文档库 最新最全的文档下载
当前位置:文档库 › 理论力学达朗贝尔原理

理论力学达朗贝尔原理

理论力学达朗贝尔原理
理论力学达朗贝尔原理

理论力学:虚位移原理及分析力学基础

13.虚位移原理及分析力学基础 自由质点系:运动状态(轨迹、速度等)只取决于作用力和运动的起始条件的质点系。 非自由质点系:运动状态受到某些预先给定的限制(运动的起始条件也要满足这些限制条件)的质点系。 约束:非自由质点系所受到的预先给定的限制。 约束方程:用解析表达式表示的限制条件。 几何约束:只限制质点或质点系在空间位置的约束。 运动约束:对于质点或质点系不仅有位移方面的限制,还有速度或角速度方面的限制的约束。 定常约束:约束方程中不显含时间的约束。 非定常约束:约束方程中显含时间的约束。 完整约束:约束方程不包含质点速度,或者包含质点速度但是它可以积分,转换为有限形式的约束。 非完整约束:约束方程包含质点速度、且不可积分不能转换为有限形式的约束。 双面约束:不仅能限制质点在某一方向的运动,还能限制其在相反方向的运动的约束。 单面约束:只能限制质点沿某一方向运动的约束。 自由度数:在具有完整约束的质点系中,唯一地确定系统在空间的位形或构形的独立坐标的数目数。 广义坐标:用来确定质点系位置的独立参数。 虚位移:在给定位置上,质点或质点系在约束所容许的条件下可能发生的任何无限小位移,称为质点或质点系的虚位移。 虚功:作用于质点上的力在该质点的虚位移中所作的元功,用δW 表示。若用F ,δr 分别代表力和虚位移,则虚功的表达式为F W δδ=?F r 。 理想约束:约束力虚功之和等于零的约束。

虚位移原理:具有理想约束的质点系,在给定位置保持平衡的必要和充分条件是,所有作用于该质点系上的主动力在任何虚位移中所作的虚功之和等于零。 作用于质点系上的主动力对应于广义坐标q h 的广义力: 1 n i Qh i i h r F F q ? ? = =? ∑。 平衡稳定性:在保守系统中,(1)受到微小的扰动而偏离平衡位置后,它能返回到原平衡位置,这种平衡状态称为稳定平衡;(2)受到微小的扰动后,再也不能回到原平衡位置,这种平衡状态称为不稳定平衡;(3)不论在哪个位置,总是平衡的,这种平衡状态称为随遇平衡。 动力学普遍方程:在具有理想约束的质点系中,在任一瞬时,作用于各质点上的主动力和虚加的惯性力在任意虚位移上所作虚功之和等于零。

理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 r , 0 ,α I ( d ) I =F , αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、 B 悬挂。若突然撤去销子B ,求在撤 去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43 cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= 习 题 ( (

达朗贝尔原理及虚位移原理知识点总结

达朗贝尔原理 知识总结 1.质点的惯性力。 ?设质点的质量为m ,加速度为,则质点的惯性力定义为 2.质点的达朗贝尔原理。 ?质点的达朗贝尔原理:质点上除了作用有主动力和约束力外,如 果假想地认为还作用有该质点的惯性力,则这些力在形式上形成一个平衡力系,即 3.质点系的达朗贝尔原理。 ?质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯 性力,则质点系的所以外力和惯性力,在形式上形成一个平衡力系,可以表示为 4.刚体惯性力系的简化结果 (1)刚体平移,惯性力系向质心C 简化,主矢与主矩为 (2)刚体绕定轴转动,惯性力系向转轴上一点O 简化,主矢与主矩为 其中

如果刚体有质量对称平面,且此平面与转轴z 垂直,则惯性力系向此质量对称平面与转轴z 的交点O 简化,主矢与主矩为 (3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运动,惯性力系向质心C简化,主矢和主矩为 式中为过质心且与质量对称平面垂直的轴的转动惯量。 5.消除动约束力的条件。 刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。 常见问题 问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。 问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。惯性力系的主失是与简化中心无关的。 问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。 问题四物体系问题。每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。 虚位移原理 知识点总结 1.虚位移·虚功·理想约束。 在某瞬时,质点系在约束允许的条件下,人所假想的任何无限小位移称为虚位移。虚位移可以是线位移,也可以是角位移。 力在虚位移中所作的功称为虚功。

