文档库 最新最全的文档下载
当前位置:文档库 › 一文详解电池不一致性和模组并联

一文详解电池不一致性和模组并联

一文详解电池不一致性和模组并联

一文详解电池不一致性和模组并联

?接平工的文章,我们来谈谈电池的不一致和模组并联。

?

?

?由于能量的需求,拆解成总能量=电压*容量,集成过程中如果要用固定规格的电芯需要进行串并联操作,达到目标需求总容量。我们对于电池系统的配置可以分为几种方式方式:

?

?1)单体先并联后串联:这是典型的串并联的应用模式,由于最小单元在3.2~3.7V这个范围内,整个电流支路均衡压差也比较小

?

?

?好处:

?

?

?电池的熔丝设计相对容易

?

?

?电池采样通道数量较少,BMS的成本和复杂程度低

?

?

?电池自均衡在单体级别电流支路

电池串联和并联的性能影响

电池串联和并联的性能 影响 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电池串联和并联把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节锂离子电池串联起来,总电压达到;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是,碱性电池是,氧化银电池是,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为。如果要想得到像这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为或。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为;工业电池、航空电池和军用电池,每节电池的电压仍是。 串联

需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V (实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V至500V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生的电压,而不是正常的(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串行电池中,一节性能差的电池,就像是一个堵住水管的塞子,会产生巨大的阻力,阻止电流流过去。第三节电池也会短路,这将使终端的电压降低

电池并联与串联的区别

如何把电池并联起来? (图一) 并联(如图一) 为了得到更多的电量,可以把两个或者更多个电池并联起来。除了把电池并联起来,另一个办法是使用尺寸更大的电池。由于受到可以选用的电池的限制,这个办法并不适用于所有情况。此外,大尺寸的电池也不适合做成专用电池所需要的外形规格。大部分的化学电池都可以并联使用,而锂离子电池最适合并联使用。由四节电池并联而成的电池组,电压保持为1.2V,而电流和运行时间则增大到四倍。 与电池串联相比,在电池并联电路中,高阻抗或“开路”电池的影响较小,但是,并联电池组会减少负载能力,并缩短运行时间。这就好比一个发动机只启动了三个汽缸。电路短路所造成的破坏会更大,这是因为,在短路时,出现故障的电池会迅速地耗尽其他电池里的电量,并引起火灾。 串并联(如图二) 使用串并联这种连接方法时,在设计上很灵活,可以用标准的电池尺寸达到所需要的额定电压和电流。应当注意:总功率不会因为电池的不同连接方法而改变。功率等于电压乘电流。 2000mA 24V

(图二) 家用电池 前面所谈到的电池串联和并联的连接方法,针对的是可充电电池组,这些电池组里的电池都是永久性地焊接在一起的。除了把几个电池装进安装电池的电池室、串联起来之外,上面讲的那些规则也适用于家用电池。在把几个电池串联起来使用时,必须遵照下面的基本要求: ● 保持电池的连接点的洁净。把四节电池串联起来使用时,共有八个连接点(电池到电池室的连接点,电池室到下一节电池的连接点)。每个连接点都存在一定的电阻,如果增加连接点,有可能会影响整个电池组的性能。 ● 不要混用电池。当电池的电量不足时,更换所有的电池。在串联使用时,要用同一种类型的电池。 ● 不要对不可充电型电池进行充电。对不可充电池进行充电时,会产生氢,有可能会引起爆炸。 ● 要注意电池的极性。如果有一节电池的极性装反了,就会减少整串电池的电压,而不是增加电压。 ● 把已经完全放完电的电池从暂停使用的设备中取出。旧电池比较容易出现泄漏和腐蚀的情况。碱性电池相对于碳锌电池而言,问题不那么严重。 ● 不要把电池都放在一个盒子里,这样可能会出现短路。电池短路会导致发热,并引发火灾。请把废弃的电池放在小塑料袋里,与外界绝缘。 ● 类似于碱性电池的原电池组可以扔进普通的垃圾桶内。但是最好是把用过了的电池送去再生循环处理。

