文档库 最新最全的文档下载
当前位置:文档库 › 无线无源温度检测原理(借鉴实操)

无线无源温度检测原理(借鉴实操)

无线无源温度检测原理(借鉴实操)
无线无源温度检测原理(借鉴实操)

无线测温技术方案

(基于EH技术)

1.EH技术说明

1.1. EH技术简介

环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。

能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。

能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。

1.2.EH技术应用

在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。

将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。

2.基于EH技术的富邦电控FTZ600无线测温系统

2.1. 无线测温系统简介

我公司的无源无线测温系统主要有三部分构成:无线测温传感器、无线温度接收终端、数据服务器及后台;

效果结构图如下所示:

接收终端在系统中承担着数据中继功能,它接收到传感器的数据之后再通过光纤、485或者无线等方式传输给数据后台,他们形成了系统的网络层。

数据到达后台后,用户可以通过浏览器方式监测现场每个传感器的实时温度、历史曲线,如果出现超温情况,可以快速定位并及时通知相关人员。这就是系统的应用层。

3.无线测温系统单元介绍

3.1.无源无线温度传感器

目前我公司研发多种无线温度传感器既能满足室内开关柜无线测温,也可以满足户外变压器、轴承、隔离刀闸等设备无线测温要求。

我公司的无源无线温度传感器是基于美国TI公司的无线数字通信技术及低功耗技术、EH技术而研制的高性能产品,新一代无线温度传感器采用了多重抗干扰措施以及特有的软件算法,其最大的优势在于不再需要电池供电,彻底解决电池后期维护频繁、寿命有限的问题;而且体积小巧,安装方式灵活多样,将开关柜温升监测提升到一个新的高度。

考虑不同环境的适用性,目前该温度传感器系列应用较广泛的有两款(FB-SW-02、FB-SW-01)FB-SW-02型无源无线温度传感器体积小,可适合于国内外高压设备室内及户外动静触头、隔离刀闸、断路器、母排、电缆连接处的温度的测量;适合于低压抽屉柜输入输出回路连接处或各接头处温度的测量;安装方便、安全、灵活。

FB-SW-01型无源无线温度传感器发射距离大,在空旷距离条件下,传输距离可达2000m;可适用于户外架空电缆,高压变电站户外场地间隔内设备各结构的温度监测;包括户外电流互感器、户外隔离开关、户外断路器以及变压器等;

3.1.1. FB-SW-02型无线温度传感器参数如下表所示:

工作环境-45 ~ +125℃,<99%RH

防护等级IP68(最高防护等级)

工作频段433MHz

发射功率<10dbm

传输距离220m(空旷距离)视距,实际情况据现场条件而定

测温方式接触式体积轻小,优先安装动触头

测温范围-45 ~ +125℃

测量精度±1℃

测量间隔5S

发送间隔10~60S温度越高发送间隔越短

休眠功耗<3.0uA

发射功耗<15mA

供电方式能量收集电磁能收集(无源)

使用寿命10年

可维护性后期基本免维护

外形尺寸27.3×22×9.8mm传感器主体尺寸

安装方式固定式可安装动、静触头以及母排、电缆进出线端口、

隔离刀闸等位置。

3.1.2. FB-SW-01型无温度传感器参数如下表所示:

工作环境-40 ~ +85℃,<95%RH

防护等级IP68(最高防护等级)

工作频段433MHz(免申请)

发射功率< 13dbm

传输距离2000m(空旷距离)视距,实际情况据现场条件而定

测温方式接触式体积轻小,优先安装动触头

测温范围-45 ~ +125℃

测量精度±1℃

测量间隔5S

发送间隔10~60S温度越高发送间隔越短

休眠功耗<8.0uA

发射功耗<120mA

供电方式能量收集电磁能收集(无源)

使用寿命10年

可维护性后期基本免维护

外形尺寸148×74mm传感器主体尺寸

安装方式固定式可安装在户外架空电缆接头、户外电流互感

器、户外隔离开关、户外断路器以及变压器等

设备上

3.2. 无线接收终端

FB-ANT无线温度接收终端是在上一代产品基础上研制的新产品,与上一代及其他公司的类似产品比较,我们的产品具备更强大的功能和可靠的性能,双光口、双无线、双485、单网口,光纤可以直接接入我们产品,亦可采用多通讯口实现数据中继功能。

