文档库 最新最全的文档下载
当前位置:文档库 › 埋地管道轴向力计算、屈曲判断程序

埋地管道轴向力计算、屈曲判断程序

埋地管道轴向力计算、屈曲判断程序
埋地管道轴向力计算、屈曲判断程序

钢管桩标准节设计承载力计算

钢管桩标准节设计承载力计算 一、φ630钢管桩 钢管桩直径630mm,壁厚8mm。考虑锈蚀情况,壁厚按照6mm进行计算。其截面特性为: 回转半径ix=22.062cm 考虑钢管桩横联间距为10米,即钢管桩的自由长度按10m计算,钢管桩一端固定,一端自由,自由长度系数为2.0,则计算长度为2*10=20m。 钢管桩的长细比:λ=L/ix=20/0.22=90.7 查《钢结构设计规范》表C--2得:φ=0.616 考虑钢材的容许应力为[σ]=180MPa 1.1 最大轴向力计算

[]6 2 0.2192.5180100.6160.01180.364*10t N N a N N N A W σσφ-??= +=+===??? 求得:935.1N KN = 1.2 横联计算 根据以上计算结果,按照900KN 轴向力,180KN.m 弯矩来设计横联。横联竖向间距为10米。 1.2.1 2[28a 横联 采用2[28a 作为横联,按照最大长细比[λ]=100来控制。 []=100=1001002 2.33466 4.66y y L i L i cm λ= =??==米 强度复核: 按照桩顶承受18KN 的水平力计算,由λ=100查《钢结构设计规范》表C--2得:φ=0.555 []2 2 18000==4.05215/0.55524010N MPa f N mm A ?≤=??? 则采用2[28a 作为横联的时候,最大间距取4.6米。 1.2.2 φ42.6钢管横联 采用φ42.6钢管横联(考虑锈蚀,壁厚为4mm )作为横联,按照最大长细比[λ]=100来控制。

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

4.2 轴心受压构件承载力计算

4.2 轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍 筋柱;一种是配置纵向钢筋和螺旋筋(图 4.2.1b)或焊接环筋(图4.2.1c)的柱,称为 螺旋箍筋柱或间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构 件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边 尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=0.002,相应的纵向钢

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

钢管桩承载力验算

北延桥钢管桩验算 验算部位: 选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。 5m范围内钢管桩数量: 顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。 横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。 按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。 一、施工单位提供的各项荷载值如下: 恒载: 1、底模、侧模采用竹胶板 覆膜竹胶板自重:0.34kn/m2 2、顺桥向木枋(5×10)间距30cm 自重:0.10kn/m2 3、横桥向木枋(12×12)间距60cm 自重:0.30kn/m2 4、支架体系(碗扣式) 自重:1.74kn/m2(腹板处) 自重:1.06kn/m2(底板、翼缘板处) 5、平台满铺木枋(15×15) 自重:1.20kn/m2 6、纵联I36C工字钢(间距1.0m) 自重:0.712kn/m2 7、横梁I36C工字钢(双拼) 43m宽平台每排钢管桩受横联工字钢自重61.23kn 活载: 1、施工机具及人员荷载:2.5kn/m2 2、倾倒混凝土产生的荷载(泵送):4.0kn/m2 3、混凝土振捣产生的荷载:2.0kn/m2

二、钢管桩受载计算 考虑荷载分项系数 恒载 1.0 活载1.0 组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力 本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。 按《公路桥涵地基与基础设计规范》5.3.3第2条沉桩的承载力计算公式计算桩侧 桩周u=PI()*0.6=1.88m ai 为振动沉桩对各土层桩侧摩阻力的影响系数,按规范取值0.7 各桩侧 l q sik ∑计算如下表(各项qsik 均为考虑试桩后的修正值) : )(2/1][p pk r i sik i a A q a l q ua R +=∑