最新电池组的串并联使用的优缺点

电池组串并联使用分析报告 一.串联: 缺点:①电池组串联使用对保护板的要求更加的苛刻,不同的电池组使用的保护板的一致性更加严格。 ②对于串联使用,每个保护板上的MOS的选择也有一定的要求,根据使用串联后的最大串数来确定MOS管选择的最大耐压值。不管充电还是放电过程中,如果其中一组发生保护不至于击穿MOS管。 ③对于串联的每一个保护板都必须能承受相同的电流,与单独的总串数的保护板相比,使用的MOS管基本上一样,但是数量多了数倍,故大大增加了成本。 ④电池组的串联必须选用同口。如果使用分口的,电池组是可以充放电的,但是存在很多的隐患,尤其是不关断。充电时,分口的保护板的放电口必须断开,否则很有可能无法关断。 优点:方便携带,方便安装。 二.并联: 缺点:①对电池的一致性要求更高。比如:两组电池组并联使用,其电压相同,内阻不同,两组提供的电流就不一致。同样,电压不同,内阻相同,也同样提供的电流不一致。如果都不一样,提供的电流相差更大。 ②由于电池和保护板均有内阻,故对保护板内阻一致性的要求也高。 ③在过流中,如果板子的过流保护点相同,但是提供的电流不同的话,就会有一组保护板,另一组能正常放电,但是过流瞬间结束后,所有的电流都由没保护的一组提供,这样长时间会导致此组电池衰减比较快。当然还有其他可以造成这种的情况的条件。 ④在过放中,如果其中一组先达到保护点,还是所有的电流都加到了其他的上面,久而久之电池的衰减就会加快,导致一致性更差。 ⑤如果还并起充电的话,充电电流不能超过单串保护板的电流。同口的可以直接充放,分口的的最好分开充电。充电时并联的放电口必须断开,否则过充保护失效。 ⑥并联时,电池组之间已经形成回路,如果压差比较大,可能会产生内环电流,这样有可能会损坏保护板。 优点:基本上和串联一样,方便携带,方便不同情况下的使用。三.总结: 不管是串联还是并联,对电池还有保护板一致性的要求更高。一致性不好的坏,电池组的寿命会大大衰减。同时,都会增加MOS管的数量,从而增加成本。 当然,把电池组串并联使用,方便携带,方便安装,我认为更重要的一点是方便随机组合使用,根据自己的需要进行组合。但是现在的技术没有达到,没法做到这样的随机组合,所以这个也许是未来的一个发展方向。

电池组串联和并联时容量计算

电池组串联和并联时容量计算 一般是不赞成电池并联的,但是在实际应用当中,很多厂商就推出了并联的电池组,两个2000mAH的电池,经过并联就成了4000mAH,同时,并联后的电池内阻,也就成了原来的一半,驱动力就比原来大了将近两倍。 在实际使用当中,最好不要自己并联电池,因为一般厂家推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个2000mAH的电池,实际并联后,放电时间计算公式应该是: V高-V低 放电时间=(2000+2000)/(------------------ + I电机电流) R高+R低 式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以自行并联出来的电池,一般容量都达不到两个电池相加的结果。 串联方面。 由于镍镉电池、镍氢电池的、还有锂电的单体电压不够,所以,在电狗当中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电狗需求的电压,7.2V 9.6V 10.8V等电压。但是缺点也是很明显的。 按照书本上的知识,电池串联!(电流 / 时) 容量不变,电压升高。 按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!(电流 / 时) 容量下降,电压升高。 有比较有条件和细心的朋友问,为什么用万用表测量,好象我买来的2000mAH,用了1300 mAH就没电了??为什么一扣动扳机,电压立即从9.6V掉到7.8V,是不是被JS骗了??这就是原因。 纯理想状态下的电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电狗电机做功,电压直接加到电机上,V电池=V 电机。 实际现实情况下,排开开关接触电阻和电线电阻不计,存在最大的电阻是电池内阻,因此得出以下公式: V电池-V内阻=V电机。 任何电池在电狗扣下扳机的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。在使用相同电压相同容量的电池前提下,用镍镉电池的电狗射速比较快,老式的锂