理论力学(14.7)--虚位移原理-思考题答案

第十四章 虚位移原理 答 案 14-1 (1)若认为B处虚位移正确,则A,C处虚位移有错:A处位移应垂直于 O1A向左上方,C处虚位移应垂直向下。若认为C处虚位移正确,则B,A处虚位移有错:B处虚位移应反向,A处虚位移应垂直于O1A向右下方。C处虚位移可沿力的作用线,A处虚位移不能沿力的作用线。 (2)三处虚位移均有错,此种情况下虚位移均不能沿力的作用线。杆 AB,DE若运动应作定轴转动,B,D点的虚位移应垂直于杆AB,DE;杆BC,DE作平面运动,应按刚体平面运动的方法确定点C虚位移。 14-2 (1)可用几何法,虚速度法与坐标(解析)法;对此例几何法与虚速度法比坐标(解析)法简单,几何法与虚速度法难易程度相同。 (2)可用几何法,虚速度法与坐标(解析)法。几何法与虚速度法相似,比较简单。用坐标法也不难,但要注意δθ的正负号。

(3)同(2) (4)用几何法或虚速度法比较简单,可以用坐标法,但比较难。 (5)同(4) 14-3 (1)不需要。 (2)需要。内力投影,取矩之和为零,但内力作功之和可以不为零。 14-4 弹性力作功可用坐标法计算,也可用弹性力作功公式略去高阶小量计算;摩擦力在此虚位移中作正功。 14-5 在平面力系所在的刚体平面内建立一任意的平面直角坐标系,在此刚体平面内任选一点作为基点,写出此平面图形的运动方程。设任一力 的作用点为(x i, y i),且把此坐标以平面图形运动方程表示,设此点产生虚位移,把力 投影到坐标轴上,且写出此点直角坐标的变分,用解析法形式的虚位移表达式,把力的投影与直角坐标变分代入,运算整理之后便可得。

也可以在平面力系所在的刚体平面内任选一点O(简化中心),把平面力系向此点简化得一主矢与主矩,把主矢以 表示,分别给刚体以虚位移 ,由虚位移原理也可得平衡方程。

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

《理论力学》第十三章-达朗贝尔原理

a I F F C N m 4.0m 4.0m 8.0A 第十三章 达朗贝尔原理 [习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。试求使货物既不倾拿倒又不滑动的刹车时间。 解: 以货物为研究对象,其受力如图所示。图中, )/(1536001000540s m s m v v =? == 0=t v t t v v a o t 15 -=-= t m ma F I 15= = G f N f F s s == 虚加惯性力之后,重物在形式上“平衡”。 货物不滑动的条件是: 0=∑x F 0=-F F I 015 ≤-N f t m s N f t m s ≤15 )(1.58 .910003.01000 1515s N f m t s =???=≥

N 即货物不滑动的条件是:) (1.5s t≥ (1) 货物不倾倒(不向前倾倒)的条件是: ) (≥ ∑i A F M 8.0 4.0≥ ? - ? I F N 8.0 15 4.0≥ ? - ? t m mg 30 ≥ - t g t g 30 ≥ ) ( 06 .3 8.9 30 30 s g t= = ≥ (2) (1)(2)的通解是) (1.5s t≥。即,使货物既不倾拿倒又不滑动的刹车时间是) (1.5s t≥。[习题13-2] 放在光滑斜面上的物体A,质量kg m A 40 =,置于A上的物体B,质量kg m B 15 =;力kN F500 =,其作用线平行于斜面。为使A、B两物体不发生相对滑动, 试求它们之间的静摩擦因素 s f的最小值。 解:以A、B构成的质点和系为研究对象,其受力如图所示。在质心加上惯性力后,在形式上构成平面一般“平衡”力系。 = ∑x F 30 sin ) (0= + - -g m m F F B A I