木方__立杆_承载力的计算

木方按照均布荷载下连续梁计算。 1.荷载的计算 (1)钢筋混凝土板自重(kN/m): q11 = 25.000×0.120×0.300=0.900kN/m (2)模板的自重线荷载(kN/m): q12 = 0.300×0.300=0.090kN/m (3)活荷载为施工荷载标准值与振捣混凝土时产生的荷载(kN/m): 经计算得到,活荷载标准值 q2 = (1.000+2.000)×0.300=0.900kN/m 静荷载 q1 = 1.20×0.900+1.20×0.090=1.188kN/m 活荷载 q2 = 1.4×0.900=1.260kN/m 2.木方的计算 按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 均布荷载 q = 2.203/0.900=2.448kN/m 最大弯矩 M = 0.1ql2=0.1×2.45×0.90×0.90=0.198kN.m 最大剪力 Q=0.6×0.900×2.448=1.322kN 最大支座力 N=1.1×0.900×2.448=2.424kN 木方的截面力学参数为 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 4.00×7.00×7.00/6 = 32.67cm3; I = 4.00×7.00×7.00×7.00/12 = 114.33cm4; (1)木方抗弯强度计算 抗弯计算强度 f=0.198×106/32666.7=6.07N/mm2 木方的抗弯计算强度小于13.0N/mm2,满足要求! (2)木方抗剪计算 [可以不计算] (3)木方挠度计算 最大变形 v =0.677×0.990×900.04/(100×9500.00× 1143333.4)=0.405mm

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为25°的7244AC,其外形尺寸为220 ×400×65。 下表中给出了7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷P 为: 式中X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为0.9,点接触时为2/3。

(完整word版)钢管落地脚手架计算书

钢管落地脚手架计算书 采用品茗安全计算软件计算;本工程为深圳市龙岗区第二人民医院综合楼改造工程,总建筑面积6570m2,建筑总高度为39.8米,建筑总层数为地下一层、地上十二层,一层层高4.5m,二层层高4m,三~十一层层高均为3m,十二层层高为4m。 扣件式钢管落地脚手架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)、《钢结构设计规范》(GB 50017-2003)等编制。 一、参数信息: 1.脚手架参数 双排脚手架搭设高度为 44.2 m,立杆采用单立管; 搭设尺寸为:立杆的横距为 1.05m,立杆的纵距为1.5m,大小横杆的步距为1.8 m; 内排架距离墙长度为0.20m; 大横杆在上,搭接在小横杆上的大横杆根数为 2 根; 脚手架沿墙纵向长度为 150.00 m; 采用的钢管类型为Φ48×3.5; 横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为 1.00; 连墙件采用两步两跨,竖向间距 3.6 m,水平间距3 m,采用扣件连接; 连墙件连接方式为双扣件; 2.活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途:装修脚手架; 同时施工层数:2 层; 3.风荷载参数 本工程地处广东深圳市,基本风压0.75 kN/m2; 风荷载高度变化系数μz为1.00,风荷载体型系数μs为1.13; 脚手架计算中考虑风荷载作用; 4.静荷载参数 每米立杆承受的结构自重标准值(kN/m):0.1248;

脚手板自重标准值(kN/m2):0.300;栏杆挡脚板自重标准值(kN/m):0.110; 安全设施与安全网(kN/m2):0.005; 脚手板类别:冲压钢脚手板;栏杆挡板类别:栏杆、冲压钢脚手板挡板; 每米脚手架钢管自重标准值(kN/m):0.038; 脚手板铺设总层数:12; 5.地基参数要求 若地基土类型为:素填土;地基承载力标准值(kPa):120.00; 立杆基础底面面积(m2):0.20;地基承载力调整系数:1.00。 本工程原地基土类型为混凝土,地基承载力大于120,满足要求! 二、大横杆的计算: 按照《扣件式钢管脚手架安全技术规范》(JGJ130-2011)第5.2.4条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算