如何正确地把电池串联和并联起来

如何正确地把电池串联和并联起来 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V 至500V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串行电池中,一节性能差的电池,就像是一个堵住水管的塞子,会产生巨大的阻力,阻止电流流过去。第三节电池也会短路,这将使终端的电压降低至3.6V,或者,使电池组链路断开并切断电流。一个电池组的性能是取决于电池组里最差的那块电池的性能。

电池串联和并联的性能影响

电池串联和并联的性能影 响 Prepared on 22 November 2020

电池串联和并联把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节锂离子电池串联起来,总电压达到;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是,碱性电池是,氧化银电池是,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为。如果要想得到像这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为或。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为;工业电池、航空电池和军用电池,每节电池的电压仍是。 串联

需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到3 6V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达45 0V至500V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生的电压,而不是正常的(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串行电池中,一节性能差的电池,就像是一个堵住水管的塞子,会产生巨大的阻力,阻止电流流过去。第三节电池也会短路,这将使终端的电压降低至,或者,使电池组链路断开并切断电流。一个电池组的性能是取决于电池组里最差的那块电池的性能。

锂电池系统串并联优化成组

锂电池系统的串并联优化成组原理和方案 关键词:锂离子电池;串并联电池组;优化成组 在纯电动汽车、电网储能应用中,单体电池串联以满足电压需求,并联以满足容量需求,串并联连接方式往往同时存在。因此我们致力于研究纯电动汽车以及电网储能用串并联电池组的建模仿真方法,基于对串并联电池组的建模仿真分析,探究影响锂离子电池组性能的主要因素以及优化的电池成组方法。 .串并联电池组拓扑结构 电池组典型的连接方式有先并联后串联、先串联后并联,如图a b 所示,混联方式如图c 所示。其中北京奥运会、上海世博会纯电动公交车用电池即采用先并后串的连接方式,电网电池储能中往往采用先串后并的连接 方式。

从电池组连接的可靠性以及电池电压不一致性发展趋势和电池组性能影响的角度分析,先并联后串联连接方式优于先串联后并联连接方式,而先串后并的电池拓扑结构有利于对系统各个单体电池进行检测和管理。先并后串连接方式的建模仿真可用于电动汽车整车仿真的动力电池部分,计算整个电池组的功率输出;先串后并连接方式的建模仿真可用于电网储能中并联支路的投切后不均衡电流、电流均衡时间的仿真计算;再综合考虑这两种基本连接方式对混联方式的电池组建模。 串并联电池组在使用过程中出现的电池单体过充电、过放电、超温和过流问题,致使成组电池使用寿命大幅缩短甚至发生燃烧、爆炸等恶性事故,成组动力锂电池使用寿命缩短、安全性下降已经成为制约其推广应用和产业发展的关键。电池筛选成组与适应动力锂离子电池的有效电池管理是提高串并联电池组性能的两个重要方面。串联电池组中由于单体电池容量、初始SOC、内阻、极化的不一致性,在充

