文档库 最新最全的文档下载
当前位置:文档库 › 运筹学整数规划补例样本

运筹学整数规划补例样本

运筹学整数规划补例样本
运筹学整数规划补例样本

运筹学难点辅导材料 整数规划补例

1、 对( IP) 整数规划问题12

12121212max 14951631..0,0,z x x x x x x s t x x x x =++≤??

-+≤??

≥≥???为整数, 问用先解相应的线性规划然后凑

整的办法能否求到最优整数解? 再用分支定界法求解。

解 先不考虑整数约束, 得到线性规划问题( 一般称为松弛问题LP)

12

12121

2max 14951..6310,0

z x x x x s t x x x x =++≤??

-+≤??≥≥?用图解法求出最优解12310

,23x x ==且296z =。

如用”舍入取整法”凑整可得到四个点, 即( 1, 3) 、

( 2, 3) 、 ( 1, 4) 、 ( 2, 4) 。代入约束条件发现她们都不是可行解。可将可行域内的所有整数点一一列举( 完全枚举法) , 本例中( 2, 2) 、 ( 3, 1) 点为最大值4z =。 令()

0310,23T

X

??= ???

及最优值()0

296z =。可行域记为D, 显然()0X 不是整数解。 定界: 取()0296z z ==

, 再用视察法找一个整数可行解()0,0T

X '=及0z '=, 取0z z '==, 即*2906

z ≤≤ 分支: ( 关键点, 在B 的最优解中任选一个不符合整数条件的变量j x , 其值为

j b , 构造两个约束条件1,j j j j x b x b ????≥+≤????, 这里用了取整函数呵! ) 任取最

优解中一个不为整数的变量值, 例如132x =

, 根据312??

=????

, 构造两个约束条件,

形成下面两个子问题( IP1) 12121211212max 14951631..10,0,z x x x x x x s t x x x x x =++≤??-+≤??≤??≥≥???为整数和( IP2) 12

121221212max 14951631..20,0,z x x x x x x s t x x x x x =++≤??-+≤??≥??≥≥???为整数 解( IP1) 和( IP2) , 得最优解分别为()

()11

7101,,33T

X z ??==

???

和()

()22

23412,,99T

X

z ??== ???

, 这两个都不是符合整数条件的可行解。

修改上下界: 根据个分支的最优解, 可取新的上界()(){}

1241

min ,9

z z z =

=, *4109

z ≤≤

再分支: 由于()()12z z <, 故先对( IP2) 进行分支, 取2239x =

, 根据2329??

=????

, 构造两个约束条件, 形成下面两个子问题( IP3) 12

121

2121212max 14951631

2

..2

0,0,z x x x x x x x s t x x x x x =++≤??-+≤??≥??

≤??≥≥???为整数和( IP4) 12

121

2121212max 14951

631

2..3

0,0,z x x x x x x x s t x x x x x =++≤??-+≤??≥??

≥??≥≥???为整数

。 解相应的松弛问题( IP3) 和( IP4) , 得( IP4) 无可行解, ( IP3) 的最优解为

(

)

()33

3361,2,1414T

X z ??== ???

在考虑( IP1) , 由( IP1) 的最优解, 取273x =

, 根据723??

=????

, 构造两个约束条件, 形成下面两个子问题( IP5) 12

121

2121212max 14951

631

1..2

0,0,z x x x x x x x s t x x x x x =++≤??-+≤??≤??

≤??≥≥???为整数和( IP6) 12

121

2121212max 14951

631

1..3

0,0,z x x x x x x x s t x x x x x =++≤??-+≤??≤??

≥??≥≥???为整数, 得( IP6) 无可行解, ( IP5) 的最优解为()()()551,2,3T

X z ==。

在修改上下界: 根据上述两个最优解的情况, 有*61

314

z ≤≤ 再分支: 由( IP3) 的最优解()

333,214T

X

??

= ???