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

第12章 虚位移原理及其应用 12-1 图示结构由8根无重杆铰接成三个相同的菱形。试求平衡时,主动力F 1与F 2的大小关系。 解:应用解析法,如图(a ),设OD = l θsin 2l y A =;θsin 6l y B = θθδcos 2δl y A =;θθδcos 6δl y B = 应用虚位移原理:0δδ12=?-?A B y F y F 02612=-F F ;213F F = 12-2图示的平面机构中,D 点作用一水平力F 1,求保持机构平衡时主动力F 2之值。已知:AC = BC = EC = DE = FC = DF = l 。 解:应用解析法,如图所示: θcos l y A =;θsin 3l x D = θθδsin δl y A -=;θθδcos 3 δl x D = 应用虚位移原理:0δδ12=?-?-D A x F y F 0cos 3sin 12=-θθF F ;θcot 312F F = 12-3 图示楔形机构处于平衡状态,尖劈角为θ和β,不计楔块自重与摩擦。求竖向力F 1与F 2的大小关系。 解:如图(a ),应用虚位移原理:0δδ2211=?+? r F r F 如图(b ): β θt a n δδt a n δ2 a 1r r r == ;12 δtan tan δr r θ β = 0δtan tan δ1211=? -?r θβF r F ;θ β tan tan 21?=F F 12-4 图示摇杆机构位于水平面上,已知OO 1 = OA 。机构上受到力偶矩M 1和M 2的作用。机构在可能的任意角度θ下处于平衡时,求M 1和M 2之间的关系。 习题12-1图 (a ) 习题12-2解图 习题12-3 (a ) r a (b )

理论力学(机械工业出版社)第四章虚位移原理习题解答

习 题 4-1 如图4-19所示,在曲柄式压榨机的销钉B 上作用水平力F ,此力位于平面ABC 内,作用线平分∠ABC 。设 AB =BC ,∠ABC =θ2,各处摩擦及杆重不计,试求物体所受的压 力。 图4-19 0δ)90cos(δδN =--?=∑C B F s F s F W θ )90cos(δ)902cos(δθθ-?=?-C B s s θθsin δ2sin δC B s s = 虚位移原理 0δ)90cos(δδN =--?=∑C B F s F s F W θ 0δsin δN =-C B s F s F θ θ θθθtan 2 )2sin(sin sin δδ2N F F s s F F C B === 4-2 如图4-20所示,在压缩机的手轮上作用一力偶,其矩为M 。手轮轴的两端各有螺距同为h ,但方向相反的螺纹。螺纹上各套有一个螺母A 和B ,这两个螺母分别与长为l 的杆相铰接,四杆形成棱形框,如图所示,此棱形框的点D 固定不动,而点C 连接在压缩机的水平压板上。试求当棱形

框的顶角等于2f 时,压缩机对被压物体的压力。 图4-20 ??cos δ)290cos(δC A s s =-? C A s s δsin δ2=? 而 θ?δπ 2c o s δP s A = ?θ?θ?tan δπ sin δcos π22 δP P s C == 虚位移原理 0δδδN =-=∑C F s F M W θ 0tan δπ δN =?-?θθP F M ?cot π N P M F = 4-3 试求图4-21所示各式滑轮在平衡时F 的值,摩擦力及绳索质量不计。 图4-21 虚位移原理 0δδδ=+-=∑A B F s G s F W (a) A B s s δ2δ= 2 G F = (b) A B s s δ8δ= 8 G F = (c) A B s s δ6δ= 6 G F = (d) A B s s δ5δ= 5 G F =