放电过程中需要电池管理系统检测单体电池电压与充放电设备通信以防部分单体电池的过充或过放,串联电池组在良好的电池管理条件下,使用过程中避免滥用如大电流倍率、环境温度过高等,串联电池组不会因为连接成组而造成快于单体电池的寿命衰退,但是部分电池性能的短板效应会减小串联电池组的容量利用率,可以通过带均衡功能的电池管理系统提高。 并联电池组中由于支路电流受到支路电池参数耦合影响,成组后支路电池容量、初始SOC、内阻和极化的差异会造成支路电流工况的差异,大多数单体并联的支路电池参数虽然较为一致,整个充放电过程的平均电流倍率与并联电池组的外施电流倍率差异不大,但是在充放电的电池电压平台的两端SOC区间形成的电流差异较大。例如,充电末端90%.100%SOC区间由于平台电流差异的累积导致末端支路电流的差异,极其容易出现没有充满的电池过流充电,已经充满的电池过充充电。另外一个显著的影响因素就是并联电池组由于实际工况中存在动态电流工况(加速、制动以及怠速过程)产生了电流的环流,环流同样是充放电也一定程度的损伤了电池组寿命。假设lOOWh的总充放能量会出现5Wh的环流,电池循环寿命将比单体实验寿命降低5%左右。先串后并的连接方式中并联支路的串联电池数目越多整条支路电池参数如内阻、极化更接近统一批次电池参数平均值的整数倍,并联支路的容量差异和初始SOC差异成为导致并联电流不平衡的主要因素。同一批次电池参数正态分布在先串后并的各个支路当中,显著降低了整个串并联电池组的电流不平衡程度。我们需要考虑的是在实际

2块锂电池并联充串联用的终极解决方案

2块锂电池并联充串联用的终极解决方案 (附电路图) 我有一个的对讲机,原来用的是6节的7号镍氢充电电池,我一直想改个锂电,由于电池必须放进电池仓内,最简单的方法是并联用()并联充(需要的锂电充电器,但是由于并联充存在缺陷,有时充不满,或两块电池的老化程度不一样会造成性能下降,最好的方法是串联用并联充。要想并联充串联用必须设计个电路,使其充电时两块电池是并联状态,用的时候是串联状态,看似简单,但是要想安全使用而又要两块电池不短路则非常难(在没看下文前,你们可以自己设计一下看看。)在三个月内我画了近60多张草图后,我一度认为这是不可能的,但是有一天我喝多了,躺在床上睡不着,脑海中突然出现了这个草图,于是我连夜画了这个电路图,画完后一看凌晨2点多了,媳妇骂我神经病(=^_^=)。当然这个电路图还可以再优化,由于时间匆忙,难免出现错误,请各位高手批评指正。 最后有有句题外话:我经常从百度学习,找答案,但是好多文章需要百度的财富币(我非常痛恨这一点),所以这篇文章我本来想免费发的,但是我也穷啊,财富币经常是0,最后我想了个周全的办法,有财富币的网友就花1个财富币下载吧(看在我半夜工作的

份上),没有财富币的请把你们的邮箱给我,我有时间一定发给你们。我的邮箱:。 2块锂电池并联充串联用的方法 充电时K处是断开的,当拔掉充电器插头时,K处是闭合短路的,D、E两处是普通的整流二极管,为防止二极管失效短路,最好是在这两处各加一个自恢复保险,电流根据自己需要,我的对讲机工作最大电流是1.2A,所以加个1.5A 或2A的比较合适。

2块锂电池平衡充的连接方法 这个电路图比较简单,但是费用较高,需要2个同型号的充电器串联使用,也可以用网上卖的平衡充电路板改一个。注意给锂电池充电的电压不要超过,充电器可用座充接出来的电压。(网上有一款座充,我也不知道什么型号,可以直接充电池,也有USB,可以给普通手机充电,价格才3元一个,质量还不错,我一次买了15个。)

正确地串联和并联电池把电池串联和并联起来使用这听起来好象很

正确地串联和并联电池 把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V 的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V至500V,大部分是镍基化学电池。一个电压为480V 的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试 验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧

电池的并联与串联

电池的并联与串联 一、并联 在实际应用当中,并联的电池组,两个60A·h的电池,经过并联就成了120A·h,同时,并联后的电池内阻,也就成了原来的1/2,驱动力就比原来大了将近2倍。 在实际使用当中,一般推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个60mA·h的电池,实际并联后,放电时间计算公式应该是: 放电时间=(60+60)/((V高-V低)/(R高+R低)+I电机电流) 式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以并联出来的电池,一般容量都达不到两个电池相加的结果。 二、串联 由于镍镉电池、镍氢电池、还有锂电的单体电压不够,所以,在电动汽车中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电动汽车需求的电压。但是缺点也是很明显的。按照书本上的知识,电池串联时,容量不变,电压升高。按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!容量下降,电压升高。 为什么用万用表测量,新充满电60mA·h的电池,用了没多久就没电了?为什么一使用,电压立即从84V掉到80V?这就是原因。 纯理想状态下的电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电动汽车电机做功,电压直接加到驱动电机上,V电池=V电机。实际现实情况下,存在最大的电阻是电池内阻,因此得出以下公式:V 电池-V内阻=V电机。 电池在电动汽车踩下加速踏板的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。 串联电压升高,并联来提高电池容量。 串联后电压增加, 容量不变,电流不变; 并联后电压不变, 容量增加,电流增加。 这些数字的变化与电阻的大小变化有关。

研究太阳能电池的串并联接法剖析

东华理工大学物理设计性实验方案 实验课题:一·太阳能电池的串并联接法专业:地球物理学 班级:1322901 学号:201320290122 姓名:周祥 指导老师:李迎 核工程与地球物理学院

实验名称:太阳能电池的串并联接法 目前能源的重要性越来越被人们所重视。由于煤、石油、天然气等主要能源的大量消耗,能源危机已经成为世界关注的问题。 为了可持续性发展,人们大量开发了诸如风能、水能等清洁能源,其中以太阳能电池作为绿色能源的开发前景较大。本实验仪器旨在提高学生对太阳能电池基本特性的认识、学习和研究。 一、实验目的 (1)了解太阳能电池的工作原理及性能; (2)探究太阳能电池串并联对其输出功率的影响,测出功率最大值P W。 二、实验仪器:太阳能电池实验仪、太阳能电池板、连线若干、60W 白炽灯、挡板。 三、实验原理 太阳能电池又叫光伏电池,它能把外界的光转为电信号或电能。实际上这种太阳能电池是由大面积的PN结形成的,即在N型硅片上扩散硼而形成的P型层,并用电极引线把P型和N型层引出,形成正负电极。为防止表面反射光,提高转换效率,通常在器件受光面上进行氧化,形成二氧化硅保护膜。 短路电流和开路电压是太阳能电池的两个非常重要的工作状态,它们分别对应于负载电阻R L=0和R L=∞的情况。在黑暗状态下太阳能电池在电路中就如同二极管。因此本实验要测量出太阳能电池在光照状态

下的短路电流I SC和开路电压U OC,最大输出功率P M和填充因子FF以及在黑暗状态下的伏安特性。 在U = 0情况下,当太阳能电池外接负载电阻R L时,其输出电压和电流均随R L变化而变化。只有当R L取某一定值时输出功率才能达到最 大值P m,即所谓最佳匹配阻值R L=R LB,而R LB则取决于太阳能电池的内阻R i=U OC/I SC。由于U OC和I SC均随光照强度的增强而增大,所不同的是U OC与光强的对数成正比,I SC与光强(在弱光下)成正比,所以R i亦随 光强度变化而变化。U OC、I SC和R I都是太阳能电池的重要参数。最大 输出功率P M与U OC和I SC乘积之比,可用下式表示 FF=P M/U OC I SC (1) 式中FF是表征太阳能电池性能优劣的指标,称为填充因子,填充因子一般在0.5~0.8之间。黑暗状态下的太阳能电池工作如图1所示 此时加在它上面的正向偏压U与通过的电流I之间关系式为 I=I0(e∧βU-1)(2) 式中I和β是常数,I0为太阳能电池反向饱和电流,β =K B T/e=1.38*10-23*300/1.602*10-19=2.6*10-2V-1。

