文档库 最新最全的文档下载
当前位置:文档库 › 遥感上机实验

遥感上机实验

遥感上机实验
遥感上机实验

实验报告

课程名称:遥感导论

专业班级

学生姓名:

学号:

教师姓名:

实验一航空像片的立体观测

一、实验目的

掌握使用立体镜进行航交像片立体现察的方法。

二、实验原理

当人眼观察物体时,出现左右视差,反映到眼睛视网膜上,构成生理视差,便产生了与观食实物时一样的立体视觉效果。

三、实验步骤

(1)将立体镜置于两张有重叠部分的卫星图片上方,将立体镜中央对准左右像片的中缝,左眼看左像片,右眼看在右像片,不断调整卫星图片的位置,直至图片相同部分能重合时,进行卫星图片立体观测。

(2)观测卫星图片立体效果,并解译出相应地物。

四、实验总结

通过这次小实验,我们认识了遥感卫星图,并明白了如何利用立体镜进行航空相片的立体观测,以及见识了立体观测的效果,初步了解如何目视解译出遥感卫星地图。

实验二遥感图像的光学合成原理

一、实验目的

1.了解彩色的基本特性和相互关系;

2.掌握三原色及其补色,掌握加色法;

3.了解和认识色度图;

4.认识正负相片的生产过程。

二、实验原理

任意三种线性无关的颜色都能构成颜色空间,利用颜色空间就能进行颜色的识别、对比、及计算,摄影相片感光成像是由于物体对可见光的各个波段具有选择性的吸收和反射,则产生了彩色;物体对可见光波段不具有选择性的吸收和反射,即对各个波段具有灯亮吸收和反射,产生了非彩色。

三、实习步骤

(1)彩色的基本特性及其相关关系

(2)三原色、补色和加色法

(3)补色

(4)色度图

图一色调特性图图二三原色合成

图三互补色与非互补色图四色度图

四、实验总结

通过实验,弄懂了遥感图像的部分重要概念,以及相互之间的关系,遥感图像光学处理的目的是通过光学手段增强目标地物的影像差异或影像特征,将目标地物从环境背景信息中提出出来,通过观察三组不同枫叶的图像发现明度影响的图片的明亮程度,体现的是物体的反射率;色调是影响物体的反射的波长;而饱和度则是反应的是色彩波长段的纯洁程度,波段越短色彩饱和度越高;实验中体验了三原色RGB的变化,产生色彩的变化效果,补色则是指两种颜色缓和后产生白色或者是灰色,色度表则是表现了可见光波段在明度、色调、饱和度多重作用下的颜色变化区域。

实验三遥感图像增强[1)——对比度变化

一、实验目的

1.认识遥感图像的基本结构,了解数字图像

2.学习掌握图像直方图变化与图像亮度变化的关系

3.掌握图像线性拉伸的方法和过程

二、实验原理

图像增强的目的是改善图像显示的质量,以利于图像信息的提取和识别,对

比度越大,反映图像的亮度值变化范围大,目标地物被识别的可能性就越大;反之,目标与背景难以区别,识别的可能性越小。

三、实验步骤

(1)从实习CAI主界面进入"遥感图像处理"系统。

(2) 在菜单上选择处理>增强> 拉伸进入“拉伸”对话框。

(3)进入操作模拟界面,输入图像名为B-Srench,输出图像名为A-Srench,选取线性拉伸类型,点击标题,其它值保留为缺省值。

(4)点击确定后,得到图像A-Srench。

图一线性拉伸对比

四、实验总结

本次实验是通过改变对比度使遥感图像增强,主要是掌握图像直方图变化与图像亮度变化的关系。图像增强的目的是改善图像显示的质量,以利于图像信息的提取和识别,可以通过调整数字图像的直方图,进行像元亮度值之间的数学变换来达到图像增强的目的。利用CA I中的"遥感图像处理"系统,进行图像拉伸。对比度大,图像的亮度值变化范围大,目标地物比较容易被识别。在拉伸对话框中,对比度拓展的主要方法有线性变换,非线性变换和直方图调整等。