, 取13314x =, 根据33214??=????, 构造

两个约束条件, 形成下面两个子问题( IP7) 12

1212121

1212max 149516312

..220,0,z x x x x x x x s t x x x x x x =++≤??

-+≤??≥?

≤??≤??≥≥?

?为整数

和( IP8)

121212121

1212max 149516312

..230,0,z x x x x x x x s t x x x x x x =++≤??

-+≤??≥?

≤??≥??≥≥?

?为整数

, 得( IP7) 的最优解为()()()772,2,4T

X z ==, ( IP8) 的最优解为

()()()883,1,4T

X z ==。

重新定界: 由于的最优解为()()78

,X X 为整数解, 且()()784z z ==, 故

()**3,1,4T

X z ==

2、 对整数规划问题12

12121212max 32231429..0,0,z x x x x x x s t x x x x =++≤??

+≤??

≥≥???为整数, 问用先解相应的线性规划然后凑整的办

法能否求到最优整数解?

解 用单纯形法解对应的LP 问题, 求到最优解1213559

,,max 424

x x z =

==

当凑为()()12,3,2T

T

x x =时, 为可行解, 13z =; 当凑为()()12,3,3T

T

x x =时, 为非可行解;

当凑为()()12,4,2T

T

x x =时, 为非可行解; 当凑为()()12,4,3T

T

x x =时, 为非可行解;

下面用分支定界法来解整数规划问题。令594

z =, 显然()()12,0,0T T

x x =为可行解, 从而*5904

z ≤≤

。将原问题分解为下面两个子问题( 用222,3x x ≤≥分支, 复杂些, 不妨去试试! )

( IP1) 121212112max 32231429..30,0z x x x x x x s t x x x =++≤??+≤??≤??≥≥?和( IP2) 12

1212112max 322314

29..40,0z x x x x x x s t x x x =++≤??+≤??

≥??≥≥?

( IP1) 的最优解为

()

12343,3,,max 83T

T

x x z ??

== ???

和( IP2) 的为()

()12,4,1,max 14T

T

x x z ==

因为4314,3z z ==, 因此*43

143

z ≤≤, 且*z 为整数, 则*1214,4,1z x x ===为最优解。

3、 用割平面法求解12

1212121212max 3323

5410..25,0,,z x x x x x x s t x x x x x x =--≤??

+≥??

+≤??≥?为整数

解 引入松弛变量345,,x x x 和人工变量6x 及一个充分大的数0M >, 先解一个大

M 问题:

126

1231246

1251234567max 3323

5410

..25,,,,,,0z x x Mx x x x x x x x s t x x x x x x x x x x =---+=??+-+=??

++=??≥? 作初始单纯形表, 并进行迭代运算

运筹学整数规划补例样本

运筹学难点辅导材料 整数规划补例 1、 对( IP) 整数规划问题12 12121212max 14951631..0,0,z x x x x x x s t x x x x =++≤?? -+≤?? ≥≥???为整数, 问用先解相应的线性规划然后凑 整的办法能否求到最优整数解? 再用分支定界法求解。 解 先不考虑整数约束, 得到线性规划问题( 一般称为松弛问题LP) 12 12121 2max 14951..6310,0 z x x x x s t x x x x =++≤?? -+≤??≥≥?用图解法求出最优解12310 ,23x x ==且296z =。 如用”舍入取整法”凑整可得到四个点, 即( 1, 3) 、 ( 2, 3) 、 ( 1, 4) 、 ( 2, 4) 。代入约束条件发现她们都不是可行解。可将可行域内的所有整数点一一列举( 完全枚举法) , 本例中( 2, 2) 、 ( 3, 1) 点为最大值4z =。 令() 0310,23T X ??= ??? 及最优值()0 296z =。可行域记为D, 显然()0X 不是整数解。 定界: 取()0296z z == , 再用视察法找一个整数可行解()0,0T X '=及0z '=, 取0z z '==, 即*2906 z ≤≤ 分支: ( 关键点, 在B 的最优解中任选一个不符合整数条件的变量j x , 其值为 j b , 构造两个约束条件1,j j j j x b x b ????≥+≤????, 这里用了取整函数呵! ) 任取最 优解中一个不为整数的变量值, 例如132x = , 根据312?? =???? , 构造两个约束条件,