钢管承受压力计算公式

钢管承受压力计算公式方法 一:以知方矩管、螺旋管无缝管无缝钢管外径规格壁厚求能承受压力计算方法(钢管不同材质抗拉强度不同) 压力=(壁厚*2*钢管材质抗拉强度)/(外径*系数) 二:以知无缝管无缝钢管外径和承受压力求壁厚计算方法: 壁厚=(压力*外径*系数)/(2*钢管材质抗拉强度) 三:方矩管、螺旋管钢管压力系数表示方法: 压力P<7Mpa 系数S=8 7<钢管压力P<17.5 系数S=6 压力P>17.5 系数S=4 不锈钢管承受压力计算公式 不锈钢管所承受的压力如何计算: 1、计算公式:2X壁厚X(抗拉强度X40%)*外径 2、316、316L、TP316、TP316L——抗拉强度:485MA 3、321、30 4、304L——抗拉强度:520MA 304不锈钢管的抗拉强度是520MPA 316不锈钢管的抗拉强度是485MPA 而不锈钢管能承受的水压除了材质不同能承受压力值大小不一样之外;外径和壁厚也是非常重要的因素,壁厚越厚,能承受的压力值越大,比如同样外径,10个厚的不锈钢管就比5个厚的不锈钢管能承受的水压要高的多;另外,还与外径有关,外径越大,能承受的压力值越小,比如同样的壁厚,外径越大能承受的压力值越小; 不锈钢管承受压力的计算公式: 水压试验压力:P=2SR/D S是指壁厚,r指抗拉强度的40%,D指外径; 下面举例说明: 304不锈钢管规格:159*3 P=2*520*0.4*3/159=7.84MPA 316不锈钢管规格:159*3 P=2*485*0.4*3/159=7.32MPA 不锈钢无缝管按要求不同分类如下: 按生产工艺分为:不锈钢冷拔管、不锈钢精密管。 按截面分为:不锈钢圆管、不锈钢方管、不锈钢矩管、不锈钢异型管(有三角管、六角管等) 按壁厚可分为:厚壁不锈钢管、薄壁不锈钢管 按口径可分为:大口径不锈钢管、小口径不锈钢管、不锈钢毛细管 按搜索习惯可分为:不锈钢无缝管、无缝不锈钢管、不锈钢管、不锈钢钢管、不锈钢无缝钢管 按地区可分为:戴南不锈钢管、江苏不锈钢管、泰州不锈钢管、温州不锈钢管、浙江不锈钢管、佛山不锈钢管、上海不锈钢管、北京不锈钢管、山东不锈钢管 按材质分为:201不锈钢无缝管、202不锈钢无缝管、301不锈钢无缝管、304不锈钢无缝管、316L不锈钢无缝管、310S不锈钢无缝管

三角形钢管悬挑脚手架计算书

三角形钢管悬挑脚手架计算书 计算依据: 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《建筑结构荷载规范》GB50009-2012 3、《钢结构设计规范》GB50017-2003 4、《施工技术》期 由于国家未对钢管悬挑脚手架作出相应规定,故本计算书参考《施工技术》期编制,仅供参考。 一、参数信息 1.脚手架参数 悬挑梁离地高度20m,双排脚手架架体高度为 m; 搭设尺寸为:立杆的纵距为,立杆的横距为,立杆的步距为 m; ( 内排架距离墙长度为; 横向水平杆在上,搭接在纵向水平杆上的横向水平杆根数为 2 根; 三角形钢管支撑点竖向距离为 m; 采用的钢管类型为Φ48×3; 横杆与立杆连接方式为单扣件; 单扣件连墙件布置取一步一跨,竖向间距 m,水平间距 m,采用扣件连接; 连墙件连接方式为双扣件; 2.活荷载参数 施工均布荷载(kN/m2):;脚手架用途:装修脚手架; 同时施工层数:2 层; 3.风荷载参数 % 本工程地处浙江杭州市,查荷载规范基本风压为m2,风压高度变化系数μ 为,风荷 z 为; 载体型系数μ s 计算中考虑风荷载作用; 4.静荷载参数

每米立杆承受的结构自重荷载标准值(kN/m):; 脚手板自重标准值(kN/m2):;栏杆挡脚板自重标准值(kN/m):; 安全设施与安全网自重标准值(kN/m2):;脚手板铺设层数:5 层; 脚手板类别:冲压钢脚手板;栏杆挡板类别:冲压钢脚手板挡板; 二、横向水平杆的计算 横向水平杆按照简支梁进行强度和挠度计算,横向水平杆在纵向水平杆的上面。按照上面的脚手板和活荷载作为均布荷载计算横向水平杆的最大弯矩和变形。 1.均布荷载值计算 * = m ; 横向水平杆的自重标准值:P 1 = ×3=m ; 脚手板的荷载标准值:P 2 活荷载标准值:Q=1×3=m; 荷载的计算值:q=×+×+×=m; 横向水平杆计算简图 2.强度计算 最大弯矩考虑为简支梁均布荷载作用下的弯矩, 计算公式如下: =ql2/8 M qmax =×8=·m; 最大弯矩 M qmax … /W =mm2; 最大应力计算值σ=M qmax 横向水平杆的最大弯曲应力σ =mm2小于横向水平杆的抗弯强度设计值 [f]=205N/mm2

