文档库 最新最全的文档下载
当前位置:文档库 › 浅析棒材穿水冷却工艺对组织性能的影响

浅析棒材穿水冷却工艺对组织性能的影响

浅析棒材穿水冷却工艺对组织性能的影响

循环冷却水处理方案设计

循环冷却水处理方案 目录 1.0 概述 (2) 2.0 系统运行条件 (3) 2.1系统参数: (3) 2.2水质分析如下: (3) 2.3水质特点 (4) 3.0系统冷却水问题预测 (4) 3.2不锈钢的点腐蚀: (4) 3.3、生物粘泥 (4) 4.0水处理药剂选择 (5) 4.1阻垢缓蚀剂ML-D-06特点: (5) 4.2阻垢缓蚀剂的认证试验——阻碳酸钙垢试验 (5) 4.3阻垢缓蚀剂的认证试验——旋转挂片缓蚀试验 (6) 4.5 试验结论 (7) 5.0水处理方案 (7) 5.1、冷却水处理工艺 (7) 5.2、日常水处理方案 (8) 6.0循环水操作管理 (9) 6.1 水质控制目标值 (9) 6.2正常运行加药管理 (10) 7.0监测方法 (11) 1、化学分析 (12) 2、挂片腐蚀试验 (12) 3、微生物监测 (12) 8.0 技术服务 (12) 1、技术服务准则 (12) 2、清洗预膜的技术服务 (12) 3、日常技术服务承诺 (13) 9.0 药剂用量估算 (13)

1.0 概述 现代化大型电厂的运行经验表明,水系统是电力企业的血脉,是连续、安全、高效生产的重要保障。冷却水系统的良好运行,对于减少检修频度及费用,延长设备寿命,稳定/提高生产的质量产量,降低综合生产成本具有重要意义。 电厂的敞开式循环冷却水系统,在长期运行中一般有三大问题:结垢、腐蚀和微生物粘泥。对于发电厂而言,凝汽器换热管上的结垢、粘泥,极易导致换热效果的下降,具体表现在真空度下降、端差上升,从而降低发电量,增加能耗;腐蚀主要表现为不锈钢、黄铜的点蚀穿孔等。 为了确保装置正常运行及节约用水,在循环水中投加阻垢缓蚀剂、杀菌灭藻剂等化学药品,来控制冷却水对设备的腐蚀、结垢及粘泥等故障,实践证明这是一项行之有效的、比较经济的方法。 本方案的设计过程中,我们充分吸收了同类企业水处理的经验,认真分析贵公司的水质特点、工艺特点,以及以往运行中出现的水质障碍,本着技术先进、安全可靠、操作管理方便、经济合理的宗旨,提出以下运行方案。