管理运筹学课后答案——谢家平

管理运筹学 ——管理科学方法谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待 定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制, 保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式, 有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数

第六章---运筹学-整数规划案例

第六章整数规划 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。 1、 max z=3x1+2x2 . 2x1+3x2≤12 2x1+x2≤9 x1、x2≥0 解: 2、 min f=10x1+9x2 . 5x1+3x2≥45 x1≥8 x2≤10 x1、x2≥0

求解下列整数规划问题 1、 min f=4x1+3x2+2x3 . 2x1-5x2+3x3≤4 4x1+x2+3x3≥3 x2+x3≥1 x1、x2、x3=0或1 解:最优解(0,0,1),最优值:2 2、 min f=2x1+5x2+3x3+4x3 . -4x1+x2+x3+x4≥2 -2x1+4x2+2x2+4x2≥4 x1+x2-x2+x2≥3 x1、x2、x3、x3=0或1 解:此模型没有可行解。 3、max Z=2x1+3x2+5x3+6x4 . 5x1+3x2+3x3+x4≤30 2x1+5x2-x2+3x2≤20 -x1+3x2+5x2+3x2≤40 3x1-x2+3x2+5x2≤25 x1、x2、x3、x3=正整数 解:最优解(0,3,4,3),最优值:47 4、 min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+ 5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19 约束条件x1 + x2+x3≤30 x4+ x5+ x6-10 x16≤0 x7+ x8+ x9-20 x17≤0 x10+ x11+ x12-30 x18≤0 x13+ x14+ x15-40 x19≤0 x1 + x4+ x7+x10+ x13=30 x2 + x5+ x8+x11+ x14=20 x3 + x6+ x9+x12+ x15=20 x i为非负数(i=1,2…..8) x i为非负整数(i=9,10…..15) x i为为0-1变量(i=16,17…..19) 解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:

运筹学整数规划例题

练习4.9 连续投资问题 某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限. 项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元. 项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元. 项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益. (1) x 为项目各年月初投入向量。 (2) ij x 为 i 种项目j 年的月初的投入。 (3) 向量c 中的元素 ij c 为i 年末j 种项目收回本例的百分比。 (4) 矩阵A 中元素 ij a 为约束条件中每个变量ij x 的系数。 (5) Z 为第5年末能拥有的资金本利最大总额。 因此目标函数为 4325max 1.15 1.28 1.40 1.06A B C D Z x x x x =+++ 束条件应是每年年初的投资额应等于该投资者年初所拥有的资金. 第1年年初该投资者拥有10万元资金,故有 11100000A D x x +=. 第2年年初该投资者手中拥有资金只有()116%D x +,故有 22211.06A C D D x x x x ++=. 第3年年初该投资者拥有资金为从D 项目收回的本金: 21.06D x ,及从项目A 中第1年投资收回的本金: 11.15A x ,故有 333121.15 1.06A B D A D x x x x x ++=+ 同理第4年、第5年有约束为 44231.15 1.06A D A D x x x x +=+, 5341.15 1.06D A D x x x =+

运筹学经典案例

运筹学经典案例 案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。 当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“Blackett马戏团”是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

最全的运筹学复习题及答案78213

最全的运筹学复习题及 答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250 ,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的 钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相 当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学经典案例

案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。 当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的为首,组织了一个小组,代号为“Blachett马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“Blackett马戏团” 是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

