安全技术也引起了越来越多的安全专家的注意,各种新的安全技术也不断出现。MESH是一项极有前途的技术,被誉为下一代无线因特网,它除了具备一般的无线网络特征外,还具有多跳、自组织等特性,一方面这些特性有它的高明之处,而另一方面从安全角度来看,这也是其命名和症结所在。

星型拓扑

星型是用一个节点作为中心节点,其他节点直接与中心节点相连构成的。中心可以是文件服务器,也可以是连接设备。常见的中心节点为。

目录

1

2

3

1.

2.

1星型拓扑结构

星型是用一个节点作为中心节点,其他节点直接与中心节点相连构成的。中心可以是文件服务器,也可以是连接设备。常见的中心节点为。

星型的属于集中控制型网络,整个网络由中心执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的都将要发送到数据发送中心节点,

再由中心节点负责将数据送到目地节点。因此,中心相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。

2优点和缺点

优点:

(1)控制简单。任何一站点只和中央相连接,因而简单,致使访问协议也十分简单。易于监控和管理。

(2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行和定位,单个连接点的故障只影响一个设备,不会影响全网。

(3)方便服务。中央可以方便地对各个站点提供服务和重新配置。

缺点:

(1)需要耗费大量的电缆,安装、维护的工作量也骤增。

(2)中央负担重,形成“瓶颈”,一旦发生故障,则全网受影响。

(3)各站点的能力较低。

总的来说星型相对简单,便于管理,建网容易,是目前普遍采用的一种拓扑结构。采用星型拓扑结构的,一般使用双绞线或作为,符合标准,能够满足多种需求。

3分类

星型拓扑中可分为星型拓扑和扩展星型拓扑。

星型拓扑

尽管物理星型拓扑的实施费用高于物理,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的都采用的物理星型拓扑的原因所在。

扩展星型拓扑

如果星型扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。

纯扩展星型拓扑的问题是:如果中心点出现故障,的大部分组件就会被断开

网络系统拓扑结构图

网络拓扑结构 网络拓扑结构是指用传输媒体互联各种设备的物理布局。将参与LAN工作的各种设备用媒体互联在一起有多种方法,实际上只有几种方式能适合LAN的工作。 如果一个网络只连接几台设备,最简单的方法是将它们都直接相连在一起,这种连接称为点对点连接。用这种方式形成的网络称为全互联网络,如下图所示。 图中有6个设备,在全互联情况下,需要15条传输线路。如果要连的设备有n个,所需线路将达到n(n-1)/2条!显而易见,这种方式只有在涉及地理范围不大,设备数很少的条件下才有使用的可能。即使属于这种环境,在LAN技术中也不使用。我们所说的拓扑结构,是因为当需要通过互联设备(如路由器)互联多个LAN时,将有可能遇到这种广域网(WAN)的互联技术。目前大多数网络使用的拓扑结构有3种: ①星行拓扑结构; ②环行拓扑结构; ③总线型拓扑结; 1.星型拓扑结构 星型结构是最古老的一种连接方式,大家每天都使用的电话都属于这种结构,如下图所示。其中,图(a)为电话网的星型结构,图(b)为目前使用最普遍的以太网(Ethernet)星型结构,处于中心位置的网络设备称为集线器,英文名为Hub。

(a)电话网的星行结构(b)以Hub为中心的结构 这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 这种网络拓扑结构的一种扩充便是星行树,如下图所示。每个Hub与端用户的连接仍为星型,Hub的级连而形成树。然而,应当指出,Hub级连的个数是有限制的,并随厂商的不同而有变化。 还应指出,以Hub构成的网络结构,虽然呈星型布局,但它使用的访问媒体的机制却仍是共享媒体的总线方式。 2.环型网络拓扑结构 环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有端用户连成环型,如图5所示。这种结构显而易见消除了端用户通信时对中心系统的依赖性。 环行结构的特点是,每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作。于是,便有上游端用户和下游端用户之称。例如图5中,用户N是用户N+1的上游端用户,N+1是N的下游端用户。如果N+1端需将数据发送到N端,则几乎要绕环一周才能到达N端。 环上传输的任何报文都必须穿过所有端点,因此,如果环的某一点断开,环上所有端间的通信便会终止。