实验四遥感图像增强(II)——彩色合成

一、实验目的

1.通过计算机彩色合成的演示,了解加色法原理

2.理解遥感图像彩色合成的基本原理

3.掌握选用不同的合成方案产生不同的合成效果的方法,从而达到突出不同目标地物的目的。

二、实验原理

在使用中波段图像时,出于成像系统功态范围的限制,地物显示的亮度值差

异较小。又由于人眼对黑白图像亮度级的分辨能力仅有10一20级左右,而对色彩和强度的分辨力则可边达100多种,因此将黑白图像转换成彩色图像可使地物的差别易于分辨。

三、实习步骤

(1)从CAI 主界面进入“光学合成原理”界面,再进入“真彩色和假彩色的生

成”子目录

(2)分别进入“真彩色生成过程”、“真彩色合成演示”、“假彩色生成过程”和

“不同波段假彩色合成演示”子目录:

(3)进入遥感图像处理模块,依次选择处理、增强、彩色合成

(4)单击模拟操作按钮,依次输入蓝色、绿色、红色波段名

(5)输入输出图像名,并选中简单线性拉伸,输入标题,然后按结果和原图显

示按钮,并查看结果。

图一 真彩色生成 图二 真彩色合成

图三 假彩色生成 图四 不同波段的假彩色合成

图五原始图像一图六原始图像二

图七原始图像三图八合成图像

四、实验总结

此次实验是利用彩色合成来达到遥感图像增强的效果,通过实践操作掌握遥感图像彩色合成的基本原理和选用不同的合成方案产生不同的合成效果的方法,从而达到突出不同目标地物的目的。彩色合成包括真彩色合成和假彩色合成。但是由于原色的选择和原来遥感波段所代表的真实颜色不同,因此生产的合成色不是地物真实的颜色,这样的合成交假彩色合成,通过彩色合成,能明显判断地物的差别,可以进行更好地目视解译。

实验五遥感图像变换(1)——滤波

一、实验目的

了解空间滤波的操作过程和空间滤波对象图产生的效果。

对图像中某些空间、频率特征的信息增强或抑制,能够突出图像上的某些特征,突出边缘或图像纹理,从方法上采用像元与其周围相邻像元的关系,采用空间域中的领域处理方法。

三、实验步骤

(1)从CAI 的主界面进入“遥感图像处理”模块,从菜单进入处理>增强>滤波,进入“滤波”操作界面;

(2)单击模拟操作按钮,在滤波对话框中,双击输入和输出框,设置滤波类型为均值,滤波模块大小为3*3,单击确定并退出。

(3)单击“结果和原图显示”按钮,进行滤波处理前后的图像比较。处理前RELIEF是一幅地形图,经均值滤波,对象元值取平均,因此在FILTER中有些细节被滤掉了。

图一处理前图像图二处理后图像

三、实验总结

通过这次实验,了解空间滤波的操作过程和空间滤波对象图产生的效果。空间滤波主要是以重点突出图像上的某些特征为目的,比如说突出边沿或纹理等,因此通过像元与其周围相邻像元的关系,采用空间域中的邻域处理方法,也就是“空间滤波”,通过观察处理图形前后的区别,了解了滤波的操作过程和空间滤波对象图产生的效果。

实验六遥感图像变换(II)——主成分分析(K-L变换)

一、实习目的

1.了解并掌握K-L变换的过程和方法;

2.进一步理解K-L变换产生的处理效果和处理意义。

二、实验原理

K-L变换是对某一多光谱图像,利用变换矩阵进行线性组合,而产生一组新的多光谱图像的操作,其变换后的新波段主分量包括的信息量不同,呈逐渐减少趋势,信息较少,便突出噪声,最后的分量几乎全是噪声。