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

燃气电厂循环冷却水排污水处理技术

燃气电厂循环冷却水排污水处理技术 循环冷却水是电厂用水量的重要组成部分,也是最具有节水潜力的系统,由于传统的燃煤电厂会产生灰、渣、SO2等有害物质,相较于燃气电厂而言污染较大,燃气电厂采用“燃气-蒸汽联合循环”工艺和技术,并采用燃气蒸汽联合循环机组,较好地提高发电效率。然而燃气电厂的排污水只能外排,对周边环境造成一定的影响,也极大地浪费了水资源。为此,本文重点探讨燃气电厂循环冷却水排污水处理问题,通过增加循环冷却水的循环倍率的方式,减少或消除开放式循环水系统的排污。 一、燃气电厂循环冷却水存在的问题及处理技术分析 1.1 循环冷却水系统中的问题 (1)水质结垢。由于循环冷却水在冷却塔中的蒸发损失和循环倍率的提高,导致冷却水中含盐量增大,形成CaCO3、CaSO4、Ca3(PO4)2及镁盐沉淀,极大地影响循环冷却水的流速和管壁的热传导效果,造成管壁鼓包的现象。 (2)设备腐蚀。由于存在管材材质不合格、管材应力、循环水中腐蚀性阴离子超标、循环水处理工艺不完善等问题,导致循环冷却水系统中设备的腐蚀问题。 (3)微生物滋生。循环冷却水在换热器内沉积有粘泥、微生物、污垢等,会造成水质恶化的现象,也会引发不锈钢设备的腐蚀问题。 1.2 循环冷却水系统处理技术 主要包括有: (1)旁路处理技术。 在循环冷却水传统回路上添加旁路,使部分循环冷却水或排污水流入旁路处理并回至主路,实现系统中有害离子及物质的有效去除。包括有纳滤工艺、石灰处理工艺和离子交换工艺等。循环冷却水处理工艺要添加酸、缓蚀剂、阻垢剂和杀菌剂,调节循环冷却水的PH值,并实现系统自动补水、自动排污、自动加药、自动加酸,能够实时检测缓蚀、阻垢分散、微生物状态,进行系统全方位的在线远程控制。 (2)Ca2+脱除技术。 可以采用石灰软化法、离子交换树脂、膜处理法、电化学处理法,进行循环冷却水中Ca2+的有效脱除处理,较好地降低循环冷却水的硬度。 (3)Cl-脱除技术。 主要采用沉淀法、离子交换法、电渗析法等技术,进行循环冷却水中Cl-的有效脱除处理。 二、超高石灰铝法实验分析 2.1 仅含Cl-和Ca2+的循环冷却水处理实验 (1)获取各因素的影响水平及最佳处理条件。可以采用四因素三水平正交试验,重点探讨钙氯比、铝氯比、时间及温度等四个因素,设计温度为20℃、30℃、40℃。通过试验结果可知,应当选取钙氯比5∶1为因素最佳水平。当铝氯比为4∶1时,Ca2+的去除率较高。然而考虑工业应用成本,选择铝氯比为3∶1为因素最佳水平。 (2)采用单因素实验。在确定最佳药剂投加比和反应条件之后,选取任一个因素作为单一变量,其他因素保持不变,分析单因素对Ca2+和Cl-去除率的影响。 ①钙氯比对去除效果的影响。 当钙氯比升高时,对Cl-的去除率呈明显上升趋势,当钙氯比为6∶1时,对Cl-的去除率达到最大值72.16%,这主要是由于钙盐和铝盐的加入形成有层状结构的LDH型物质,当LDH趋于饱和时,物质间层吸收的Cl-也趋于饱和,对Cl-的去除率逐渐下降,当钙铝氯比为5∶3∶1时,Cl-的去除率最高达到72.84%,出水Cl-浓度为129mg/L。同时,随着钙氯

锅炉用水和冷却水分析方法联氨的测定+硫化氢的测定分光光度法

本标准适用于锅炉给水和蒸汽中联氨含量的测定。 测定范围:2~100μg/L。 本标准遵循GB6903—86《锅炉用水和冷却水分析方法通则》的有关规定。 1方法概要 在酸性条件下,联氨与对二甲氨基苯甲醛反应生成黄色的偶氮化合物。在测定范围内黄色的深度与联氨的含量成比例,符合朗伯-比尔定律。偶氮化合物的最大吸收波长为454nm。 联氨在碱性条件下容易被氨化,浑浊的水样及有色素的水样对测定有干扰。 2仪器 2.1分光光度计:751型、721型或其他类似性能的分光光度计。 2.2比色管:容量50mL。 3试剂 3.1重铬酸钾(基准试剂)。 3.22mol/L硫酸溶液。 3.31%淀粉指示剂:称取1.0g可溶性淀粉置于玛瑙研钵中,加少许试剂水研磨成糊状物,徐徐注入100mL煮沸的试剂水中,再继续煮沸5min,放置,取上层清液使用。此溶液应使用前制备。 3.40.1N硫代硫酸钠标准溶液。 3.4.1配制:称取26g硫代硫酸钠(Na2S2O3·5H2O)或16g无水硫代硫酸钠(Na2S2O3),溶于1L已煮沸并冷却的试剂水中。将溶液贮存于具有磨口塞的棕色试剂瓶中,放置一周后过滤备用。 3.4.2标定:称取于120℃烘至恒重的基准重铬酸钾0.15g(称准至0.0002g)。置于碘量瓶中,加入25mL试剂水溶解,加2g碘化钾及2mol/L硫酸溶液20mL混匀。于暗处放置10min。加150mL试剂水,用0.1N硫代硫酸钠溶液滴定,到溶液呈淡黄色时,加1%淀粉指示剂1mL,继续滴定至溶液由蓝色变成亮绿色。同时做空白试验。 硫代硫酸钠标准溶液的当量浓度N,按式(1)计算: (1)式中G——重铬酸钾的重量,g; V1——标定时消耗硫代硫酸钠溶液的体积,mL; V2——空白试验消耗硫代硫酸钠溶液的体积,mL; 0.04903——每毫克当量重铬酸钾的克数。 3.50.1N碘标准溶液:称取13g碘及35g碘化钾,溶于少量试剂水中,待全部溶解后,用Ⅰ级试剂水稀释至1000mL混匀。贮存于具有磨口塞的棕色瓶中。 3.6盐酸溶液(1+99)。 3.72mol/L氢氧化钠溶液。 3.81mol/L硫酸溶液。 3.91%酚酞指示剂(乙醇溶液)。 3.10联氨标准溶液。 1