无线Mesh网络架构及发展现状研究_bupt

无线Mesh网络架构及发展现状研究 李曦 北京邮电大学,北京(100876) E-mail:cici0404@https://www.wendangku.net/doc/061890424.html, 摘要:本文介绍了无线Mesh网络的自身特点、组网结构及其与移动Ad hoc网络和蜂窝网络的异同,重点论述了无线Mesh网络中路由协议的特点及分类,特别是MR-LQSR、PWRP、MCRP等无线Mesh网络专有的路由协议。最后介绍了无线Mesh网络的研究现状,包括标准化进程和商用情况,以及未来的发展前景。 关键词:无线Mesh网络; 路由协议; 移动Ad hoc网络 1.引言 无线Mesh网络(WMN,Wireless Mesh Network),又称无线网状网、无线网格网,随着无线宽带接入因特网业务需求的急速增长,由于其所具有的高速率、易组网、成本低、性能稳定等优势,已经引起人们的日益关注。有一位美国经济学家声言:Mesh网络和智能天线、Ad hoc网络以及超宽带技术一起,正在成为无线通信领域中压到一切的技术,它们将很可能使所谓的3G网络技术落伍,甚至可能会影响4G的发展。这句评价毫无疑问将无线Mesh网络放在了一个很高的层次上。 其实早在20世纪90年代中期,无线Mesh网络的概念就已经提出来了,但人们真正开始关注它是在近两年。可以说,无线Mesh网络是在移动Ad hoc网络的基础上产生发展的。移动Ad hoc网络是美国军方为了在战场上通信而研发的,近年来随着一些保密技术相继被公开并转化为民用,逐渐成为移动通信领域的研究热点。移动Ad hoc网络的应用环境和技术成本等因素决定了它并不适合直接应用于民用通信领域:最大的民用通信业务应该是包括VoIP业务在内的因特网业务,民用通信用户的移动性也远远低于军事通信用户。因此需要一种基于移动Ad hoc网络的技术基础,并且适用于民用通信的无线多跳网络技术,于是,无线Mesh网络应运而生[1]。 MeshNetworks公司于2000年初购买了美国军方研发的战术移动通信系统的部分专利技术,由此开发了一系列具有自主知识产权的WMN民用产品,在市场上获得了极大的成功,2005年摩托罗拉公司极为看好其发展,成功收购该公司。其间,诺基亚、北电网络、Tropos、SkyPilot、Radiant Networks和Firetide等多家公司纷纷开发WMN产品并相继推入市场。无线Mesh网络进入了飞速发展的时期。 2.无线Mesh网络的组成和特点 一般而言,无线Mesh网络由客户节点、Mesh路由器节点和网关节点组成。根据具体网络配置,并不一定包括所有节点。客户节点可以是笔记本电脑、PDA、Wi-Fi手机、RFID 阅读器和无线传感器或控制器等;Mesh路由器可以是普通PC,也可以是专用的嵌入式系统,如ARM等。客户节点按照功能可以分为两类:一类只作为普通终端接入网络,不具有转发信息的功能;另一类既具有普通节点的接入功能,又具有路由和信息转发功能,即兼具了无线路由器的功能。 按照结构层次,无线Mesh网络可以分为平面结构、多极结构和混合结构。

网络拓扑结构大全和图片

网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 星型结构 星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。 星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。 优点: (1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。 (2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。 缺点: (1)需要耗费大量的电缆,安装、维护的工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点的分布处理能力较低。 总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。

无线mesh网络设计方案

无线mesh网络设计方案 关于本方案 本方案为黄河科技学院信息工程学院无线mesh网络硬件平台设计提供详细的需求分析和设计方案,包括但不限于硬件平台、软件设计、数据库、项目人员分配、项目完成计划。 第1章概述 1.1项目背景 无线mesh网络设计方案为无线mesh团队提供算法的支持平台。 第2章总体设计 2.1总体设计目标 本项目由软件和硬件两部分组成 硬件: 1、做板子。有显示、键盘组成。LPC2148芯片。 (1)、步骤一:以LPC2148开发板为平台,连接Unet测试板。以RS232串口连接。Unet测试板用5V供电,和LPC2148开发板的串口1以电缆连接。LPC2148串口2监控水表、电表等。 (2)、步骤二:画SCH板子,自己做板,焊接。 2、底层程序 (1)、显示部分 (2)、键盘 (3)、U_Net连接部分。用RS232连接。 (4)、连接电表、水表等。用RS485。 (5)、数据的发送和接受。 3、上位机程序。 (1)、串口通信部分。 (2)、显示部分 (3)、数据库部分