钢管桩实用标准节设计承载力计算

钢管桩标准节设计承载力计算 一、 φ630钢管桩 钢管桩直径630mm ,壁厚8mm 。考虑锈蚀情况,壁厚按照6mm 进行计算。其截面特性为: 回转半径ix=22.062cm 考虑钢管桩横联间距为10米,即钢管桩的自由长度按10m 计算,钢管桩一端固定,一端自由,自由长度系数为2.0,则计算长度为2*10=20m 。 钢管桩的长细比:λ=L/ix=20/0.22=90.7 查《钢结构设计规范》表C--2得:φ=0.616 考虑钢材的容许应力为[σ]=180MPa 1.1 最大轴向力计算 []6 2 0.2192.5180100.6160.01180.364*10t N N a N N N A W σσφ-??= +=+===??? 求得:935.1N KN = 1.2 横联计算

根据以上计算结果,按照900KN 轴向力,180KN.m 弯矩来设计横联。横联竖向间距为10米。 1.2.1 2[28a 横联 采用2[28a 作为横联,按照最大长细比[λ]=100来控制。 []=100=1001002 2.33466 4.66y y L i L i cm λ= =??==米 强度复核: 按照桩顶承受18KN 的水平力计算,由λ=100查《钢结构设计规范》表C--2得:φ=0.555 []2 2 18000==4.05215/0.55524010N MPa f N mm A ?≤=??? 则采用2[28a 作为横联的时候,最大间距取4.6米。 1.2.2 φ42.6钢管横联 采用φ42.6钢管横联(考虑锈蚀,壁厚为4mm )作为横联,按照最大长细比[λ]=100来控制。

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

钢管桩标准节设计承载力计算

钢管桩标准节设计承载力计算 钢管桩标准节设计承载力计算一、φ630钢管桩 钢管桩直径630mm~壁厚8mm。考虑锈蚀情况~壁厚按照6mm进行计算。其截面特性为: 回转半径ix=22.062cm 考虑钢管桩横联间距为10米~即钢管桩的自由长度按10m计算~钢管桩一端固定~一端自由~自由长度系数为2.0~则计算长度为2*10=20m。 钢管桩的长细比:λ=L/ix=20/0.22=90.7 查《钢结构设计规范》表C--2得:φ=0.616 考虑钢材的容许应力为,σ,=180MPa 1.1 最大轴向力计算 NNaNN,,0.26,,,,,,,,,,192.518010N,,,2,,AW0.6160.01180.364*10,t NKN,935.1求得: 1.2 横联计算

根据以上计算结果~按照900KN轴向力~180KN.m弯矩来设计横联。横联竖向间距为10米。 1.2.1 2,28a横联 采用2,28a作为横联~按照最大长细比,λ,=100来控制。 L,,=100,,iy =10010022.334664.66,,,,,米Licmy 强度复核: 按照桩顶承受18KN的水平力计算~由λ=100查《钢结构设计规范》表C--2得:φ=0.555 N180002,,==4.05215/MPafNmm,,2,,,,A0.55524010 则采用2,28a作为横联的时候~最大间距取4.6米。 1.2.2 φ42.6钢管横联 采用φ42.6钢管横联,考虑锈蚀~壁厚为4mm,作为横联~按照最大长细 比,λ,=100来控制。 L,,=100,,iy =10010014.92149214.92,,,,Licmmy

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为 e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0 较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