无线接收终端的参数如下表所示:

工作环境-40~85℃,<95%RH

供电方式AC220V或DC220V

整机功耗<8W

尺寸大小120×180mm

上行RS-485两路可配置

上行光口两路可配置

上行网口一路可配置

上行速率4kbps

下行信道无线

无线频段433MHz

接收灵敏度-110dbm

下行速率10kbps

传感器点数9点可选

显示方式LCD

温度变化曲线2小时

超温报警有

报警门限可设

声光报警及输出有

本地温、湿度可配

安装方式壁挂式、嵌入式可选

通讯协议Modbus、IEC61850可选

通讯方式以太网、RS485、光纤可选

3.3.无线监控后台

我们的无线测温后台采用国内品牌工控机或者由客户指定型号的计算机,后台软件采用B/S结构,具有独立的软件著作权。具有人机界面友好、操作方便、数据全面、功能完善的特点,同时还可实现短信报警和Web访问功能。

监控后台的参数如下:

配置机型按客户需求或知名品牌工控机可选

工作环境-40~85℃,<95%RH

供电方式AC220V或DC220V可选

显示要求实时温度、历史曲线、超温报警、一次图

报警功能具有高温告警短信通知功能

通讯功能串口、以太网口、modbus协议、IEC61850协议可选

可访问性可通过浏览器访问

数据容量可接入不少于60000只温度传感器,并记录数据

软件系统SPV2.0系统,BS结构

全局图可以一目了然分辨出传感器温度正常、超温、故障;

无线通信原理实验题目

无线通信原理实验题目之二: 实验报告 2.2:两径模型的仿真实验二(**) 实验工具:Mathworks Matlab 实验目的:了解两径模型中的路径损耗,熟练操作matlab 软件;实现内容: 实验代码: clc; Pt = 1;%发送功率归一化0dB ht = 50; %发送天线的高度 hr = 2; %接收天线的高度 db_ht=10*log10(ht); %运用log10,化为db单位 f = 900000000; %频率 c = 300000000; %波速 lam = c/f; %波长即λ R = -1; Gl = 1; %发射天线增益

Gr =1; %接收天线增益 d = 1:100000; %1m~100km db_d = 10*log10(d); %运用log10,化为db单位 l=sqrt((ht-hr)^2 + d.^2) x=sqrt((ht+hr)^2 + d.^2) deltax = x - l; %即时延△x deltafai = 2*pi*deltax/lam; %即△φ Pr = Pt*((lam/(4*pi))^2)*((abs(sqrt(Gl)./l + R*sqrt(Gr)*exp(-j*deltafai)./x)).^2); %接收功率 dc = 4*ht*hr/lam; %临界距离 db_Pr = 10*log10(Pr)-10*log10(Pr(1)); %运用10log10,化为db单位,并归一化起点 plot(db_d,db_Pr,'r'); %Gr=1时,接收功率与距离的关系,红色 hold on; grid on; %网格 plot([db_ht db_ht],[-100 40],'--g'); %绘制临界距离dc,用虚线 plot([10*log10(dc) 10*log10(dc)],[-100 40],'--b'); %绘制临界距离dc,用虚线 legend('两径模型的功率下降','发射天线高度ht','临界距离dc');%对各关系曲线的备注xlabel('10log10(d)'); ylabel('接收功率Pr(dB)'); title('两径模型,接收信号功率'); hold on; plot([0,db_ht],[0,0],'k'); hold on; b1=2*db_ht; x1=10*log10(dc); y1=-2*x1+b1; plot([db_ht,x1],[0,y1],'k'); hold on; b2=y1+4*x1; x2=(-100-b2)/(-4); plot([x1,x2],[y1,-100],'k'); 运行结果:

一种无线温湿度检测装置的设计与实现

《自动化技术与应用》2010年第29卷第8期 Techniques of Automation & Applications | 103 经验交流 Technical Communications 一种无线温湿度检测装置的设计与实现 何祥宇,马 帅 (洛阳师范学院 物理与电子信息学院,河南 洛阳 471022) 摘 要:设计了一种基于温湿度数字式传感器的无线温湿度检测装置,以单片机为控制核心,采用数字式温湿度传感器来检测目标的 温度和湿度信息,利用软件编程完成温湿度信息的处理及系统功能实现,并通过LED显示相应测量数据。该装置具有温度及湿度数据的测量及显示、工作模式选择和无线通信等功能。 关键词:温湿度传感器;单片机;工作模式;无线通信 中图分类号:TP273+.5 文献标识码:B 文章编号:1003-7241(2010)08-0103-03 The Design and Realization of a Wireless T emperature and Hu-midity Detecting Equipment HE Xiang-yu, MA Shuai ( School of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022 China ) Abstract: A kind of a wireless temperature and relative humidity detecting equipment is designed based on digital temperature-humidity sensor. It employs SCM as the core of controlling, adopts digital temperature-humidity sensor to detect temperature and relative humidity data of objects. The measurement data is processed by software and displayed by LED. The device has the function of temperature and relative humidity data displaying, operating mode selection,wireless communication, etc. Key words: temperature-humidity sensor; SCM; operating mode; wireless communication 收稿日期:2010-03-24 1 引言 温湿度的检测在暖通空调、电力系统、通信基站、食品加工、制药等行业有着非常广泛的应用,但一般湿度元件不经过标定和温度补偿,误差较大,而用于湿度标定和校准的仪器价格昂贵,从而给湿度测量的实际应用带来很大的困难和阻碍。文中选用瑞士Sensirion公司的SHT11数字式温湿度传感器,结合单片机技术和电子技术,设计了一种具有两种工作模式的温湿度检测装置,消除了一般湿度检测元件误差较大的缺点。该温湿度检测装置既可以单机工作,以单片机为处理和控制核心来实现温度和湿度信号的检测、处理及显示。又可以利用无线收发模块实现系统与计算机的无线通信,利用计算机实现数据的分析,处理及打印。该系统采用专用 集成电路,电路结构简单,工作稳定可靠,具有两种工作模式及无线数据传输等特点,特别适用于暖通空调、电力系统、通信基站、食品加工等行业的温湿度测量。 2 SHT 11温湿度传感器 SHT11的湿度检测运用电容式结构,利用不同保护下的微型结构检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可以抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度较高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误差。SHT11不仅将温度传感器和湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C总线等电路全部集成在一个芯片内。SHT11的

无线无源温度检测原理(借鉴实操)

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

实验室行业中无线温湿度传感器监测解决方案及应用

实验室行业中无线温湿度传感器监测解决方案及应用 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。深圳信立科技无线温湿度传感器为各领域实验室提供客观及无法篡改的温湿度记录数据。这里,盘点XL51无线温湿度传感器在各个领域实验室的运用。 1、病理学实验室 病理学实验过程中,切片机,脱水机,染色机,电子天平等仪器的使用对温度有比较严格的要求。例如电子天平应尽可能在环境温度较稳定的条件(温度变化每小时不大于5|℃)下使用。因此,这类实验室的温湿度状况需要实时监控和记录。XL51无线温湿度传感器可以实时精确采集、传输、记录温湿度数据.有助于各项实验的顺利进行。 2、抗生素实验室抗生素实验室 对温湿度环境有严格的要求般情况下冷处是2~8℃.阴凉处不超

过20℃。抗生素保存的温度过高或过低都会导致抗生素失活.并且不同种类抗生素的失活温度也各有不同.因此XL51无线温湿度传感器在这类实验室环境中的监测及记录是个重要的环节。 3、化学检测室 化学实验室般包涵多种实验室房间,如化学检测室.物理检测室.抽样室等。各房间的温湿度标准都不相同,每个房间需指定专人定时进行监测,监测频率通常为每天两次。使用XL51无线温湿度传感器,通过专业的组网连接,工作人员只需在中心控制台就可查看各个实验室温湿度状况,下载并保存实验过程中的温湿度数 4、实验动物房 动物实验室的环境要求以实验动物为主其湿度应维持在40%~60%RH之间,以老鼠为倒,它们若在相对湿度40%以下的环境生活,很容易发病掉尾而死亡。XL51无线温湿度传感器可通过组网报警等措施建立温湿度监测记录系统,有利于动物房压差、温湿度的控制.防止疾病的传播和避免动物的相互感染。 5、混凝土实验室