(3)、TCP\IP和web服务器链接部分。 4、web服务器部分 (1)、TCP\IP和上位机连接部分 (2)、显示部分 (3)、数据库部分 (4)、界面部分 2.2软件系统协议设计说明 Unet协议操作流程 (1)NP 发送的时候,串口是透明的,但是在网络层会有地址码,所以AP收到会知道来自哪个NP,只是需要用API的格式表现出来 (2)基本上 unet不需要额外的操作设置,NP透传上报数据到AP,AP透传广播到所有的NP或者API的格式发到某一个NP。 (3)unet 地址改不了,固化了的 1001 1002 1003 (4)NP 2400 (5)如果接的是NP,NP是没有透明模式的,用+++返回OK就说明PC和模块通信是可以的 Unet 的设置 1、AP (1)API设置命令,串口 9600,n,8,1 +++ATAP 0 ATWR ATCN 收到OK为正确接收。 (2)透传的设置命令,串口 2400,n,8,1 +++ATAP 1 ATWR ATCN 收到OK为正确接收。 2、NP (1)输入 +++ 返回 ok;传输模式到AT命令集。 (2)输入 ATCN ,从AT命令集到透传模式。 3、数据发送 (1)、AP数据发送 7E 00 15 01 00 FF FF 00 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 80 NP数据接收 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF (2)、NP发送 1234567890ABCDEF AP接收 7E 00 15 81 10 08 00 00 31 32 33 34 35 36 37 38 39 30 41 42 43 44 45 46 C4

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构就是把网络中的计算机与通信设备抽象为一个点,把传输介质抽象为一条线,由点与线组成的几何图形就就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑与物理拓扑结构这里讲物理拓扑结构。总线型拓扑:就是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但就是它的缺点就是所有的PC不得不共享线缆,优点就是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点就是布局灵活但就是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以瞧成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构就是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机与通信设备抽象为一个点,把传输介质抽象为一条线,由点与线组成的几何图形就就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,就是建设计算机网络的第一步,就是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1、总线拓扑结构 就是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,就是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点不宜过多,

无线MESH网络设备与无线网桥的比较

无线MESH网络设备与WDS设备的比较 对于由MESH网络设备或者WDS(无线分布系统)网络设备所组成的无线局域网来说,二者在最终的表现形式上是近乎相同的:在一定区域内互相联通的无线网络,该网络在创建时无需将所有接入点都与基础有线设施连在一起。MESH网络或者WDS网络的基本优势之一就是避免了接入点之间的有线连接,比如需要将接入点安装在室外的体育场,停车场,或者企业园区内电杆上的场景中,无线网络设备可以替代有线电缆的使用。MESH网络或者WDS 网络可以在这些情况下,发挥出其相比于有线网络所独有的优势。在最简单的组网结构中,可以使用二者之中的任何一个来创建双节点——即单点对单点的无线链路(低成本的点对点链路通常也正是这么实现的)。 为了进一步讨论使用MESH网络设备组建的无线局域网与使用WDS网络设备桥接的无线局域网之间有何异同,我们首先需要讨论“路由”与“桥接”的区别,在此基础上再比较Mesh路由和WDS桥接就比较容易了。 路由和桥接 路由是属于计算机网络架构中第三层的概念,而桥接属于第二层。“路由”是网络互连设备所使用的一个专业术语,该互连设备可以接收数据分组,并基于数据分组的第3层目的地址进行递交转发。“第3层”即网络层,在使用TCP / IP协议族的情况下,网络层决定了每个传输的数据包中和IP(互联网协议)有关的部分,“第3层地址”指的就是IP地址(如192.168.1.10)。 桥接也是一个专业术语,它指的是网络设备接收数据分组之后,根据其第2层的目标地址进行传递转发。“第2层”指OSI参考模型里的第2层,即MAC层,在以太网或802.11 协议中,MAC层包含在每个传输数据包的报头,MAC地址(如9C:2A-79:27:DF:A3)就