工业循环冷却水处理GB50050-95设计规范

工业循环冷却水处理设计规范 GB50050—95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 关于发布国家标准《工业循环冷却水处理设计规范》的通知 建标[1995]132号 根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。 本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九五年三月十六日 1总则 1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1 术语 2.1.1 循环冷却水系统Recinrculating cooling water system 以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。

电厂循环冷却水系统中的问题解决

电厂循环冷却水系统中的问题解决 2011年7月31日FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3+CO0 +H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应 向右进行 CaCO沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K), 而钢材的导热系数为46. 4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器, 长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别会发生下列氧化反应和还原反应。

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

HVOF涂层组织性能的研究

超音速火焰喷涂WC-12Co涂层显微及性能的研究Study on the microstructure and properties of WC-12Co coatings prepared by HVOF 摘要:通过超音速火焰喷涂制备了WC-12Co涂层,并分析其机械性能、摩擦学特性与显微组织特征的关系。并着眼于超音速火焰喷涂工艺参数对WC-12Co涂层显微结构和摩擦学性能的影响。通过观察、分析显微组织和利用基于神经网络计算的加强型统计工具来研究摩擦力矩从而获得涂层显微组织与磨损性能的关系。实验结果和数据分析表明:超音速火焰喷涂工艺参数会影响WC-12Co涂层的相结构组成、硬度和孔隙率;与喷涂参数的关系在稳态机制下是完全可以进行预测。 关键词:超音速火焰喷涂,显微组织,磨损学行为、机械性能, Abstract:This study aims at getting the collection of the microstructure and the mechanical and tribological performance of the WC-12Co coatings that prepared by HVOF. This paper looks at the influences of the HVOF process parameters for WC–12Co material on the microstructure and the tribological behaviors of the coatings. The correlation between the coating microstructure and the wear behavior is investigated by observing and analyzing the microstructure and by studying the friction moment using enhanced statistical tool based on neural computations. The results of the experiments and the numerical has been shown that the spray parameters affect the phase composition, hardness and porosity of HVOF sprayed WC–12Co coatings and the correlations with HVOF process parameters are fully predictable in the steady-state regime. Key words: HVOF, microstructure,tribological behaviors, mechanical properties. 1.绪论 电镀硬铬(EHC)是一项为提高工件耐磨性而广泛应用的技术,其工艺简单,成本低,但是会严重污染环境,给基体带来显著的负面影响。超音速火焰喷涂能够在大面积基体上沉积较厚的金属陶瓷成为一项具有很大应用前景并可取代电镀铬的新技术[1~5]。相比电镀铬,HVOF金属陶瓷粉末材料还可以解决更严重的磨损问题(如点蚀、黏着磨损、磨粒磨损等)。能够制备较低或中等熔点材料(主要是金属和聚合物)的涂层[6~9]。与其他热喷涂技术相比,超音速火焰喷涂的优点是能够在相对高的速度下加速原材料的熔融使之成为粉末颗粒。超高速的喷涂速度使得超音速喷涂技术能够制备出厚度可控、组织致密度高的涂层[2]。此外,超音速喷涂与等离子喷涂相比能够在较低温度条件下进行减少WC的分解。当然,超音速火焰喷涂也有其局限性,相对于WC-Co烧结技术,超音速火焰喷涂层仍然会受到WC脱碳和分解的影响,导致形成W2C、W和W-Co-C相。需要指出的是,超音速涂层显微组织、性质和孔隙率主要取决于涂层形成前的气体喷射和飞行粒子的传热和传质[9]。燃料的性质和化学计量比以及相关的燃烧气体是决定涂层微观结构和性能的关键条件。 铬合金涂层的热喷涂可以作为单一的喷涂技术或者复合涂层制备技术的一部分[10~11]。然而,随着HVOF技术的发展,可以制备出基于WC的高耐磨复合涂层。超音速火焰喷涂制备的复合WC-Co硬质合金涂层的主要性能是高硬度、高耐磨性、基体与涂层间的高结合强度以及涂层各部位的较小差异[12]。此外,复合WC-Co涂层的应力分布均匀,避免了涂层的剥落。 文献[13~16]表明,对WC添加合金元素制成的微纳米结构粉末形成的喷涂层,与等离子