(1)从CAI 的主界面进入“遥感图像处理”模块,从菜单进入处理>变换>主成分,进入“主成分”操作界面。

(2)单击模拟操作按钮,在主成分对话框中,依次双击波段1、波段2、波段

3、波段

4、波段

5、波段

6、波段7 框,单击标题框,再确定。

(3)单击“结果和原图显示”按钮,对比7个波段的原图像和经处理后的7个主成分。

图一主成分分析数据表

图二变换前图像图三变换后图像

四、实验总结

这次实验是进行K-L变换,经过实验后,我们了解并掌握了K-L变换的过程和方法,对K-L变换产生的处理效果和处理意义有了进一步的认识,并掌握了K-L变换的特点,变换后的主成分空间坐标系与变换前的多光谱空间坐标系相比旋转了一个角度,而且新坐标系的坐标轴一定指向数据信息量较大的方向,由实验可得出:7个波段的主要信息主要集中在前三个主成分中,从第5个主成分开始,几乎完全是噪声。

实验七遥感图像变换——HLS彩色空间变换

一、实习目的

了解和掌握彩色空间变换的过程和方法。

二、实验原理

HLS代表色调、明度和饱和度的色彩模型,常采用彩色显示器显示系统进行,其色彩是由RGB信号的亮度来确定的,由于RGB表色系统不是线性的,所以调色调比较困难,在这种情况下,可将RGB信号暂时变化为假设的表色系统HIS,调整明度和饱和度后,再返回到RGB信号上进行彩色合成。

三、实习步骤

(1)从实习CAI主界面进入“遥感图像处理”模块;从菜单进入处理>变换>色彩空间,进入“色彩空间”操作界面,;

(2)单击模拟操作按钮,在色彩空间对话框中,选择“RGB To HLS”,分别在“色调图像波段”、“高度图像波段”和“饱和度图像波段”框中输入“h87tm3”、“h87tm2”和“h87tm1”;在“输出图像”的“红色图像波段”、“绿色图像波段”和“蓝色图像波段”框中输入“hue”、“light”和“saturate”;单击确定,完成RGB向HLS的转换。

(3)单击“结果和原图显示”按钮,查看处理前后原图像和处理结果。

图一色调变换图图二亮度变换图

图三饱和度变换图

四、实验总结

本次实验是关于HIS彩色变换空间变换,把RGB转换成HLS,这二种模式的转换对于定量的表示色彩特性,以及在应用程序中实现两种表达方式有重要意义,以及通过实验,从中了解和掌握了彩色空间变换的过程和方法,对增强图像的可读性有重要的意义。

实验八热红外图片判读

一、实习目的:

认识和了解热红外影像对地物的表现:

二、实验原理

热红外相片记录了地物发射热红外的强度,夜间的热红外影像,不受太阳辐射的干扰,是地面物体热辐射的特征,其差异取决于地物的温度和发射本质,由于各种地物热辐射能量不同,因而在影像上显示出不同的形状和图形特特征,从而可从影像上识别各种不同的地物。

三、实习步骤:

(1)光盘小“实习图像”子目录下共有3组热红外图像:热红外11、热红外12、热红外13为第—组.这是反映工业热流的热红外影像

(2)热红外21利热红外22为第—组.是反映森林火灾的热红外图像,其中,“1”表尔白色调异常为火灾蔓延的燃烧区;“2”为大火燃烧道的高温区“3”

表现为绿色调是尚未燃烧的森林;“4”为裸露的基岩陡壁,图像为1977年5月大兴安岭白天的图像;

(3)热红外3l和热红外32为第二组:反映洪研扇形念的热红外因像;

(4)比较第一组利第二组内的各幅影像,这两组图像足对温度的直接探测;