网络的拓扑结构分类

网络的拓扑结构分类 网络的拓扑结构是指网络中通信线路和站点(计算机或设备)的几何排列形式。 1.星型网络:各站点通过点到点的链路和中心站相连。特点是很容易在网络中增加新的站点,数据的安全性和优先级容易控制,易实现网络监控,但中心节点的故障会引起整个网络瘫痪。 每个结点都由一条单独的通信线路和中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 2.环形网络:各站点通过通信介质连成一个封闭

的环形。环形网容易安装和监控,但容量有限,网络建成后,难以增加新的站点。 各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。 缺点: 环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring) 3.总线型网络:网络中所有的站点共享一条数据通道。总线型网络安装简单方便,需要铺设的电缆最短,成本低,某个站点的故障一般不会影响整个网络。但介质的故障会导致网络瘫痪,总线网安全性低,监控比较困难,增加新站点也不如星型网容易。

是将网络中的所有设备通过相应的硬件接口直接连 接到公共总线上,结点之间按广播方式通信,一个结 点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充, 是局域网常采用的拓扑结构。 缺点:所有的数据都需经过总线传送,总线成为整个 网络的瓶颈;出现故障诊断较为困难。最著名的总线 拓扑结构是以太网(Ethernet)。 树型网、簇星型网、网状网等其他类型拓扑结构 的网络都是以上述三种拓扑结构为基础的。 ④树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的使用要

网络拓扑结构大全和图片(星型、总线型、环型、树型、分布式、网状拓扑结构)

网络拓扑结构总汇 星型结构 星型拓扑结构就是用一个节点作为中心节点,其她节点直接与中心节点相连构成得网络。中心节点可以就是文件服务器,也可以就是连接设备。常见得中心节点为集线器。 星型拓扑结构得网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间得通信都要通过中心节点。每一个要发送数据得节点都将要发送得数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点得通信处理负担都很小,只需要满足链路得简单通信要求。 优点: (1)控制简单。任何一站点只与中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控与管理。 (2)故障诊断与隔离容易。中央节点对连接线路可以逐一隔离进行故障检测与定位,单个连接点得故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务与网络重新配置。 缺点: (1)需要耗费大量得电缆,安装、维护得工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点得分布处理能力较低。 总得来说星型拓扑结构相对简单,便于管理,建网容易,就是目前局域网普采用得一种拓扑结构。采用星型拓扑结构得局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑得实施费用高于物理总线拓扑,然而星型拓扑得优势却使其物超所值。每台设备通过各自得线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络得其她组件依然可正常运行。这个优点极其重要,这也正就是所有新设计得以太网都采用得物理星型拓扑得原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连得其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑得问题就是:如果中心点出现故障,网络得大部分组件就会被断开。 环型结构 环型结构由网络中若干节点通过点到点得链路首尾相连形成一个闭合得环,这种结

无线Mesh网络的概念及关键技术

无线Mesh网络的概念及关键技术 来源:中国联通网站作者:出处:https://www.wendangku.net/doc/061890424.html, 2008-04-17 进入论坛 摘要:无线Mesh网络是一种新型的无线宽带接入网络,它融合了无线局域网和Ad hoc 网络的优势,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,成为无线宽带接入的一种有效手段。文章简要介绍无线Mesh网络的概念和系统特性,详细阐述摩托罗拉Mesh技术的系统结构、频率配置和关键技术等。 0、引言 无线Mesh网络(WMN)技术曾是一项军事技术,战场上的移动网络需要很高的数据速率、很低的被检出概率和防止人为干扰的能力,而Mesh技术就具备了这些能力。随着人们对802.11a、802.11b和802.11g等局域网(LAN)技术了解的深入,Mesh技术才逐步成为企业界和消费者瞩目的焦点,并沿着不同的分支演进。 目前,业界讨论最多的“无线网状网”技术是一种灵活的广域无线局域网(WLAN)解决方案,它突破了Wi-Fi技术对每个接入点的有线连接要求,将多个接入点通过无线方式连接在一起,无需进行布线就可形成一个无线网络或“热区”,从而在室内和室外提供宽广的无线覆盖。目前,许多知名厂商(如摩托罗拉、思科、Strix、Tropos等)都已经有成熟产品问世,促进各个行业组织制订标准,以推进网状网技术的可操作性。 目前,基于Mesh技术的无线网络集成了健壮的安全性和全面的可管理性,可提供移动宽带和灵活的自组网通信,并拥有对局部区域可靠和安全的覆盖能力,已成为符合国际电联(ITU)公众保护及救灾(PPDR)业务要求的一项优秀解决方案。Mesh网络不仅有助于改善城市信息化的应用环境,而且对提升城市的综合服务能力也有十分明显的作用。 1、无线Mesh网络的概念 无线Mesh网络是基于IP协议的无线宽带接入技术,它融合了WLAN和Ad hoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,是一种大容量、高速率、覆盖范围广的网络,成为