整数规划例题

〈运筹学〉补充例题 例题 1.1 某工厂可以生产产品A和产品B两种产品。生产单位产品A和B所需要的机时、人工工时的数量以及可利用资源总量由下表给出。这两种产品在市场上是畅销产品。该工厂经理要制订季度的生产计划,其目标是使工厂的销售额最大。 产品A 产品B 资源总量 机器(时) 6 8 120 人工(时) 10 5 100 产品售价(元) 800 300 MAX 800X1 +300X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 X1, X2 >=0 例题 1.2该工厂根据产品A和产品B的销售和竞争对手的策略,调整了两种产品的售价。产品A和B的价格调整为600元和400元。假设其它条件不变,请你帮助该工厂经理制订季度的生产计划,其目标仍然是使工厂的销售额最大。 X 600X1 +400X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 X1, X2 >=0 例题 1.3由于某些原因,该工厂面临产品原料供应的问题。因此,工厂要全面考虑各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价等因素。有关信息在下表中给出。 产品A 产品B 资源总量 机器(时) 6 8 120 人工(时) 10 5 100 原材料(公斤) 11 8 130 产品售价(元) 600 400 MAX 600X1 +400X2 ST 6X1 +8X2 <= 120 10X1 +5X2 <= 100 11X1 +8X2 <= 130 X1, X2 >=0 例题 1.4随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额变为注重销售利润,因此,要考虑资源的成本。工厂的各种产品所需要的机时、人

实用运筹学习题选详解

运筹学判断题 一、第1章 线性规划的基本理论及其应用 1、线性规划问题的可行解集不一定是凸集。(×) 2、若线性规划无最优解则其可行域无界。(×) 3、线性规划具有惟一的最优解是指最优表中非基变量检验数全部非零。(√) 4、线性规划问题的每一个基本可行解对应可行域的一个顶点。(√) 5、若线性规划模型的可行域非空有界,则其顶点中必存在最优解。(√) 6、线性规划问题的大M 法中,M 是负无穷大。(×) 7、单纯形法计算中,若不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量为负。(√) 8、对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。(√)。 9、一旦一个人工变量在迭代过程中变为非基变量后,则该变量及相应列的数字可以从单纯性表中删除,且这样做不影响计算结果。(√) 10、线性规划的目标函数中系数最大的变量在最优解中总是取正值。(×) 11、对一个有n 个变量,m 个约束的标准型的线性规划问题,其可行域的顶点恰好为个m n C 。 (×) 12、线性规划解的退化问题就是表明有多个最优解。(×) 13、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。(√) 14、单纯型法解线性规划问题时值为0的变量未必是非基变量。(√) 15、任何线性规划问题度存在并具有唯一的对偶问题。(√) 16、对偶问题的对偶问题一定是原问题。(√) 17、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。(×) 18、若原问题有可行解,则其对偶问题也一定有可行解。(×) 19、若原问题无可行解,其对偶问题也一定无可行解。(×) 20、若原问题有最优解,其对偶问题也一定有最优解。(√) 21、已知*i y 为线性规划的对偶问题的最优解,若*0i y >,说明在最优生产计划中,第i 种资源一定有剩余。(×) 22、原问题具有无界解,则对偶问题不可行。(√) 23、互为对偶问题,或者同时都有最优解,或者同时都无最优解。(√) 24、某公司根据产品最优生产计划,若原材料的影子价格大于它的市场价格,则可购进原材料扩大生产。(√) 25、对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。(√) 26、原问题(极小值)第i 个约束是“≥”约束,则对偶变量0i y ≥。(√) 27、线性规划问题的原单纯形解法,可以看作是保持原问题基本解可行,通过迭代计算,逐步将对偶问题的基本解从不可行转化为可行的过程。(√) *28、运输问题不能化为最小费用流问题来解决。(×) 29、运输问题一定有最优解。(√)