无线通信原理实验报告—李晓-52112113

现代无线通信原理实验 李晓21班13号52112113 实验一Okumura-Hata无线传播模型仿真实验 实验内容 使用Matlab编程计算Okumura-Hata传播路径损耗,绘制Okumura-Hata传播模型损耗---频率曲线图。 实验条件 频率范围:300 ~1500MHz,基站天线高度为30m,移动台天线高度为1.5m。传播距离分别为d=2km和5 km,以频率为变量,通信距离为参变量编程绘出城市准平滑地形、郊区、农村环境下的Okumura-Hata传播模型损耗-频率曲线图。实验要求 在一个图中显示6条曲线; 所有曲线均为蓝色线,d=2km用实线,d=5km用虚线;城区用“o”、郊区用“* ”及乡村用“□”标注曲线上的点; 在曲线图的空白处对曲线进行标注; 图要有横纵坐标标示,横坐标为频率(Mhz),纵坐标为损耗中值(dB) 图形的题头为学生本人姓名和学号。 实验仿真图

200 400600 8001000120014001600 90100 110 120 130 140 150 160 频率(MHz) 损耗中值(d B ) 姓名:李晓 班级:二十一班 学号:52112113 城市: d1=2km 城市: d2=5km 郊区: d1=2km 郊区: d2=5km 乡村: d1=2km 乡村: d2=5km 实验图反映了随着频率,距离以及地点的变化而变化的损耗中值。 实验分析 由图看出 ①路径损耗都随传输距离的增大而增大; ②城市的路径损耗最大,郊区次之,乡村最小,说明障碍物越多对信号传输损耗的就越强; ③随 频 率 的 增 大,路径损耗越强。 附录 Okumura-Hata 传播模型路径损耗计算公式 式中 fc — 工作频率(MHz ) ()() ()69.5526.16log 13.82log 44.9 6.55log log p c te re te cell terrain L dB f h h h d C C α=+--+-++

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

温度检测与控制实验系统论文

温度检测与控制实验系统设计 设计任务 1、设计参数 被测温度1200。C,最大误差不超过±1。C 2、设计要求 (1)被控对象为小型加热炉,供电电压220V AC,功率2kW,用可控硅控制加热炉温度;(2)通过查阅相关设备手册或上网查询,选择温度传感器、调节器、加热炉控制器等设备(包括设备名称、型号、性能指标等); (3)设备选型要有一定的理论计算; (4)用所选设备构成实验系统,画出系统结构图; (5)列出所能开设的实验,并写出实验目的、步骤、要求等。 课程设计评语 设计报告成绩(30%)设计过程成绩 (30%) 答辩成绩 (40%) 总成绩

摘要 本文介绍了一个简单的温度检测与控制系统的设计。该系统的被控对象为小型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。调节器将偏差信号输出到可控硅调功器,可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。 关键词: 热电偶调节器可控硅调功器

目录 第一章前言 (3) 第二章设备选型 (3) 2.1 温度传感器 (3) 2.2 调节器 (5) 2.3执行器 (7) 第四章系统结构图 (12) 第五章总结 (13) 参考文献 (13) 附录一:开设试验 (13)

第一章前言 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密的与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术指标相联系。因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。在实际的生产实验环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。为了使系统与外界的能量交换尽可能的符合人们的要求,就需要采取其他手段来达到这样一个绝热的目的,例如可以让目标系统外部环境的温度与其内部温同步变化。根据热力学第二定律,两个温度相同的系统之间是达到热平衡的,这样利用一个与目标系统温度同步的隔离层,就可以把目标系统与外界进行热隔离。另外,在大部分实际的环境中,增温要比降温方便得多。因此,对温度的控制精度要求比较高的情况下,是不允许出现过冲现象的,即不允许实际温度超过控制的目标温度。特别是隔热效果很好的环境,温度一旦出现过冲,将难以很快把温度降下来。这是因为很多应用中只有加热环节,而没有冷却的装置。同样道理,对于只有冷却没有加热环节的应用中,实际温度低于控制的目标温度,对控制效果的影响也是很大的。 第二章设备选型 2.1温度传感器 求测温度1200度,误差不超过±1℃,所以决定了只能用铂铑等贵金属材料热电偶。HAKK-WRR系列铂铑热电偶是一种传统的测温元件,具有热电性能稳定、抗氧化性强,适宜在氧化性、惰性气氛中连续使用。长期使用温度为1600℃,短期使用温度为1800℃。有纸记录仪其技术指标如下: 1、测温范围: 0~1800℃ 2、测温精度:< ± 0.5% t 3、时间常数:≤180s 4、绝缘电阻:5MΩ(20℃时) 5、规格尺寸:500,750,1000,1200(mm) HAKK-WRR系列铂铑热电偶又称高温贵金属热电偶,铂铑有单铂铑(铂铑10-铂铑)和双铂铑(铂铑30-铂铑6)之分,它们作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。铂铑热电偶为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂

无线无源温度检测原理

无线测温技术方案 (基于 EH 技术) 1.EH 技术说明 1.1. EH 技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极 其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备 的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集 (EH) 也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热 或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH 技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等 ),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具 ),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非 常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将 EH 技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2. 基于 EH技术的富邦电控FTZ600无线测温系统 2.1.无线测温系统简介

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

试验室温湿度和压差无线在线自动化监测解决方案

实验室温湿度和压差无线在线自动化监测解决方案 智能温度(智能温湿度传感器、实验室温湿度和压差无线在线自动化监测主要由设备层设备、智能网关、无线短信猫模块、网络交换机、采集计算机、数据服传感器、无线测控装置)服务器及监控管理软件等构成,本系统设计采用先进的软硬件技术和分层分布Web务器、式网络结构,针对客户的实际情况提供下列解决方案。 一、系统概况 适用于已建成的对环境温湿度或者安安装方便,基于无线传感网络的环境与安全监测系统,孵化生化又不方便重新对建筑进行工程施工的仓库,食品仓库、药品仓库、全要求较高的、实验室;电子厂房、机房;孵房、大棚、温室等。 的数据采集设备及无线传输设备和相关无自动化无线监测系统由深圳市信立科技有限公司线传感器组成。具备智能化、尺寸小、使用寿命长等特点,选用全工业级产品,在恶劣环境下稳定性好、精度高。 根据项目的实际情况,设计技术方案,设计中力求系统先进、可靠、经济实用和可靠、功能扩展方便,做到系统设计方案严谨、布局合理、设备选型合理。 1.1设计依据 根据现场监测要求内容,利用无线传感网络技术,开展对实验室冰柜和实验室环境进行温、湿度、压差强度动态监测,监测系统可增加其他监测指标。 1.2设计目的 利用无线传感器网络压差指标并执行相应的温湿度、压差控制,为了确定区域环境温湿度、并将监测信息通过无线方式传输等参数实时监测,技术对实验室环境参数(温湿度和压差)到监控后台,根据监控系统要求实现实时监测。 序区域名室内温度压差监冰柜监冰箱监设备布置情况 号称监测数量测数量测数量测数量 样本存路温度传感器个,1智能温度传感器11无无12 -2储区 路温度4个,样本制1个,智能温度传感器1智能温湿度传感器21212 路压差信号1台采集1备室信号,无线测控装置 1个,无线温度、压差传感器,配置1智能温湿度传感器试剂准11131 路温度传感器备区路压差和2 标本制智能温湿度传感器1个,无线温度、压差传感器,配置114111 路压差和备区2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置1115纯化区11 路压差和2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置16定量区1111 路压差和2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置17检测区1111 路压差和2路温度传感器 智能温湿度传感器1QC质控个,无线温度、压差传感器,配置111118 路压差和2路温度传感器室 智能温湿度传感器1预留实个,无线温度、压差传感器,配置119111 路压差和2-2验室路温度传感器

无线测温外文翻译

化工学院信息与控制工程学院 毕业设计外文翻译 粮食仓储无线测温系统的设计 Design of wireless temperature measurement system for grain storage 学生学号:10540108 学生:王宪忠 专业班级:测控1001 指导教师:艾学忠 职称:教授 起止日期:2014.2.25~2014.3.16