网络拓扑结构

网络拓扑结构 拓扑这个名词是从中借用来的。网络拓扑是网络形状,或者是它在物理上的连通性。构成网络的拓扑结构有很多种。网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么把网络中的等设备连接起来。拓扑图给出、的网络配置和相互间的连接,它的结构主要有、、、分布式结构、树型结构、网状结构、等。 星型 星型结构是最古老的一种连接,大家每天都使用的属于这种结构。一般网络环境都被设计成星型拓扑结构。星型网是广泛而又首选使用的网络拓扑设计之一。 星型结构是指各以星型连接成网。网络有中央节点,其他节点(、)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为。 星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的时间较小,较高。 在星型拓扑结构中,网络中的各通过点到点的连接到一个中央节点(又称中央转接站,一般是或)上,由该中央节点向目的节点传送信息。中央执行集中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个要进行通信都必须经过中央。 现有的和声音通信的信息网大多采用星型网,流行的专用小PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。它在一个单位内为综合语音和数据交换信息提供信道,还可以提供语音信箱和等业务,是的一个重要分支。 在星型网中任何两个节点要进行通信都必须经过中央。因此,中央节点的主要功能有三项:当要求通信的站点发出通信请求后,控制器要检查中央转接站是否有空闲的通路,被叫设备是否空闲,从而决定是否能建立双方的物理连接;在两台设备通信过程中要维持这一通路;当通信完成或者不成功要求拆线时,中央转接站应能拆除上述通道。 由于中央节点要与多机连接,线路较多,为便于集中连线,多采用交换设备(交换机)的硬件作为中央节点。[1] 集中式 这种结构便于集中控制。同时它的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 环型

网络拓扑结构

网络拓扑结构科技名词定义 中文名称:网络拓扑结构 英文名称:n etwork topology 定义:在计算机网络中指定设备和线路的安排或布局;在地理网络中指网络要素之间的连接 网络拓扑是网络形状,或者是它在物理上的连通性?构成网络的拓扑结构有很多种。 网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机 等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。 星型拓扑结构(集中式网络) 星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。目前一般网络环境都被设计成星型拓朴结构。星型网是目前广泛而又首选使用的网络拓朴设计之一。星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器) 都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。 星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的网络延迟时间较小,传输误差较低。但这种结构非常不利的一 点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。中央节点执行集 中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个节 点要进行通信都必须经过中央节点控制。 现有的数据处理和声音通信的信息网大多采用星型网,目前流行的专用小交换机PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。它在一个单位内为综合语音和数据工作站交换信息提供信道,还可以提供语音信箱和电话会议等业务,是局域网的一个重要分支。

无线Mesh网络的跨层设计概述

无线Mesh网络的跨层设计概述 钱新蕾 (信息科学与技术学院,2004(1)班,04261106号) [摘要]无线Mesh网络是一种新型的宽带无线网络,它越来越受到人们的重视。由于无线Mesh网络在拓扑、传输和业务上的特性,传统的用于有线网络的分层协议设计方法已不能保证其服务质量(QoS)。跨层设计这一项热门技术,将自适应技术引入其中,可以适应信道变化实现对资源的自适应优化配置、增加Qos保障,在无线资源利用率和多媒体业务的QoS需求两方面都达到了较好的折衷。本文在搜集了一定资料的基础上,从跨层设计的背景、跨层信息交互、实例分析以及发展前景几方面做了概述。 [关键词]无线Mesh网络自适应跨层设计 1 引言 无线Mesh网,即无线网状网(WMN),也称为无线多跳网。较之传统无线接入技术,WMN具有成本低、支持无线接入且与无线终端之间可以实现对等网络通信、扩展了现有无线网络的覆盖范围等特点。无线Mesh网的结构如图1所示[1]。 图1 无线mesh网结构 但由于无线通信环境具有快速变化的特性,而基于分层结构的协议栈只能在相邻的层之间以固定的方式进行通信,这使得现有的协议栈无法灵活地适应无线移动环境的变化,从而使得在设计协议栈时只能考虑其在通信条件最为恶劣的情况下进行工作,进而导致了协议栈无法对有限的频谱资源及功率资源进行有效的利用。为了解决这个问题,人们提出了跨层设计的思想,即通过在协议栈的各层之间传递特定的信息来协调协议栈各层之间的工作过程,使之与无线通信环境相适应,从而使系统能够满足不同业务的不同需求,实现对资源的自适应优化配置。 2 跨层设计的背景