《管理运筹学》第三版案例题解

《管理运筹学》案例题解 案例1:北方化工厂月生产计划安排 解:设每月生产产品i (i=1,2,3,4,5)的数量为X i ,价格为P 1i ,Y j 为原材料j 的数量,价格为P 2j ,a ij 为产品i 中原材料j 所需的数量百分比,则: 5 10.6j i ij i Y X a ==∑ 总成本:TC=∑=15 1 2j j j P Y 总销售收入为:5 11 i i i TI X P ==∑ 目标函数为:MAX TP (总利润)=TI-TC 约束条件为: 10 30 24800215 1 ?? ?≤∑=j j Y X 1+X 3=0.7∑=5 1 i i X X 2≤0.05∑=5 1 i i X X 3+X 4≤X 1 Y 3≤4000 X i ≥0,i=1,2,3,4,5 应用计算工具求解得到: X 1=19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kg X 5=0kg 最优解为:348286.39元

案例2:石华建设监理工程师配置问题 解:设X i 表示工地i 在标准施工期需要配备的监理工程师,Y j 表示工地j 在高峰施工期需要配备的监理工程师。 约束条件为: X 1≥5 X 2≥4 X 3≥4 X 4≥3 X 5≥3 X 6≥2 X 7≥2 Y 1+Y 2≥14 Y 2+Y 3≥13 Y 3+Y 4≥11 Y 4+Y 5≥10 Y 5+Y 6≥9 Y 6+Y 7≥7 Y 7+Y 1≥14 Y j ≥ X i (i=j ,i=1,2,…,7) 总成本Y 为: Y=∑=+7 1)12/353/7(i i i Y X 解得 X 1=5;X 2=4;X 3=4;X 4=3;X 5=3;X 6=2;X 7=2; 1Y =9;2Y =5;3Y =8;4Y =3;5Y =7;6Y =2;7Y =5; 总成本Y=167.

运筹学实例分析及lingo求解

运筹学实例分析及lingo 求解 一、线性规划 某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。各供货仓库到8个客户处的单位货物运输价见表 试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。 解:设 ij x 表示从第i 个仓库到第j 个客户的货物运量。ij c 表示从第i 个仓库到第 j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束 数学模型为: ∑∑===6 18 1)(min i j ij ij x c x f ????? ??????≥===≤∑∑==08,,2,1,6,2,1,,. .6 1 8 1ij j i ij i j ij x j d x i a x t s ΛΛ 编程如下: model : Sets : Wh/w1..w6/:ai; Vd/v1..v8/:dj;

links(wh,vd):c,x; endsets Data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; Enddata Min=@sum(links(i,j):c(i,j)*x(i,j)); @for(wh(i):@sum(vd(j):x(i,j))<=ai(i)); @for(vd(j):@sum(wh(i):x(i,j))=dj(j)); end Global optimal solution found. Objective value: Total solver iterations: 0 Variable Value Reduced Cost AI( W1) AI( W2) AI( W3) AI( W4) AI( W5) AI( W6) DJ( V1) DJ( V2) DJ( V3) DJ( V4) DJ( V5) DJ( V6) DJ( V7) DJ( V8) C( W1, V1) C( W1, V2) C( W1, V3) C( W1, V4) C( W1, V5) C( W1, V6) C( W1, V7)