光伏组件问题系列总结——电池片串联电阻与并联电阻

光伏组件问题系列总结——电池片串联电阻与并联电阻1.0绪论 组件厂家在进行产品功率测试时,会有曲线异常的情况出现。在分析组件异常情况时,需要考虑组件串、并联电阻对组件功率的影响。因此有必要研究电池片串、并联电阻的组成及其影响。 2.0串、并联电阻的组成 太阳能电池有寄生串联和并联电阻伴随。两种寄生电阻都减小填充因子。 2.1串联电阻 串联电阻Rs主要是半导体材料的基体电阻,金属体电阻及连接电阻、金属和半导体连接产生的电阻,即串联电阻=硅片基体电阻+横向电阻+电极电阻+接触电阻。 图1串联电阻组成示意图 基体电阻由硅片的品质决定。扩散方块电阻可以调节,但又伴随着结深的变化。栅线电阻主要靠丝网印刷参数决定,重要的是栅线的清晰度和高宽比(越大越好)。当然,若单纯的减少串联电阻,栅线可以很宽,但高度较低,这样会增大遮光面积。接触电阻主要看电极印刷

效果、烧结的效果等。 2.2并联电阻 并联电阻Rsh主要由于p-n结不理想或在结附近有杂质,这些都能导致结短路,尤其是在电池边缘处。并联电阻反映的是电池的漏电水平。漏电流理论上可以归结到并联电阻上。并联电阻影响太阳电池开路电压,Rsh减小会使开路电压降低,但对短路电流基本没有影响。 并联电阻过小可能由一下原因引起: 边缘漏电(刻蚀未完全、印刷漏浆)。 基体内杂质和微观缺陷。 PN结局部短路(扩散结过浅、制绒角锥体颗粒过大)。 3.0 串、并联电阻的影响 3.1 串联电阻对填充因子的影响 因为填充因子决定着电池输出功率,因此最大输出功率受串联电阻影响,可以近似表示为: 如果太阳能电池内阻定义为: 串联电阻Rs 影响短路电流,Rs 增大会使短路电流降低,而对开路电压没有影响。串联电阻的影响如图2。

电池的串联和并联

正确地把电池串联和并联起来 把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V至50 0V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电

如何正确地把电池串联和并联起来

如何正确地把电池串联和并联起来 如何正确地把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单 的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的 容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两 种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可 以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组 由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压 是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离 子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般 为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随 着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护 方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池 的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使 用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电 压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更 大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚 至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来 供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V至500V,大 部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。 使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电 池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而 要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要 比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V (图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时, 它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就 不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串行电池中,一节性能 差的电池,就像是一个堵住水管的塞子,会产生巨大的阻力,阻止电流流过去。第三节电

电池的并联与串联

电池的并联与串联 一、并联在实际应用当中,并联的电池组,两个60Ah的电池,经过并联就成了120Ah,同时,并联后的电池内阻,也就成了原来的1/2,驱动力就比原来大了将近2倍。在实际使用当中,一般推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个60mAh的电池,实际并联后,放电时间计算公式应该是:放电时间=(60+60)/((V高-V低)/(R高+R低)+I电机电流)式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以并联出来的电池,一般容量都达不到两个电池相加的结果。 二、串联由于镍镉电池、镍氢电池、还有锂电的单体电压不够,所以,在电动汽车中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电动汽车需求的电压。但是缺点也是很明显的。按照书本上的知识,电池串联时,容量不变,电压升高。按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!容量下降,电压升高。为什么用万用表测量,新充满电60mAh的电池,用了没多久就没电了?为什么一使用,电压立即从84V掉到80V?这就是原因。纯理想状态下的

电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电动汽车电机做功,电压直接加到驱动电机上,V电池=V电机。实际现实情况下,存在最大的电阻是电池内阻,因此得出以下公式:V电池-V内阻=V电机。 电池在电动汽车踩下加速踏板的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。串联电压升高,并联来提高电池容量。串联后电压增加, 容量不变,电流不变;并联后电压不变, 容量增加,电流增加。这些数字的变化与电阻的大小变化有关。