2.1跨层设计的必要性 由于无线信道的物理特性(信道传播的开放性和信道参量变化的时变性等)使无线信道成为一种非常不稳定的媒介,增加了无线通信网络设计的难度,所以人们往往只按照信道性能最差的情况和最低要求进行设计,这在信道质量较好的情况下则会造成频谱、功率等资源的浪费。传统的无线通信系统设计对各层进行单独的设计和优化,简化了整体网络设计的复杂性,满足了软件设计的信息隐藏原则,因而得到广泛应用。但若遵循OSI设计理念必然摒弃协议层之间跨层交互,而且不同协议层中存在一定的信息冗余。因此,OSI严格分层的参考模型不能对无线网络资源进行整体管理,网络性能不能得到整体优化。而跨层思想就很好的解决了这些问题。 2.2跨层设计的基本要求 2.2.1物理层对跨层设计的要求 物理层的BER(每一位的出错概率)对物理层性能来说是关键因素。但计算BER是相当复杂的,实际中是将BER性能要求映射为信噪比(SNR)的要求。一般决定包是否正确的解码是通过接收到的SNR值来衡量的。提高SNR就可以提高正确接收的机率,一个重要的技术是功率控制。功率控制是在不影响通话质量的前提下,通过控制接入终端的输出功率,在保证高质量的反向链路的同时使得干扰最小化。当平均的每个用户反向链路信噪比达到最小时,通信质量达到“可接受”标准,从而使得容量最大化。 2.2.2MAC层对跨层设计的要求 MAC层使用物理层提供的传输信道向无线链路层提供逻辑信道。它定义了对实时声音、视频和可信的数据传输的支持,在有限的无线带宽有效公平的共享中起着重要作用。因为无线网络中无线链路的共享特性,所以带来了竞争。MAC层需要调度功能来解决竞争问题。所谓调度就是协调用户共享无线信道资源(带宽、时延等),如规定用户何时、以何种方式发送数据。 2.2.3网络层对跨层设计的要求 网络层将数据分成一定长度的分组,并在分组头中标识源和目的节点的逻辑地址,这些地址就像街区、门牌号一样,成为每个节点的标识;网络层的核心功能便是根据这些地址来获得从源到目的的路径,当有多条路径存在的情况下,还要进行路由选择。当路径的预留资源得到满足时,请求被接纳,否则被拒绝,这一操作过程称为接纳控制[6]。不同的业务需要不同的QoS 需求,需要接入控制进行区别对待。 2.2.4多媒体业务QoS保证对跨层设计的需求 QoS保证机制涉及所有协议层,即每个协议层的相应参数设置都涉及到QoS能否得到保证。从应用层的角度粗略分为非实时业务和实时业务。对于非实时业务,在传输层可以采用TCP协议,根据接收器窗口大小和网络拥塞情况自适应地调整业务流速率;实时业务因其对

MESH和星型网络结构

mesh 编辑 Mesh网络即”无线网格网络”,它是“多跳(multi-hop)”网络,是由ad hoc网络发展而来,是解决“最后一公里”问题的关键技术之一。在向下一代网络演进的过程中,无线是一个不可缺的技术。无线mesh可以与其它网络协同通信。是一个动态的可以不断扩展的网络架构,任意的两个设备均可以保持无线互联。 目录 1简介 2MATLAB函数 3晶体学名词 4医学主题词 5Live Mesh 1 简介 .无线网状网(WMN)技术是面向基于IP接入的新型无线移动通信技术,适合于区域环境覆盖和宽带高速无线接入。无线Mesh网络基于呈网状分布的众多无线接入点间的相互合作和协同,具有宽带高速和高频谱效率的优势,具有动态自组织、自配置、自维护等突出特点 Mesh网络的五大优势引