吉林化工学院 Jilin Institute of Chemical Technology

激光切割工艺中无线温度采集系统的设计 摘要 本文提出了一种先进的工程材料的激光切割加工的无线温度采集系统的开发。该无线系统可以有效的进行自动温度监测。该系统包括硬件,软件,和一台计算机。该无线系统的包括电源子系统,传感器子系统,和一个主要基于无线射频(RF)技术的主节点系统。该系统的优点是简单的数据管理温度报警和所需文件的准确性。该集成无线温度传感器的有用性是在马来西亚理科大学机械工程学院制造实验室进行测试的。在实验室收集的数据用来评估该系统的实用性。数据表明,该系统可以测量和监测在硬顶的的时间和距离的围的温度。这项工作是使用无线网络系统监控激光切削过程(WSN)温度的一个重要的开始。 关键词:温度监测;无线传感器;激光切割;过程监控

1 简介 该过程监控系统具有避免意外故障的优点,大大提高了系统的可靠性和可维护性。其获取更大的工艺参数也给出了更好的可视性和更好的决策权。这些系统通常与数据采集系统使用传感器测量相关的参数。传感器测得的数据通过有线通信传输给处理系统。然而,这些系统可以是非常昂贵和不灵活的。随着通信技术的发展,数据已经可以通过无线方式来传输。目前,无线技术,特别是无线传感器网络综合了传感器技术,MEMS 技术,无线通信技术,嵌入式计算技术、分布式信息管理技术,得到了迅速的发展。无线传输的重要优势就是简化了系统的布线和管理。否则,在一些危险,或者偏远的区域和地点不可能实现传感器的应用。更快的部署和安装各种各样的传感器,可以使多点测量,低成本,低功耗,小体积,和便携成为可能。 在工业上激光切割金属的发现和应用是由于其加工复杂的工件时可以非接触式加工,并且精度高,表面光洁度高,易于数控(CNC)。另外,这项技术已被用于先进的工程材料的研究,例如,钨,钛,瓷,铝合金,铬镍铁合金,钽,和金属基复合材料。激光切割要达到良好的切削性能涉及许多操作参数,如激光功率,切割速度,频率,占空比,焦距,间隔距离,辅助气体压力,束喷嘴,和切割镜片。应该在切削过程中监测测这些参数,来控制切削的动作,以达到预期的切削效果。然而,目前的技术已被用来监测过程中切削是基于有线通信的,它缺乏灵活性。例如,为了满足要求需要部署固定的连线来供电和传输数据。另外,这个系统时面临着现有设施被用于新的加工业务改造的困难(必须独立的分析每个切削参数)。为了解决这个问题,无线监控系统应该应用在先进的金属材料激光切割的过程中。 许多类型的无线技术发的展从简单的红外数据协议(IrDA)该协议利用红外光的短距离的点对点通信,短距离的无线个人区域网(WPAN)的一点对多点的通信,如蓝牙和

无源无线测温原理

无线无源开关柜温度监测系统 必要性: 高压开关柜作为电力系统中非常重要的电气设备。现代电力系统对电能质量的要求越来越高,相应地对高压开关柜的可靠性也提出了更高的要求。开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。 随着传感器技术、信号处理技术、计算机技术、人工智能技术的发展,使得对开关柜温度状态进行在线监测,及时发现故障隐患并对累计性故障做出预测成为可能。它对于保证开关柜的正常运行,减少维修次数,提高电力系统的运行可靠性和自动化程度具有重要意义。由于高压开关触头处于高电压、高温度、强磁场以及极强的电磁干扰环境中,要实现对触头的测温,必须解决电子测量装置在上述恶劣环境条件下的适应性。而开关柜内有裸露高压,空间封闭狭小,无法进行人工巡查测温。 SC-TempMonitor-SG无线无源开关柜温度监测系统采用先进成熟的传感技术 和独特先进的无线通讯技术进行高压隔离和信号传输,利用其固有的绝缘性和抗电磁场干扰性能,从根本上解决了高压开关柜内触点运行温度不易监测的难题。具有极高的可靠性和安全性,隔离彻底,价格低廉,安装简便,可以安装到每台高压开关柜上,数据可以直接显示读取。也可无线传输记录入电力网络系统,实现远程预警功能。 无线无源测温与其他测温方式比较: 无线无源测温与光纤测温:光纤温度传感器采用光导纤维传输温度信号,光导纤维具有优异的绝缘性能,能够隔离开关柜内的高压,因此光纤温度传感器能够直接安装到开关柜内的高压触点上,准确测量高压触点的运行温度,实现开关柜触点运行温度的在线监测。然而,用于隔离高压的光纤表面可能受到污染,将导致光纤沿面放电。这使得光纤测温系统用于室外开关设备的测温应用受到限制。无线测温系统采用电磁波传输信号,传感器直接安装在高压设备上,温度测量准确,可以解决电气绝缘问题,无线测温系统的特点是不受气候环境的影响,可以测量室外开关和母线接点的温度。 无线无源测温与红外测温:红外测温为非接触式测温,易受环境及周围的电磁场干扰,另外开关柜内的空间非常狭小,无法安装红外测温探头(因为探头必须与被测物体保持一定的安全距离,并需要正对被测物体的表面),而无线测温系统却不受开关柜体结构的限制。 测温原理:

无线通信原理与应用复习题.docx

一、选择题 1?用光缆作为传输的通信方式是_A ____ A有限通信B明显通信C微波通信D无线通信 2.下列选项屮_A—不属于传输设备 A电话机B光缆C微波接收机D同轴电缆 3?网状网拓扑结构中如果网络节点数为6,则连接网络的链路数为_D ________ A10 B 5 C6 D15 4.目前我国的电信网络是_C_级网络结构 A7 B5 C 3 D2 5.国际电信联盟规定话音信号牌的抽样频率为_D_ A3400HZ B5000HZ C6800HZ D8000HZ 6?下列_C_号码不属于我国常用的特殊号码业务。 A110 B122 C911 D114 7.PCM30/32路系统采用的是_B _____ 多路复用技术。 A频分多路复用技术B时分多路复用技术C波分多路复用技术D码分多路复用技术8?我国7号信令网采用的是_C_级网络结构。 A7 B5 C3 D2 9.下列哪两种数字数据编码方式会积累直流分量(多选)_A,C_ A单极性不归零码B双极性不归零C单极性归零码D双极性归零码 10.下列哪种数据交流形式不属于分组交换_A_ A电路交换B ATM交换CIP交换D MPLS交换 11?传统微波频段,频率范围为_D _____ A30~300HZ B30K~300KHZ C300K~3000KHZ D300M~300GHZ 12.下列哪种传输方式不属于无线电波的多径传输方式_B _____ A地波B宁宙射线C对流层反射波D B由空间波 13.关于微波通信补偿技术屮,下列哪项不属于常用的分集接收技术_D_ A频率分集B空间分集C混合分集D时间分集 14.卫星通信的工作频段屮,C频段的工作频段为6/4GHZ,下列哪项关于C频段的表述是正 确的___ C ___ A工作频段为4~6GHZ B工作频段为1.5GHZ C上行频率为6GHZ,下行频率为4GHZ D上彳丁频率为4GHZ,下彳丁频率为6GHZ 15.为保证同步卫星的可通信区域,地球站天线的仰角应为_B ______ AO B5 C大于0 D大于5 正在建设的我国第二代北斗系统是由_A_颗卫星组成 A35 B5 C3 D30 17.ADSL技术采用的是—A_复用技术 A频分复用技术B时分复用技术C波分复用技术D码分复用技术 18.下列哪种xDSL技术是上、下行速率对称的_C— A VDSL B ADSL C SDSL D RADSL 19.ADSL信道传输速率是_C ____ A上行最高1.6Mbits/s,下彳丁最高13Mbits/s B上彳丁最高2.3Mbits/s,下彳丁最高2.3Mbits/s C上行最高IMbits/s,下行最高12Mbits/s D上行最高2Mbits/s,下行最高2Mbits/s