运筹学单项选择题

一、线性规划 1.线性规划具有无界解是指"C" A.可行解集合无界 B.有相同的最小比值 C.存在某个检验数 D.最优表中所有非基变量的检验数非零 2.线性规划具有唯一最优解是指 "A" A.最优表中非基变量检验数全部非零 B.不加入人工变量就可进行单纯形法计算 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 3.线性规划具有多重最优解是指"B" A.目标函数系数与某约束系数对应成比例 B.最优表中存在非基变量的检验数为零 C.可行解集合无界 D.基变量全部大于零 4.使函数减少得最快的方向是"B" A.(-1,1,2) B.(1,-1,-2) C. (1,1,2) D.(-1,-1,-2) 5.当线性规划的可行解集合非空时一定 "D" A.包含点X=(0,0,···,0) B.有界 C.无界 D.是凸集 6.线性规划的退化基可行解是指 "B" A.基可行解中存在为零的非基变量 B.基可行解中存在为零的基变量 C.非基变量的检验数为零 D.所有基变量不等于零 7.线性规划无可行解是指 "C" A.第一阶段最优目标函数值等于零 B.进基列系数非正 C.用大M法求解时,最优解中还有非零的人工变量 D.有两个相同的最小比值 8.若线性规划不加入人工变量就可以进行单纯形法计算 "B" A.一定有最优解 B.一定有可行解 C.可能无可行解 D.全部约束是小于等于的形式 9.设线性规划的约束条件为 "D" 则非退化基本可行解是 A.(2,0,0,0) B.(0,2,0,0) C.(1,1,0,0) D.(0,0,2,4) 10.设线性规划的约束条件为 "C" 则非可行解是 A.(2,0,0,0) B.(0,1,1,2) C.(1,0,1,0) D.(1,1,0,0) 11.线性规划可行域的顶点一定是 "A" A.可行解 B.非基本解 C.非可行 D.是最优解 12."A" A.无可行解 B.有唯一最优解 C.有无界解 D.有多重最优解

128503-管理运筹学-习题-06-动态规划

习题 6-1. 考虑下面的网络图,箭头上的数字代表相连两个节点之间的距离。 (1)用动态规划找出从节点1到节点10的最短路。 (2)从节点4到节点10的最短路呢? 6-2. 从北京到上海的包机的剩余装载能力为2000kg ,某一运输公司现有4种货物需要从北京运输到上海。每种货物的单位、单位重量和单位运输费用如下表所示。 (1)用动态规划找出包机应该运输的每种货物的单位数。 (2)假设包机同意装载另一批货物,剩余装载能力降为1800kg ,计算结果会怎样变化? 6-3. 假定有一个3阶段的过程,每一阶段的产量是需要做出决策的函数。使用数学符号,问题表述如下: Max ()()()332211d r d r d r ++ s.t. 1000321≤++d d d 每个阶段的决策变量和相应的返回值如下所示:

6-4. 某制造公司为一家汽车工厂提供发动机的部件,以下是3个月的生产计划的数据。 量是10单位,并且生产批量是10的倍数(例如,10,20或者30单位)。 6-5. 某物流公司雇佣了8名新员工,现决定如何把他们分配到4项作业上。公司给出了以下每项作业分配不同的作业人员的估计利润表。 (1) 用动态规划决定每项作业应该分配的新员工数目。 (2) 如果公司只雇佣了6名新员工,应该把这些员工分配给哪些作业? 6-6. 一个锯木厂采购了一批20ft 长的原木,想要把这些原木切成更短的原木,然后把切后的小原木卖给制造公司。制造公司已经订购了一批4种尺寸的原木:l 1=3ft ,l 2=7ft ,l 3=11ft ,l 4=16ft 。锯木厂现在有2000个长度为20ft 的原木的库存,并希望有选择地裁截原木以最大化利润。假定锯木厂的订单是无限的,唯一的问题就是确定把现有原木裁成的类型以最大化利润。原木的利润如下表所示: 任何裁截类型的长度限制如下: 201173321≤++d d d 其中,i d 是长度为i l 的类型的裁截数目,4,3,2,1=i . (1)为这个问题建立动态规划模型,并使用模型解决问题。你需要设立哪些变量?状态变量有哪些? (2)简要介绍如果总的长度l 被截成l 1,l 2,……l N 这样N 中长度的话,如果扩展现有模型以找到最优解? 6-7. 一家港口公司建立了良好的管理训练计划,希望每一个员工完成一个4阶段的作业。但是在训练计划的每个阶段,员工都会被分配一系列艰难的作业。以下是训练计划的每个阶段员工可能被分派的作业和任务估计完成时间。 次级阶段的作业取决于其先前的作业。例如,在阶段1接受作业A 的员工在阶段2只能接受作业F 或者作业G ——即每一项作业都存在优先关系。