1.快速部署和易于安装 2.非视距传输(NLOS) 3.健壮性 4.结构灵活 5.高带宽 MESH组网方案 Mesh组网需综合考虑信道干扰、跳数选择、频率选取等因素。本节将以基于802.11s的WLAN MESH为例,分析实际可能的各种组网方案。下面重点分析单频组网和双频组网方案及性能。 单频MESH组网 单频组网方案主要用于设备及频率资源受限的地区,分为单频单跳及单频多跳。单频组网时,所有的无线接入点Mesh AP和有线接入点Root AP的接入和回传均工作于同一频段,以图2为例,可采用2.4GHz上的信道802.11b/g进行接入和回传。按照产品实现方式及组网时信道干扰环境的不同,各跳之间采用的信道可能是完全独立的无干扰信道,也可能是存在一定干扰的信道(实际环境中多为后者)。此时由于相邻节点之间存在干扰,所有节点不能同时接收或发送,需要在多跳范围内用CSMA/CA的MAC机制进行协商。随着跳数的增加,每个Mesh AP 分配到的带宽将急剧下降,实际单频组网性能也将受到很大限制。 双频MESH组网 双频MESH组网 双频组网中每个节点的回传和接入均使用两个不同的频段,如本地接入服务用2.4 GHz 802.1l b/g信道,骨干Mesh回传网络使用5.8 GHz 802.11a信道,互不存在干扰。这样每个Mesh AP就可以在服务本地接入用户的同时,执行回传转发功能。双频组网相比单频组网,解决了回传和接入的信道干扰问题,大大提高了网络性能。但在实际环境和大规模组网中,回传链路之间由于采用同样的频段,仍无法完全保证信道之间没有干扰,因此随着跳数的增加,每个Mesh AP分配到的带宽仍存在下降的趋势,离Root AP远的Mesh AP将处于信道接入劣势,故双频组网的跳数也应该谨慎设置。 双频MESH组网

网络拓扑结构大全和图片(星型、总线型、环型、树型、分布式、网状拓扑结构)

网络拓扑结构大全和图片(星型、总线型、环型、树型、分 布式、网状拓扑结构) 网络拓扑结构总汇 星型结构 星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。 星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。 优点: (1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。 (2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。 缺点: (1)需要耗费大量的电缆,安装、维护的工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点的分布处理能力较低。

总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。 环型结构

最新无线Mesh网络

无线网络技术学院:信息工程与自动化专业:通信132 学号:201310404239 姓名:李园 成绩:

无线Mesh网络 摘要:无线Mesh 网络是无线局域网和移动自组织网络相结合的产物,是一种全 新的网络架构.它是下一代无线网络的关键技术之一, 近几年得到了人们的广泛关注和快速发展。为了以低成本的代价实现无处不在的高速Internet,新一代无线Mesh网络的发展势在必行。新一代无线Mesh网络旨在能够提供高性能和高可靠性的服务。简要描述了无线Mesh网络技术原理、网络架构和协议,分析了其优缺点以及它的应用,还有未来的趋势。 一、无线Mesh网络的概念 无线Mesh网络(WMN)是一种多跳、自组织的宽带无线网络,一般由Mesh路由器和Mesh 客户节点组成。其典型结构是一种分级网络结构:Mesh路由器互联构成多跳无线骨干网,负责数据的中继;骨干网一般通过网关节点与其他网络互联,而Mesh客户节点通过Mesh 路由器接入到WMN。通过WMN最终实现Mesh客户节点间、客户节点与Internet等其他网络间的互联互通,网络结构如图一所示。 二、无线Mesh网络研究现状 1、物理层 目前一些较前沿的物理层技术可以被用于无线Mesh网络的开发,如无线Mesh网络可以通过用不同的调制和编码速率,支持不同的传输速率。这样可以根据无线信道的质量和网络拥塞,动态改变数据传输速率,从而保证较低的差错率。另外,将会被广泛应用于宽带无线通信的正交频分复用技术(OFDM)、超宽带技术(UWB)、多输人多输出技术(MIMO)以及定向天线技术都可以用于无线Mesh网络的开发。除此之外,认知无线电技术也可以被用于Mesh网络,以提高频谱利用率。 2、MAC层 无线Mesh网络的可扩展性对于MAC层的设计提出了相应的要求。目前,对于Mesh网络MAC 层的研究,主要可以分为单信道MAC和多信道MAC。 (1)单信道MAC 1)修改目前已有的MAC层协议:目前的几种无线MAC层协议多是在IEEE 802.1 1 基础上进行修改的,如对CSMA/CA算法的一些诸如竞争窗口大小、退避过程的修改。 对于多跳的无线Mesh网络来说,这样的MAC层协议还远远达不到提高全网吞吐率的