热红外影像能够很好地反映地物温度的变化;第三组是通过对水体在白天和夜晚与周围环境温度的差异,反映洪积扇水系分布的情况,从而反映洪积扇形态。

四、实验总结

此次实验是进行热红外图像的判读,热红外相片记录了地物发射热红外的强度,其关键在于要准确区分影响色调的差异,深色代表地物热辐射能力弱,浅色调代表地物热辐射能力强。但是高温物体的热扩散可导致物体形状扩大变形;但热红外易受到天的影响,且分辨率有限,所以,可以与全色片、彩色片对比研究,才能充分发挥其作用。

实验九扫描图片判读

一、实验目的

1.认识和掌握TM图像各波段的光谱效府;

2.学习和掌握陆地区里遥感图像的判读方法。

二、实验原理

判断航空像片所采用的直接判读标志和间接判读标志,一般也适用于判读卫星图像,根据像片的色调、彩色等标志,可以直接进行判读,遥感影像的判读,应该遵守“先图外,后图内,先整体,后局部,勤对比,多分析”的原则。

三、实验步骤

(1)识别TM图像个波段的光谱特征:包括水体色调的变化、水体泥沙可分辨性的变化、植被色调的变化、以及居民地可分辨率的变化,并填写表格。(2)TM影像的判读:使用透明纸、直尺等绘图工具,建立解译标志,并勾出各土地类型的边界轮廓。

地物类型TM1 TM2 TM3 TM4TM5TM6 TM7 水体较亮较亮暗很暗很暗暗很暗泥沙较亮较亮亮较亮暗较暗很暗植被暗暗暗亮较暗较亮较暗

居民地较暗较暗较暗暗较暗暗较亮

四、实验总结

本次实验主要任务是进行扫描图像的判读,在目视判读实践中, 卫星影像解译比航空像片解译难度更大, 因此, 熟悉地物在不同波段的光谱特性, 了解地物在不同空间分辨率影像上的表现, 掌握不同假彩色合成影像的特征, 熟练运用扫描影像解译标志与解译方法, 是进行目视解译的重要基础。

实验十图像分类(1)——非监督分类

一、实验目的

了解并掌握非监督分类的过程和方法。

二、实验原理

非监督分类主要采用聚类分析方法,将一组像元按照相似性归成若干类别,使得属于同一类别的像元之间的距离尽可能的小而不同类别像元间的距离尽可能的大。

三、实验步骤

(1)从“遥感图像处理”模块进入处理>非监督分类>聚类,进入“聚类”操作界面;

(2)双击“聚类”对话框中“彩色合成文件名”框、“输出图像名”框,单击标题,再确定。

(3)再“聚类”操作窗口中,单击“图像显示”,查看原图和结果图。

(4)单击退出按钮,退出聚类模块

(5)从菜单进入处理>非监督分类>迭代自组织聚类,进入“迭代自组织聚类”操作窗口,单击“操作”菜单,出现“迭代自组织聚类”对话框;

(6)在“波段数”框内输入“7”,“待处理的波段”出现“波段1”至“波段 7”框,依次击双“彩色合成文件名”框、“输出图像名”框,本实习进行迭代自组织聚类的图像时h87tm1至h87tm7波段,采用彩色合成图像是TMFC,聚类后的图像是ISOCLUST;单击确定按钮,屏幕显示对话框,在“迭代次数”框中输入“3”,在“分类的数目”框中输入“15”,单击确定按钮。

(7)在“迭代自组织聚类”操作窗口中,单击“图像显示”,查看原图和结果,并加以对比。

图一原图

图二聚类生成图图三迭代自组织聚类图四、实验总结

本次实验主要介绍了非监督图像分类的过程和方法,包括常用的如:分级集群法、非分级集群法,不必对影像地物获取先验知识,仅依靠影像上不同类地物的光谱信息(或纹理信息)进行特征提取, 以提取出统计特征的差别来达到分类目的,是遥感数字图像计算机解译的一重要基础。