第六章运筹学整数规划案例教材

第六章整数规划 6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。 1、 max z=3x1+2x2 S.T. 2x1+3x2≤12 2x1+x2≤9 x1、x2≥0 解: 2、 min f=10x1+9x2 S.T. 5x1+3x2≥45 x1≥8 x2≤10 x1、x2≥0

6.2 求解下列整数规划问题 1、 min f=4x1+3x2+2x3 S.T. 2x1-5x2+3x3≤4 4x1+x2+3x3≥3 x2+x3≥1 x1、x2、x3=0或1 解:最优解(0,0,1),最优值:2 2、 min f=2x1+5x2+3x3+4x3 S.T. -4x1+x2+x3+x4≥2 -2x1+4x2+2x2+4x2≥4 x1+x2-x2+x2≥3 x1、x2、x3、x3=0或1 解:此模型没有可行解。 3、max Z=2x1+3x2+5x3+6x4 S.T. 5x1+3x2+3x3+x4≤30 2x1+5x2-x2+3x2≤20 -x1+3x2+5x2+3x2≤40 3x1-x2+3x2+5x2≤25 x1、x2、x3、x3=正整数 解:最优解(0,3,4,3),最优值:47 4、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+ 5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19 约束条件x1 + x2+x3≤30 x4+ x5+x6-10 x16≤0 x7+ x8+x9-20 x17≤0 x10+ x11+x12-30 x18≤0 x13+ x14+x15-40 x19≤0 x1 + x4+ x7+x10+ x13=30 x2 + x5+ x8+x11+ x14=20 x3 + x6+ x9+x12+ x15=20 x i为非负数(i=1,2…..8) x i为非负整数(i=9,10…..15) x i为为0-1变量(i=16,17…..19) 解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860 6.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:

运筹学例题

DP 1. 下列关于动态规划问题的说法不正确的是( )。 A .应用推理或逆推法可能会得出不同的最优解 B .状态变量应具有无后效性 C .动态规划模型中,阶段是按时间或空间划分的 D .问题的阶段数等于问题中的子问题的数目 2. 用动态规划方法求解多阶段问题时,指标函数应满足( )。 A .定义在全过程和后部子过程上的数量函数 B .具有可分离性,满足递推关系 C .严格单调 D .以上A 、B 、C 都是 3. 下述的( )不能设为动态规划中的状态变量。 A .生产企业某种产品的每月月初库存 B .某种设备每年年末的可利用量 C .送货车辆行驶过的路程 D .送货车辆行驶时的速度 4. 某求极大值的线性规划问题的单纯形表如下:其中d 、1a 、1c 为待定常数。 该线性规划问题无界的时候,满足下面( )。 A .110,00d c a ≥<<且 B .110,00d c a ≥=>且 C .110,00d c a ≥><且 D .110,00d c a <>>且

一、某投资者有总数为40万元的固定资金,他可在三个不同的投资机会中投资(比如,股票、银行、土地),投资额分别为(1,2,3)i x i =。假定他做过预测,知道从每项投资中可获得效益分别为111()g x x =,2 222()g x x =,333()g x x =,问如何分配投资数额才能使从所有投资中获得的总效益最大? 二、某公司现有资金5千万元,拟对3个分公司增加投资,已知投资所获年效益如下表所示,问公司如何应对分配资金,才能使公司总的年收益最大?(用动态规划方法求解) 三、某农业种植基地有某种肥料共5单位,准备供给三块农田施用,每块农田至少需要一个单位的肥料,肥料必须按整数单位施用。每块农田施肥数量与增产数量关系如下表所示。试求对每块田施多少单位的肥料,才使总的增产量最多。要求:用动态规划方法求解,有必要的求解过程。 四、(包含两个小题) 1. 某厂按合同规定须于当年每个季度末分别提供10、15、25、20台统一规格的柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如下表所示。又如果生产出来的柴油机当季不交货,每台每积压一个季度需储存、维护等费用0.15万元。要求在完成合同的情况下,将该生产与存储问题表达成总费用最小的运输平衡表。 2.