锅炉水质标准及测定方法总结.docx

GB/T 1576-2008 GB/T 6682 分析实验室用水规格和试验方法(GB/T 5682-2008,ISO 3696:1987,MOD) GB/T 6903 GB/T 6904 GB/T 6907 GB/T 6908 GB/T 6909 GB/T 6913锅炉用水和冷却水分析方法通则 工业循环冷却水及锅炉用水中pH 的测定 锅炉用水和冷却水分析方法水样的采集方法 锅炉用水和冷却水分析方法电导率的测定 锅炉用水和冷却水分析方法硬度的测定 锅炉用水和冷却水分析方法磷酸盐的测定( GB/T 6913-2008,ISO 6878:2004,Water quality-Determination of phosphorus-Ammonium molybdate spectrometric method , NEQ) GB/T 12145 GB/T 12151 GB/T 12152 GB/T 12157火力发电机组及蒸汽动力设备水汽质量 锅炉用水和冷却水分析方法浊度的测定(福马肼浊度) 锅炉用水和冷却水中油含量的测定 工业循环冷却水和锅炉用水中溶解氧的测定(GB/T 12157-2007,ISO 5813:1983,Water quality-Determination of dissolved oxygen-Iodimetric method ,NEQ) GB/T 15453 工业循环冷却水和锅炉用水中氯离子的测定 DL/T 火力发电厂水汽分析方法第 1 部分:总则 DL/T火力发电厂水汽分析方法第25部分:全铁的测定(磺基水杨酸分光光度法) 3术语和定义 下列术语和定义适用于本标准。 原水 raw water 未经过任何处理的水。 软化水softened water 除掉全部或大部分钙、镁离子后的水。

循环水处理标准GB

新版国标《工业循环冷却水处理设计规范》G B50050-2007释义新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科 技有限公司与您共同学习,共同提高。 国标《工业循环冷却水处理设计规范》GB50050-2007 说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处

理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。 我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。 表1 我国循环冷却水处理配方发展 年代配方 1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH) 聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH) 1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH) 1980~1985 膦酸盐/聚合物或共聚物(碱性处理) 硅酸盐或钼酸盐配方 1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高 1998 开始开发无磷无金属配方 目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。不论是国产