实验十一图像分类(2)——监督分类

一、实验目的

了解并掌握最大似然比分类法的过程和方法。

二、实验原理

采用统计学方法建立起一个判别函数集, 然后根据这个判别函数集计算各待分像元的归属概率(似然度)。

三、实验步骤

(1)执行监督分类彩色合成对话框,并输入。

(2)进入第二步“地图合成发射器”对话框,输入待显示文件。

(3)进入第三步“在屏数字化”对话框输入“待产生的矢量文件名”和“标题”及进行数字化。

(4)进行光谱生成输入“训练区的矢量文件名”、“波段数”和进行光谱生成的波段,设置波段数为6

(5)从“平行四边形”窗口单击图像显示菜单, 查看分类结果“P IP E D ”和原图像。

(6)同理依次操作最小距离分类和最大似然比分类,对比原图像与分类结果图。

图一光谱特征对比图图二平行四边形分类图

图三最小距离分类图图四最大似然比分类图

四、实验总结

通过本次试验主要讲了监督方法,与上次实验能够相互比较,其中,最大似然比分类法是经常使用的监督分类方法之一,其前提是最大似然比例分类必须知道总体的概率分布函数,它是通过求出每个像元对于各类别归属概率(似然度),把该像元分到归属概率(似然度)最大的类别中去的办法,可求出总体的先验概率密度函数,是比较重要的分类方法。

实验十二植被判读与制图

一、实验目的

1.认识卫星图像亡植被的影像特征;

2.了解季相和病虫害对植被影像特征的影响

3.了解植被图的判读和制图方法。

二、实验原理

遥感图像全面记录了地表植被与环境的信息, 通过对影像色调、色彩和几何形态的分析, 可判读植被特性、类型和分布状况, 并为研究土壤等其他自然要素提供重要依据。植被的群落外貌和生态特征随物候季节、生长阶段和环境条件的变化而改变。这些现象表现为其光谱亮度上的差异, 从而在遥感图像上反映出不同的密度、色调和图形结构,利用多时相的遥感图像可揭示出植被信息随物候、空间和种属而异的变化规律。

三、实验步骤

(1) 在“实习图像”子目录下找到“植被病害”、“植被秋季”、“植被春季”、“植被图”四幅图像。

(2) 打开“植被病害”图像(为彩红外摄影图像)。图像上,左边为健康植被,由于树冠强烈反射,近红外呈鲜红色调。右面大部分林木,由于针叶被松毛虫吃尽

而无法反射。

(3)打开“植被春季”和“植被秋季”图像,两幅图像均为山西省太原幅Mss 图像的局部;春季图像是5月底成像的,秋季图像为10月底成像的。在春季图像上,阔叶林叶子已经绿了,而秋季图像上,阔叶林的叶子已经落了。因此比较春秋季影像特征的差异,进行针阔林的判别。

(4)打开“植被图”,它是根据春秋季两幅图像进行目视判读的结果。按照图例中的分类系统进行图像的目视判读检查。

四、实验总结

这次实验主要介绍了根据植被特征,去进行植被判读,植被的判读标志主要是影像的色调(或颜色)和纹理结构。当像片比例尺较大时, 植被的树冠形状、大小和阴影的形状等都是判读时应注意的影像标志。植被影像的色调随成像的季节、时间、环境条件、植被种类、生长阶段、疏密程度和长势等因素的不同而不同。当植被影像细小密集时, 植被群落在一定比例尺的影像上反映出不同的影像纹理, 为植被类型的判读提供粗略识别的判读标志。