运筹学实用案例分析过程

案例2 解:设工地i在标准施工期需要配备的监理工程师为Xi, 工地j在高峰施工期需要配备的监理工程师为Yi. 7 总成本: minZ=∑ ( 7Xi/3 + 35Yj/12) i=1 x1≥5 X2≥4 X3≥4 X4≥3 X5≥3 X6≥2 X7≥2 Y1+Y2≥14 Y2+Y3≥13 Y3+Y4≥11 Y4+Y5≥10 Y5+Y6≥9 Y6+Y7≥7 Y7+Y1≥14 Yj≥Xi (i=j i,j=1,2,3,4,5,6,7) 结果如下:

解:穷举两种车可能的所有路线。 设x i为第i条路线的车的数量,那么: 求min f= 12(x1+…+x12) + 18(x13+…+x21) 因为50个点属于A,36个点属于B,20个点属于C,所以约束条件是以上所有xi乘上它对应的路线中去各个点的数量的总和分别大于等于实际这些点的数量,因为表达式过于冗长,这里省略。 因为派去的车应该是整数,所以这是整数规划问题,运用软件求解。 最后得出结果: x9=4 x12=3 x19=8 x21=2 其余都等于零。 所以结果是派7辆2吨车,10辆4吨车。 路线如表格,这里不赘述。

解:设xij表示在i地销售的j规格的东西。其中i=1到6对应福建广东广西四川山东和其他省区,j=1和2对应900-1600和350-800。 求max f=270x11+ 240x21+ 295x31+300x41+242x51 +260x61+63x12+60 x22 + 60x32 +64x42 +59x52 +57x62– 1450000 在下图软件操作中,用x1到x12代表以上的未知数。 约束条件如上 运用软件求解,结果为: 由于软件中没有添加– 1450000, 所以最大利润为:5731000元。

运筹学期末试题及答案4套

《运筹学》试卷一 一、(15分)用图解法求解下列线性规划问题 二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表, 、为松弛变量,试求表中到的值及各变量下标 到的值。 三、(15分)用图解法求解矩阵对策, 其中 四、(20分) (1)某项工程由8个工序组成,各工序之间的关系为 试画出该工程的网络图。 (2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键

线路(箭线下的数字是完成该工序的所需时间,单位:天) 五、(15分)已知线性规划问题 其对偶问题最优解为 ,试根据对偶理论求原问题的最优解。 六、(15分)用动态规划法求解下面问题:

七、(30分)已知线性规划问题 用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。 (1)目标函数变为; (2)约束条件右端项由变为; (3)增加一个新的约束: 八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案

《运筹学》试卷二一、(20分)已知线性规划问题: (a)写出其对偶问题; (b)用图解法求对偶问题的解; (c)利用(b)的结果及对偶性质求原问题的解。 二、(20分)已知运输表如下: 2 5 2 2 5 (1)用最小元素法确定初始调运方案; (2)确定最优运输方案及最低运费。 三、(35分)设线性规划问题 maxZ=2x1+x2+5x3+6x4 的最优单纯形表为下表所示:

利用该表求下列问题: (1)要使最优基保持不变,C 3应控制在什么范围; (2)要使最优基保持不变,第一个约束条件的常数项b 1应控制在什么范围; (3)当约束条件中x 1的系数变为 时,最优解有什么变化; (4)如果再增加一个约束条件3x 1+2x 2+x 3+3x 4≤14,最优解有什么变化。 工 问指派哪个人去完成哪项工作,可使总的消耗时间最小? 五、(20分)用图解法求解矩阵对象G=(S 1,S 2,A),其中 六、(20分)已知资料如下表:

相关文档
相关文档 最新文档