华能新乡电厂循环冷却水回用处理工程设计

第1章概述 1.1 设计依据及设计任务 1.1.1 设计题目 华能电厂循环冷却水回用处理工程设计 1.1.2 项目背景 1. 厂区概况 拟建场地距周边村庄的距离均大于400m。现场地无建筑,亦无地下管网设施,无影响地基基础设计与施工的不良环境因素,基坑降水对环境的影响较小,总体工程环境条件良好。 2. 地形地貌特征 拟建场地处于太行山山前冲洪积扇前缘缓倾斜地带,场地地表除有少量人工开挖的小型沟渠外,总体上地面平坦开阔。现场勘测时,拟建场地地面标高84.00m。 3. 气象特征与环境条件 参照宝山电厂一期2×660MW 烟气脱硫工程设计资料 ⑴气象特征 多年平均大气温度: 14.5℃ 多年平均相对湿度 67% 历年极端最高气温 42℃ 历年极端最低气温 -17.2℃ 多年平均降水量 560.4mm 多年平均风速 2.4m/s 多年平均大气压力 1006.7hpa 50年一遇设计基本风压 0.40kN/m2 100年一遇设计基本风压 0.45kN/m2 ⑵环境条件 最大积雪深度 16cm 最大冻土深度 34cm 夏季主导风向 SSE 冬季主导风向 N 地下水类型为潜水,地下水位埋深受季节影响明显,地下水位埋深1~4m。

4. 地震 根据我国主要城镇设防烈度、设计基本地震加速度和设计地震分组A.0.3省市抗震设防烈度为7度,设计基本地震加速度值为0.15g,设计地震分组为第一组。 5.工程目的 华能电厂,为了解决用水紧的局面,锅炉补给水采用循环冷却水系统的排放水,处理后的淡水作为锅炉补给水水源,浓水用于除灰,实现循环冷却水的零排放。 1.1.3 原水水质及处理要求 1.原水水质 根据循环水系统排放水水质分析报告,华能电厂循环水系统排放水的水质(原水水质)如表1所示 原水水质全分析报告表1-1 2.用水水质标准 根据生产用水水质标准GB50335—2002《城市污染再生利用冷却水用水水质》,另外根据用户单位对水质要求:根据中华人民国电力行业标准,排水经过澄清、过滤等工艺处理后,应符合电力冷却水水质控制指标,如表1-2中实际要求。本工程以实际要求为回用水处理水质控制目标。本工程设计产水量为400m3/h。

循环冷却水在水处理设备中的解决方案

如有帮助,欢迎下载支持 循环冷却水在水处理设备中的解决方案 循环冷却水处理设备中主要是通过各类型热交换器进行换热,根据循环冷却水与大气接触冷却可将循环冷却水系统分为两大类。可参考相关解决方案循环冷却水解决方案 封闭式循环冷却水 封闭式循环冷却水系统在此系统中,冷却水在密闭的系统中进行热交换。 自交换器出来的升温后冷却水进入不与大气直接接触的密闭系统中经水冷或风冷设备冷却降温后再返回热交换器作为冷却介质使用。 在循环过程中,冷却水不暴露于空气中,不利于微生物生长,水中各种矿物质和离子含量变化也不大,且水量损失很少,所以 结垢和腐蚀问题较小。 但是,封闭式循环系统冷却过程只能依靠传导传热方式进行,冷却效率低,设备费用和动力消耗高,所以使用较少,只适合用于水资源特别紧缺地区或某些特殊的工业部门。 技术资料来源于莱特莱德工程公司 敞开式循环冷却水 如有帮助,欢迎下载支持

敞开式循环冷却水系统自热交换器出来的水温升高以后的冷却水,送入冷却塔或其他冷却设备与空气直接接触,冷却后再用泵抽送至热交换器作为冷却介质循环使用,由于在循环冷却过程中总会有部分水蒸发或渗漏而散失到周围环境中,因此在循环冷却水系统中应定量地补充一定量的水(一般为循环水量的5%左右)来加以弥补。敞开式循环冷却水系统是目前最为广泛采用的冷却水循环处理系统。 由于它需要补充的水量很少,大大节约了水资源,也节省了从水资源到设备之间的输水管道投资,减少了动力消耗。但是在此类 循环系统中为了保持水质的稳定,需要向循环冷却水中加入一定量的缓蚀、阻污剂,使水中杂质含量增高。同时,水在利用空气冷却和长 期循环使用过程中还会产生微生物的大量繁殖和藻类的生长,都会给 水质稳定处理造成一定的困难。 循环冷却水结垢的监测 结垢监测,可以通过成垢离子或分子的化学分析(通过水冷却器进出口循环水中Ca2+及HC0-3浓度的测定)来推测系统结垢趋势。 循环冷却水挂片腐蚀试验 挂片腐蚀试验是循环冷却水系统腐蚀监测行之有效的方法之一。目前被国内外广泛采用,试验用挂片,可采用I型 如有帮助,欢迎下载支持 50X 25X 2mm或口型72.4 X 11.5 X 2mm和设备材质相同材料制作的冷却水化学处理标准腐蚀试片,并符合HG5-1526冷却水化