遥感实验心得体会

实习心得体会 遥感是一门理论性和实践性都很强大的专业课,需要我们在课堂上学习了理论知识后进行上机实验,以加深对所学知识的了解。 几何纠正这次试验本来是我们上周的自主完成试验,我用自己在网上下载的数据按照试验实验指导书上的要求做了一遍,在选点的时候选择了七个点,完成试验后也不知道怎样判断自己纠正的图像到底对不对,只是发现最终的生成结果中有一个4K大小的东西,结果是我做错了,这次,跟着老师做了一遍试验后,我对ERDAS这个软件有了一定的认识,并且顺利的完成了几何纠正,也意识到上次做实验时我的错误,首先,我打开来的两张图片并不都是img格式的,我没有将他们进行转换就进行的纠正,其次,我并没有完全理解课本上的纠正过程。我们选点的时候要选择六个以上的点,用来完成建模过程,然后其余的点可以用来对建立的模型进行检验以及纠正,我选则的七个点,纠正的结果应该是很差的。 然后,在这次试验课上,老师首先给我们介绍了ERDAS软件,然后,带着我们完成的做了一遍试验,试验由以下几部分组成: (1)显示图像文件(Display Image Files) (2)启动几何校正模块(Geometric Correction Tool) (3)启动控制点工具(Start GCP Tools) (4)采集地面控制点(Ground Control Point) (5)采集地面检查点(Ground Check Point) (6)计算转换模型(Compute Transformation) (7)图像重采样(Resample the Image) (8)保存几何校正模式(Save rectification Model) (9)检验校正结果(Verify rectification Result) 其中,最值得一说的是寻找控制点以及检查点,在寻找过程中,刚开始寻找是很慢的,图像看上去黑乎乎的,完全找不到自己想找的点,后来,顺着河流,道路的交叉点,很顺利的找到了自己想要找的点,在超过六个点以后找点时就方便了很多,在第一张图片上找点自己想要找的点,然后第二张图片上会自动匹配出点的位置,我们要寻找的范围缩小了很多,这时,我们要做的只剩下看看它匹配的准不准,如果不准,我们将点拖动到准确的点上即可。 第一次试验结束了,首先我对ERDAS这个软件有了一个认识,其次,我觉得要完成一个好的试验,我们对理论知识一定要有很深刻的认识,不然我们就像无头苍蝇,成为了一个工具,只是在做,却不知道自己在做什么,自己在哪边做错了也不知道,在自主完成试验之后,老师带领我们在做一遍,我们对试验的认识以及理论知识的了解会上升到另外一个高度,这样的实践教学对我们的学习应该会有很大的帮助。

实验五指导书遥感图像滤波

实验五遥感图像滤波 一、实验目的 1、了解图像滤波中空间信息增强的定义 2、掌握图像空间域滤波最基本的处理方法 3、了解图像频率域滤波中空间信息增强的含义 4、掌握图像频率域滤波基本的方法和过程 二、实验内容 1、对实验区TM单波段数据进行空间滤波处理 2、对图像进行空间域滤波并分析其效果 分析效果可以在“viewer”视窗口,亦可以用假彩色合成的方法对比前后的变换。 3、对实验区TM单波段数据进行频率域滤波处理 4、对图像进行频率域滤波并分析其效果 空间域与频率域的转换,频率图像编辑器的使用,高通和低通滤波,在“viewer”视窗口,亦可以用假彩色合成的方法对比前后的变换。 三、实验条件 电脑、ERDAS9.2软件。厦门市TM遥感影像 四、实验步骤 卷积增强是将整个图像按照像素分块进行平均处理,用于改变图像的空间频率特征。卷积处理的关键在于卷积(核)算子(Kernal)——系数矩阵的选择,常用的卷积算子分为3*3,5*5,7*7三组,每组有包括edge detect(边缘检测)、edge enhance(边缘增强)、low pass (低通滤波)、high pass(高通滤波)、horizonal(水平边缘检测)、vertical(垂直边缘检测)、cross edge detection(交叉边缘检测)、summary等8种不同的处理方式 1、空间域滤波操作 在ERDAS面板上,选择“interpreter”-“spatial enhancement”-“convolution”命令,打开图像卷积对话框,对图像进行空间域滤波。 1)在打开的卷积增强对话框中,加载图像(input file),单波段或合成图像均可。本实验中选择单波段数据。 2)在图像平滑或图像锐化的卷积算子(kernal)选择滤波算子。