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1. 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点

无线Mesh网络的概念及关键技术

无线Mesh网络的概念及关键技术 作者:电信快报祁超 摘要无线Mesh网络是一种新型的无线宽带接入网络,它融合了无线局域网和Adhoc网络的优势,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,成为无线宽带接入的一种有效手段。文章简要介绍无线Mesh网络的概念和系统特性,详细阐述摩托罗拉Mesh技术的系统结构、频率配置和关键技术等。 0、引言 无线Mesh网络(WMN)技术曾是一项军事技术,战场上的移动网络需要很高的数据速率、很低的被检出概率和防止人为干扰的能力,而Mesh技术就具备了这些能力。随着人们对802.11a、802.11b和802.11g 等局域网(LAN)技术了解的深入,Mesh技术才逐步成为企业界和消费者瞩目的焦点,并沿着不同的分支演进。 目前,业界讨论最多的“无线网状网”技术是一种灵活的广域无线局域网(WLAN)解决方案,它突破了Wi-Fi技术对每个接入点的有线连接要求,将多个接入点通过无线方式连接在一起,无需进行布线就可形成一个无线网络或“热区”,从而在室内和室外提供宽广的无线覆盖。目前,许多知名厂商(如摩托罗拉、思科、Strix、Tropos等)都已经有成熟产品问世,促进各个行业组织制订标准,以推进网状网技术的可操作性。 目前,基于Mesh技术的无线网络集成了健壮的安全性和全面的可管理性,可提供移动宽带和灵活的自组网通信,并拥有对局部区域可靠和安全的覆盖能力,已成为符合国际电联(ITU)公众保护及救灾(PPDR)业务要求的一项优秀解决方案。Mesh网络不仅有助于改善城市信息化的应用环境,而且对提升城市的综合服务能力也有十分明显的作用。 1、无线Mesh网络的概念 无线Mesh网络是基于IP协议的无线宽带接入技术,它融合了WLAN和Adhoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,是一种大容量、高速率、覆盖范围广的网络,成为宽带接入的一种有效手段。从某种意义上讲,Mesh 网络更主要的是一种网络架构思想,主要功能体现在无中心、自组网、多级跳接和路由判断选择等。

(Wireless multi-hop mesh networks)无线多跳mesh网络

Summary of wireless multi-hop mesh networks The technology of wireless networks is developing fast, and the applications of wireless networks offer the publics and society much convenience. But, at present the traditional wireless net is just used to replace the cable simply. Ⅰ. T raditional WLAN Along with the expanding of the wireless net’s scale, the requiring of wired connection for each access-point in WLAN makes it meet a lot of challenges and in convenience in the environment of lack of cable infrastructure. The traditional WLAN shows it’s insufficient gradually. The disadvantages of traditional WLAN: a.The poor reliability: In the traditional WLAN, several users get access to the wireless net through one access-point directly—it is call “single-hop”networks. So long as one stoppage can breakdown the whole networks. Figure1. T raditional WLAN b. The small coverage: The normal technology of “point-to-point” or “point-to-multipoint” uses the short networks, with the limitations of coverage, just like networks of 802.11 and Bluetooth. c. The poor scalability: As the joining and sharing data flow of access-points of extra nodes, the bandwidth of whole networks will come down gradually. d. The bad quality of communication: Because of noise in link and mistakes in communication, the bandwidth will decrease as the distance’s increasing. Most kind of wireless networks have “blind points” in its effective distance,

相关文档
相关文档 最新文档