工业循环冷却水处理概述

工业循环冷却水处理概述 2011-04-18 19:18:19 循环水处理技术就是利用水处理药剂有效控制循环冷却水水质的技术,要求做到“防垢、防腐、防藻类生长”,关键技术是防垢剂及缓蚀剂,还必须考虑环保。 一.前言 ⒈工业循环水处理的重要性 我国是世界上水资源匮乏的国家之一。据报道,我国669个城市中有400个面临供水不足。随着经济的迅猛发展,人口的增长,缺水现象和水质恶化问题越来越突出。因此,节约用水,搞好水处理,提高工业用水的重复利用率至为重要。 对工业循环水的处理,其核心问题就是要选择采用优质安全的水处理药剂。因而对水处理药剂的研究和应用一直是当前水处理工作的热点。全面认识和用好水处理药剂,也是电力、冶金、化工、食品等企业负责水处理的技术人员及操作人员最为关心的内容。 ⒉工业循环水处理的必要性 工业循环水给水为天然水,而天然水中不管是地表水(如河水、湖水、水库水),还是地下水(如井水、泉水、自来水)都含有杂质,如悬浮物、藻类物质,如不采取预防措施(即水处理),就会在热交换面上沉积,结生成水垢。一旦结垢,就会降低热交换率,腐蚀设备和危及安全生产。因此对工业循环水进行处理是很必要的,也是节能减排所必须的。 二.冷却水处理的必要性 1.天然水中的杂质 天然水分为两大类,一是地表水,如河水、湖水、水库水等。此类水含泥沙、藻类、动植物残骸及可溶性盐类物质,水质随季节变化而波动。二是地下水,包括井水、泉水和自来水。地下水水质一般比较稳定,受季节变化影响较小,含杂质种类及多寡与流经地层有关,灰岩地层含Ca2+、Mg2+离子较高,即硬度较高,花岗岩地层含Ca2+、Mg2+离子较低,而含SiO3-2相对较高。 天然水不是纯净水,都含有杂质,这些杂质分为三类: 其一,悬浮物质。主要是一些比重小于1的细小微粒的泥土、动植物腐物,这些杂质通过沉淀可除去; 其二,胶体物质。胶体微粒粒度较小(直径在1mm以下,10°以上),此类物质不会自行沉淀,主要是一些腐植物,铁、铝、硅的化合物;