四年级下册科学微课解读-1.7 不一样的电路连接 教科版

不一样的电路连接 一、背景说明 生活中一些简单的或者复杂的用电器都是由一些简单电路通过不同的连接方式组合而成的。我们知道电池与电池之间,灯泡与灯泡之间有不一样的电路连接,即并联和串联。而并联和串联是两种常见的电路连接方式,也是学生以后深入学习电学知识的基础。因此,我制作了本微课,试图让学生通过自学微课,用翻转课堂的方式,让学生知道电池的串联、并联以及灯泡的串联、并联,通过比较发现串联电路和并联电路的区别,能够观察、描述、发现不同电路的特点。 二、策划设计 本微课主要是两方面的内容:电池的串联和并联、灯泡的串联和并联。两部分内容的过程都是差不多的,首先展示材料,根据材料设计电路,画出简单电路图;接着展示实验图,观察现象;最后是对现象的分析。在灯泡的串联和并联中还加入了串联和并联电路有几条通路。微课的最后是对知识点的总结。 1.内容分析 《不一样的电路连接》是教科版科学四年级下册第一单元《电》中的第7课,也是本单元的最后一课。本课继续让学生探究有关电路的知识,是简单电路知识的延伸与拓展。目的是整理学生的发现和认识,比较串联和并联两种不同的电路连接方法。在经历前几节课的学习之后,学生能够进行简单的电路连接,并能进行电路的并联和串联。本微课的重点是是能运用串联和并联两种用不同连接方法组成电路,难点是发现不同电路的特点。 本微课安排了电池的串联和并联、灯泡的串联和并联。在学习过程中,学生需要画简单电路图,对实验的现象进行简单的解释。 2.适用对象 教师教学/学生自学 3.类型选择 选择的表现形式:演示式 采用的技术手段:录屏式/录音式/软件生成式 4.组织构思 (1)知识点思维导图

蓄电池串并联

蓄电池是在串联和并联的条件下使用,串联使用是最常见的一种方法。但在许多条件下,电池组常常需要用并联的方法扩展容量和可靠性。电池在并联使用时,有许多串联状态下不存在的特殊问题,这些问题往往被忽视了,造成一些非使用性损坏的情况发生。 1电池并联使用故障多 在一些场合下,经常可以看到将电池组并联使用的情况。这主要是由于设计和使用人员 不了解铅电池性能所采用的错误做法,有时也是由于特殊工作条件的要求,不得已而采取的 方法。 现在分析并联电池在使用中的特殊问题。 图1蓄电池的并联工作分析 在图1中,两组电池在并联状态下工作。在放电时: i=iA+iB 在充电时:I=IA+IB I=IA+IB 如能保障:iA=iB、IA=IB,这个非联电池组工作状态是正常的。但这只是理想状态,在 实际工作中:iA≠iB、IA≠IB A、B两个电池组串联的单节数越多,A、B之间充放电的电流差值就越大。 假设两个汽车电池,都是6个单格,虽然标称电压都是12V,实际电压值却不一样。这是由于电池中电液密度不一致和连接的电阻不一致造成的。即使新电池启用时注入的酸是同密度的,在后来的使用中因种种原因也会造成差异。当把两节电池并联之后,电压高的电池会向另一个电池“充电”。其电流大小可用电流表测得。这种充电有时竟长达24小时之久。在电压相差较多时,并联瞬间会看到明显的火花。这样的电池配合使用,起动发动机时看不出有什么问题,转入充电工况时,两个电池各自得到的充电电流是不一样的。由于铅电池内阻很小,所以两组电池内部性能略有差异,会使整个电池组的充电结果表现出明显不同。电压较高的电池得到的充电电流小,电压较低的电池得到的电流大;得到电流大的电池温升高,

相关文档
相关文档 最新文档