nRF24L01 的无线温湿度检测系统电路及软件设计解析

nRF24L01的无线温湿度检测系统电路及软件设计本文提出了一种针对无线数据传输问题的解决方案,该方案基于nRF24L01来设计无线温度采集系统。该系统采用低功耗、高性能单片机STC12C5A08S2和温湿度传感器DHT11来构成多点、实时温湿度监测系统,最后在PC机上完成配置、显示和报警等功能。该系统使用方便,扩展十分容易,可广泛应用于各种工农业生产和养殖等场合。 0引言 在当今的工农业生产中,需要进行温湿度采集的场合越来越多,准确方便地测量温度变得至关重要。传统的有线测温方式存在着布线复杂,线路容易老化,线路故障难以排查,设备重新布局要重新布线等问题。特别是在有线网络不通畅或由于现场环境因素的限制而不便架设线路的情况下,给温湿度的数据采集带来了很大的麻烦。要想监测到实时的温湿度数据,就必须采用无线传输的方式对数据进行采集、发送、接收并对无线采集来的数据通过上位机进行处理,以控制并监测设备的运行情况,减少不必要的线路设备开支。 1系统组成框图 本文设计的多路无线温湿度检测系统将单片机检测控制系统和射频通信系统相结合,系统由主机和从机两部分构成,从机负责检测温湿度,并将采集到的数据通过射频系统发送给主机,主机接收从机发送过来的信号,并通过串口和PC机进行通信,记录数据。同时可通过PC机设定报警数据上下限。其系统组成框图如图1所示。 图1系统组成框图

2系统硬件电路 系统的温湿度数据采用数字式温湿度传感器DHT11进行数据采集,以51系列增强型单片机STC12C5A08S2为核心和无线射频nRF2401构成收发电路,从机使用液晶 LCD1602显示,主机显示则使用LCD12864,整个显示系统可与PC上位机相连接。 2.1温湿度采集电路设计 DHT11是一款含有已校准数字信号输出的温湿度复合传感器。该传感器应用专用的数 字模块采集技术和温湿度传感技术,具有极高的可靠性与卓越的长期稳定性。图2所示为其温度采集电路。DHT11传感器包括一个电阻式感湿元件和一个NTC 测温元件,可与高性能8位单片机相连接。校准系数以程序的形式储存在OTP内存中,传感器内部在检测信号的过程中可调用这些校准系数。单线制串行接口可使系统集成变得简易而快捷,而且信号传输距离可达20m以上。当连接线长度短于20m 时,应使用5kΩ上拉电阻,大于20m时,应根据情况使用合适的上拉电阻。 图2温度采集电路 2.2无线发射、接收电路设计

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

无线温度采集系统实现分析

龙源期刊网 https://www.wendangku.net/doc/06509355.html, 无线温度采集系统实现分析 作者:李佩张红李新娥 来源:《数字技术与应用》2012年第01期 摘要:介绍了一种以单片机为中心的无线数据采集方法和VB系统的计算机端的数据采集控制系统的实现过程。温度数据的无线传输模块采用Nordic公司的nRF905作为控制核心,实验开发板采用的是DD-900,PC通过VB的串口通信控件与无线模块进行通信,以达到实时数据采集的目的。 关键词:无线温度采集 VB DD-900 nRF905 中图分类号:TP274.2 文献标识码:A 文章编号:1007-9416(2012)01-0068-02 Abstract:Introduces a method of wireless tempreture acquisition by single-chip,and the achieve process of tempreture acquisition control system based on PC teminal by VB. Wireless transmisson unit adopt nRF905 produced by Nordic as control centre, and DD-900 as expriment unit.The communication between PC and wireless unit use Serial Interface communication control in VB,in order to achievement tempreture acquisition real-time. Key words:Wireless tempreture acquisition Visual Basic DD-900 nRF905 在生活中使用最多的温度参数被广泛地应用于科学研究和人们的日常生活等领域。针对恶劣环境的工业现场以及高科技的农业现场,布线困难,浪费资源,占用空间,可操作性差等问题做出的一个解决方案。该方案主要是利用51单片机采集实时外界的温度,利用无线传输实现在VB上位机显示温度采集的结果,并对数据进行相应的对比和处理。 1、无线温度采集系统设计 1.1 无线温度采集的原理 无线温度采集的原理如下:温度传感器将被测点的温度采集后输出的模拟信号逐步送往信号放大电路、低通滤波器以及A/D转换器(即信号调理电路),然后在单片机的控制下将 A/D转换器输出的数字信号传送到无线收发芯片中,并通过芯片的调制处理后由芯片内部的天线发送到上位机,在上位机模块中,发送来的数据由单片机控制的无线收发芯片接收并解调,最后通过接口芯片发送到PC机中进行显示和处理。 1.2 无线温度采集系统方案

相关文档
相关文档 最新文档