CuCrZr性能研究

第5章CuCrZr-IG合金的组织和性能 5.1 概述和原理 5.1.1 应用概述 具有时效硬化的CuCrZr合金具有优异的耐热性能和电/热输运性能,在焊接、有色金属冶金及热能等领域有着广泛的应用[1]。较氧化铝颗粒弥散强化铜(通常用内氧化法制备[2~5]),CuCrZr合金可以由冶炼方法制备,因此成本相对较低。CuCrZr合金在ITER第一壁/偏滤器/加热系统等部件中也被广泛采用。商用的CuCrZr合金的元素成分在欧洲标准(EN 12167: 1998和EN12165:1998)中有较为严格的规定,材料代号为CW106C[6]。而在铜开发协会(CDA,Copper Development Association)和统一编号系统(UNS, United Numbering System)中,CuCrZr合金的代号则为C18150[7]。两类标准对主元素的含量要求都相对较为宽松。而在ITER应用中,化学成分的要求则进一步严格化,以便于:一方面确保材料在部件制备过程中达到设计要求,另一方面减少材料性能的波动。ITER应用中,CuCrZr材料的设计代号为CuCrZr-IG[8, 9],IG为ITER Grade的首字母缩写。C18150和CuCrZr-IG的成分对比在表5-1中列出,可以看出,CuCrZr-IG的成分要求在标准成分范围之内。 表5-1 C18150和CuCrZr-IG的成分对比[7~9] 材料代号Cu Cr Zr 杂质 C18150 base 0.50~1.5 wt.% 0.05~0.25 wt.% ≤0.3 wt.%, CuCrZr-IG base 0.6~0.9 wt.% 0.07~0.15 wt.% 总杂质量≤0.15 wt.%,其 中Co*≤0.05,Nb*≤0.10, Ta*≤0.01,O<20 ppm *辐射防护需要。 由于在ITER中的应用不同以及不同部件的制备工艺不同,CuCrZr-IG的热/塑性加工可以分为如下三种[9]: 1.固溶处理(980~1000℃,30~60 min)+冷加工(40~70%)+时效处理(450~470℃,2~4 h)(SAcwA工艺); 2.固溶处理(980~1000℃,30~60 min)+时效处理(460~500℃,2~4 h)(SAA 工艺); 3.固溶处理(980~1000℃,30~60 min)+过时效处理(由于大尺寸工程部件制备的特殊要求,时效温度不处在最优条件)(SAoverA工艺)。 在ITER工程设计阶段,做了大量的CuCrZr材料性能表征的工作,针对SAA 和SAcwA处理状态,测试结果收录在ITER材料性能手册(MPH,Materials Properties Handbook)中[10],如图5-1所示。

海水冷却水处理药剂性能评价方法 第4部分:动态模拟试验(标准状

I C S07.060;77.060 A29 中华人民共和国国家标准 G B/T34550.4 2017 海水冷却水处理药剂性能评价方法 第4部分:动态模拟试验 M e t h o d f o r e v a l u a t i o no f c o o l i n g s e a w a t e r t r e a t m e n t a g e n t s P a r t4:D y n a m i c s i m u l a t i o n t e s t 2017-09-29发布2018-01-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 原理2 4 试剂和材料2 5 仪器设备2 6 试验准备5 7 试验运行步骤6 8 试验后处理 9 9 结果的表示和计算10 10 试验报告主要内容12 附录A (规范性附录) 腐蚀试样表面清洗处理13 附录B (资料性附录) 蒸发水量二补充水量二排污水量的计算14 附录C (资料性附录) 垢厚二垢密度的计算15 附录D (资料性附录) 试验记录表格16

前言 G B/T34550‘海水冷却水处理药剂性能评价方法“分为4个部分: 第1部分:缓蚀性能的测定 第2部分:阻垢性能的测定 第3部分:菌藻抑制性能的测定 第4部分:动态模拟试验 本部分为G B/T34550的第4部分三 请注意本文件的某些内容可能涉及专利三本文件的发布机构不承担识别这些专利的责任三本部分按照G B/T1.1 2009给出的规则起草三 本部分由国家海洋局提出三 本部分由全国海洋标准化技术委员会(S A C/T C283)归口三 本部分起草单位:国家海洋局天津海水淡化与综合利用研究所三 本部分主要起草人:王维珍二崔振东二王静二高丽丽二元昊二侯相钰二樊利华二高良富二尹建华三