理论力学(机械工业出版社)第十三章达朗伯原理习题解答汇总

习 题 13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。试求此时飞机的加速度a 和悬线中的张力F T 。 图13-16 ma F =I 0cos sin 0 I T =-=∑β?F F F x ? βsin cos I T F F = 0sin cos 0 I T =--=∑mg F F F y β? 0sin cos sin cos I I =--mg F F β?? β 0sin ) cos(I =-+mg F ?β? mg ma =+?β?sin ) cos( ) cos(sin β?? += g a mg ma F F ) cos(cos sin cos sin cos I T β?β ?β? β +=== 13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。已知钢球脱离筒壁的最佳位置'4054?=?,滚筒半径R =0.6m 。试求使

钢球在'4054?=?处脱离滚筒的滚筒转速。 图13-17 2n I ωmR ma F == 0cos 0 I N n =-+=∑F mg F F ? )cos (cos cos 22I N ?ω?ω?g R m mg mR mg F F -=-=-= 令0N =F 0cos 2=-?ωg R R g ?ωcos = min r/35.296 .00454cos 8.9π30cos π30π30='??=== R g n ?ω 13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。试求物块不致因转台旋转而滑出时水平转台的最大转速。 图13-18 2n I ωmr ma F == 00 N =-=∑mg F F y mg F =N 00 I =-=∑F F F x 0N s 2=-F mr μω 0s 2=-mg mr μω r g s μω= r g n s max π30π30μω==

大学理论力学十达朗贝尔原理答案

第十六章达朗伯原理 16.1已知物块与水平臂之间的摩擦系数/s = 0.2,水平臂下降加速度 为。; 求l)a为多大,物块不滑? 2)务为多大,物块在滑动之前先倾倒?解1)物块受力如图(“, 图中惯性力耳=77W,由达朗伯原理,当 物块不滑时,有主X = 0, F —Fg:5irt3O = 0 SV = 0> Fv " mg + F M COS30 = 0 F

h、1 孑鼻 泾 E6.2已知曲柄OC = rM匀角速度如转动;连杆召C = I端连有质量为櫛的物A ; 求杆AB所受的力。

解设杆长AB =趴则物 A 的运动方程为 j : = b + r cos 爷 + I cos? cos? 1 — -y ^2 sin 2 卩 j- = 6 + r cos 护 + I 1 r 2 . 2 -2 7 s,n 由达朗伯原理 SX = 0, mg - F - F* = 0 得 AH 杆的力 F = 7ti[g + nw 2( cc^

(完整版)理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 习题11-1图 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 解:设圆盘的质量为m ,半径为r ,则如习题11-1解图: (a )2 I ωmr F =,0I =O M (b )2n I ωmr F =,αmr F =t I ,αα2I 2 3mr J M O O == (c )0I =F ,0I =O M (d )0I =F ,αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、B 悬挂。若突然撤去销子B ,求在撤去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2 rad/s 04.47=α ∑ =0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ 习题11-2图 习题11-1解图 (a ) (a )

N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m = 3.0kg 。 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= N 38.5)13(4 1 =-=mg F A ; N 5.4538.53=?+=mg F B 11-4 两种情形的定滑轮质量均为m ,半径均为 r 。图a 中的绳所受拉力为W ;图b 中块重力为W 。 试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。 解:1、图(a ): ① Wr J O =a α Wr mr =a 22 1 α mr W 2a =α (1) ②绳中拉力为W (2) ③∑=0x F ,0=Ox F (3) ∑=0y F ,W F Oy = (4) 2、图(b ): ① b 2I 2 1αmr M O = (5) b I αr g W a g W F == (6) ∑=0O M ,0I I =-+W r r F M O (5)、(6)代入,得 ) 2(2b W mg r Wg +=α (7) ②绳中拉力(图c ): ∑=0y F ,W F T =+I b W W mg mg a g W W T 2b +=- = (8) ③轴承反力: ∑=0x F ,0=Ox F (9) ∑=0y F ,0I =-+W F F Oy W mg mgW F Oy 2+= (10) A B C D E l l φ φ 习题11-3图 (a ) F I F A F B a A 2m g A B C 3l /4 3l/4 φ φ O a b T I F W (a) 习题11-4图 αa F Oy F Ox F Oy F Ox αb M I O F I W a

相关文档
相关文档 最新文档