柱承载力计算

柱的承载力计算 建筑结构 柱截面承载力的计算公式 3%>ρmin > ρ =0.6% 柱的截面复核计算 【解】(1)求稳定系数φ 柱的长度为L 。=1.0H=1.0×6.4m=6.4m L 。/b=6400/400=16 查表φ=0.87 一、公式 N ≤ 0.9φ (f cA + AS’f y ′) N —轴向力设计值 φ —轴心受压构件稳定系数 f c 混凝土轴心抗压强度设计值 A 构件截面面积为矩形时A=b ×h AS’全部纵向钢筋的截面面积 当纵向钢筋配筋率大于3%时,式中A 应改用A- AS’ f y ′纵向钢筋的抗压强度设计值 二、公式的适用条件 【例A 】已知多层现浇钢筋混凝土框架结构,底层中柱按轴心受压构件计算,柱高H=6.4m,柱截面尺寸b ×h=400×400,轴向压力设计N =3000kN ,采用C30级混凝土(f c=14.3N/mm 2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=3042mm 2,f y ′=300N/mm 2)。计算该柱是否满足承载力要求。 (2)验算配筋率 ρ = A s ′ ×100% b ×h =3041mm 2 ×100% 400mm × 400mm =1.9 % 3% > ρmin > ρ =0.6%

配筋率符合要求 (3)、验算轴向力 Nu Nu=0.9 φ(fcA+AS ’ fy ′) =0.9x0.87(14.3N/mm 2x400mm 2 +3041mm 2x 300N/mm 2) = 2505834.9N=2505.83kN Nu=2505.83kN <N=3000kN 此中柱承载力不满足要求。 【例B 】已知某多层现浇钢筋混凝土框架结构,首层柱轴向力设计N =2030kN ,截面尺寸b ×h=400mm ×400mm,,采用C20级混凝土(f c=9.6N/mm2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=2513mm 2,f y ′=300N/mm 2)。按轴心受压构件计算,计算此柱是否安全 轴心受压构件的承载力计算 基本公式 N ≤ 0.9φ (f cA + AS’f y ′) 3%>ρmin > ρ =0.6% Nu=0.9 φ(fcA+AS ’ fy ′) 截面复核 一、求稳定系数φ 二. (2)验算配筋率 ρ = A s ′ ×100% b ×h 三、(3)、验算轴向力 Nu

钢管轴向承载力自动计算表.doc

钢管轴向承载力自动计算表 截面类别a1 a2 a3 k 稳定系数φ λn ≤0.215 λn >0.215 a 类0.41 0.98 0.152 长细比 34.68706 1.18175491 0.94298098 / 0.953101344 0.953101 0.95310 c b 类0.65 0.96 0.3 屈服强235 1.21594736 0.90960399 / 0.918998053 0.918998 0.91899 λ n ≤0.73 0.90 0.595 弹性模206000 1.26695933 0.89847833 / 0.87293592 0.872935 0.87293 类λ n > 1.21 0.302 中间计算值 1.46769320 0.732131348 0.732131 / d λ n ≤ 1.35 0.86 0.915 λn 0.37292 1.34829435 0.81225445 / 0.80922172 0.809221 0.80922 类λ n > 1.37 0.432 1.67517305 0.629892107 0.629892 / 长度 L 外径壁厚t 小径 d D/4 d/D (d/D)^2 1+(d/D)^2 sqrt[1+(d/ 回转半径i 圆700 60 3 54 15 0.9 0.81 1.81 1.345362 20.18043607 kg n 1 9.8 管 屈服强度大半R平小半径截面面积= 大有侧孔截面面 类r 平方大圆面积小圆面积手动输入截面面积 f 径R 方r 圆 - 小圆积 2827.43 2290.2210 60.1075 235 30 900 27 729 537.21235 536.94 0 343 78 17 4006 承载力(KN) 承载力(kg) 大扇形大扇大三 大弦S 单位 mm 单位: mm 安全系数 = 2 60.13 KN 6133 kg 夹角形S 角S 180 141 0.00 1413 长度 L 700 不规则截面0.00 KN 0 kg 小扇形小扇小三小弦S 外径D 60 60.131593 KN 6133 kg 180.00 114 0.00 1144 壁厚 t 3 安全系数 = 2.5 承载力(KN) 承载力(kg) 侧面孔径d 0 48.11 KN 4907 kg 在黄色方格内填上数据,则屈服强度f 235 不规则截面0.00 KN 0 kg 1 、输入钢管受力两端长度,48.105274 KN 4906.738 kg 若钢管由多段管串联组合, 安全系数 = 3 承载力(KN) 承载力(kg) 则要分段计算,以受力最低段单位: mm 40.09 KN 4089 kg 使 2 、输入钢管外径,销直径0 不规则截面0.00 KN 0 kg 用 3 、输入钢管最小截面壁厚,40.0877285 KN 4089 kg 说

相关文档