工业循环冷却水处理基础知识

工业循环冷却水处理基础知识 第一部分循环水系统及循环水的冷却 1、概述 1.1. 自然界水的分布 1.1.1.地球上有71% 的面积被水覆盖 1.1.2 所有水中97.5% 的为海水 1.1.3 淡水中有99.4% 在南极和北极以冰雪形式存在 1.1.4 我国水质资源贫乏,南北差异大,南方多雨污染大,很多地方并不是没有水,相反水质不合格;北方少雨而缺水。 1.1.5 工业生产中有50~80% 的水用于介质冷却。 1.1.6我国为世界上13 个最贫水国家之一 1.1.7 我国工业用水浪费惊人 1.1.8 我国工业冷却水循环使用率不足60% 1.1.9 发达国家工业冷却水循环使用率已达到80% 1.2 水的特点 1.2.1 水的热容量大,传热效果好; 1.2.2 水的化学稳定性好,常温下呈液态,便于输送,使用方便; 1.2.3 水是溶解能力很强的溶剂,多数物质在水中有很大的溶解度; 1.2.4水的价格便宜,循环用水经济性优越,由于循环水主要是温度提高,水质变化不大,故采取降温即可循环使用。 1.3 水中的成分 1.3.1 溶解物质(直径小于1nm) 1.3.1.1各种离子 1.3.1.1.1多种金属离子:Ca2+ 、Mg2+ 、k+、Na+、Fe3+等1.3.1.1.2 多种阴离子:Cl-、HCO3- 、CO32-、PO43- 、SO42- 、OH-、NO3-等 1.3.1.2各种可溶性气体:CO2、O2,有时还含有H2S、SO2、N2、NH3等 2、冷却水系统及其构筑物 2.1 冷却水系统 不同工业生产中,产热的过程各异,被冷却的对象差别较大,主要的冷却对象有冷凝器,热交换器,油(气或液体)冷却器,发电机组,压缩机组,高炉,炼钢,化学反应器等,这种用水来冷却工艺介质的系统称为冷却水系统,通常分两种:直流冷却水系统,循环冷却水系统。 2.1.1 直流冷却水系统 在直流冷却水系统中,冷却水仅通过换热设备利用一次后就被排放掉,用水量很大,水温升高很少,水中各种矿物质和各种离子含量基本不变,对水质要求不高。 2.1.2 循环冷却水系统 冷却水被反复多次使用,水经换热设备后温度升高,由冷却塔或其他冷却设备将水温降低,再由泵将水送到冷却系统,重复利用,分为封闭式和敞开式。2.1.2.1 封闭式循环冷却水系统

工业循环冷却水处理讲义

工业循环冷却水处理讲义 常州中南化工有限公司 讲课提纲

一、循环水化学处理的意义 1、化学处理的目的 2、不处理或处理不善所带来的危害 3、经济比较 二、结垢、污垢、腐蚀的机理 三、微生物问题 四、循环水的化学处理 1、补充水处理 2、循环水旁滤处理 3、循环水化学处理 3.1、杀菌灭藻,解决污垢问题 3.2、阻垢、缓蚀 3.2.1、阻垢剂及其阻垢作用 3.2.2、缓蚀剂及其缓蚀作用 3.2.3、缓蚀阻垢配方的选择 五、管理问题 一、循环冷却水化学处理的重要意义

1、化学处理的目的 循环冷却水系统主要存在三个问题:(1)结垢;(2)腐蚀;(3)污垢。 循环冷却水处理的目的就是要解决上述三个问题。 2、不进行处理或处理不善所带来的危害 工业用水,各种不同的产品种类、生产工艺流程和用水目的,对水质的要求也不尽相同,但对占工业用水80%以上的冷却用水水质要求,基本上是大同小异的,对冷却水水质处理技术要求是较严格的。 五十年代的工业企业,对冷却水的处理只是要求把水冷却下来就行了,至于对冷却水的水质要求仅仅是一项悬浮物控制在50毫克/升,短期最高不要超过100毫克/升就行了。在这样的概念指导下,体现在设计工作中是加大换热器面积。增加备用设备,提高设备腐蚀裕度。尽管设计是这样做了,但仍然不能解决稳定生产的要求,表现在生产中则是:(1)用水量不断增加,工厂没有新产品,产量也没有增加,但用水量却远远超过设计值,经常碰到的是要求增加供水设备,增加投资开辟新水源;(2)检修频繁,生产周期缩短,产量长期达不到设计水平,有些工厂的换热器设备不是被垢阻塞了,就是换热管被腐蚀穿孔,经常需要检修;(3)设备寿命降低,一般来讲换热设备的使用寿命为7-8年左右,如不进行处理或处理不当,则寿命大大降低,有的工厂不到半年就出现腐蚀穿孔。 冷却水处理不当或不经处理,所带来的危害原因及其后果如下所示。概括起来是:造成结垢和污垢沉积,带来热交换效率降低,管

相关文档