遥感实验报告

1.利用Mapgis进行图像校正 1.1实验目的 了解MAPGIS土地利用数据建库对数据的基本要求。掌握图像校正---DRG生产的具体操作步骤。 1.2实验基本要求 将两幅1/万影像数据k50g092035、k50g092036,进行图象校正。 1.3实验内容 DRG生产的操作步骤如下: 1.打开mapgis主菜单,选择图像处理\图象分析模块。 2.文件转换:打开文件\数据输入,将两幅tif图像转换成msi(mapgis图象格式)文件类型。 选择“转换数据类型”为“TIF文件”,点“添加目录”选择影象所在目录,点“转换”。 3. 选择文件\打开影象,打开转换好的msi文件k50g092035.msi,再选择镶嵌融合\DRG生产\图幅生成控制点,点“输入图幅信息”。 4.输入图幅号信息,输入图幅号 k50 g092035,系统会利用此图幅号自动生成图幅的理论坐标。 图1.1 图幅生成控制点 5.定位内图廓点,建立理论坐标和图象坐标的对应关系。 利用放大、缩小、移动等基本操作在图像上确定四个内图廓点的位置。以定位左上角的内图廓点为例:利用放大,缩小,移动等操作找到左上角的内图廓点的精确位置后,点击上图对话框中的左上角按钮,然后再点击图像上左上角的内图廓点即完成该点的设置。完成参数设置和内图廓点信息的输入后,点击生成GCP,将自动计算出控制点的理论坐标,并根据理论坐标反算出控制点的图像坐标。 6.顺序修改控制点。 选取镶嵌融合\DRG生产\顺序修改控制点,则弹出控制点修改窗口,如下图所示:

图1.2 控制点修改窗口 7.逐格网校正 选取镶嵌融合\DRG生产\逐格网校正,弹出文件保存对话框,输入结果影像文件名为“K50 G 092035”,点“保存”。出于精度考虑,可以将“输出分辨率” 设置为“300”DPI。 8.DRG生产完毕。为了以后线文件要与内图框闭合成区,接着生成单线内图框。 生成单线内图框的方法如下: 1)选择镶嵌融合\ 打开参照文件\自动生成图框 2)输入图幅号,选择北京54坐标系.采用大地坐标系 3)选择单线内框.椭球参数选择北京54图框文件名保存为2035.WL,保存路径如下图如示,点“确定”即可完成。 图1.3 1:1万图框 用同样的方法校正另一幅影像k50g092036,将校正后的文件保存为k50 g 092036,同时生成对应的内图框文件2036.wl,保存在实习数据\单线内图框\。

遥感实验二

遥感实验二遥感影像的初步识别 一、实验目的 学会识别遥感影像及其标识、理解像元灰度值与图像亮度及颜色的关系、理解遥感图像的矩阵表示、理解像元大小、掌握遥感图像的各种打开方式,对比了解不同影像的色调、纹理及颜色特征。 二、实验原理 地物光谱特征及成因。 三、实验数据 某区域的遥感图像,包括:367-071-0000103564.zip、452-86-L10000004263.rar、11943E20010304.rar、12843_19731222.rar。 四、实验内容及主要步骤 1、识别遥感影像及其标识 在资源管理器中找到与遥感影像文件名相同扩展名不同的文本文件,用记事本或写字板打开该文件,阅读其中的图像信息; 阅读layer info中标明的图像信息; 查询像元灰度值(用光标定位显示和用影像信息表查看)。 2、遥感影像的打开方式 a、用缺省方式打开遥感影像 打开影像(数据格式、缺省显示方式)、重叠显示并对比两个影像;放大、缩小、漫游、全图显示。 b、遥感影像的多种打开方式 包括:图像按多波段RGB真彩色、某波段按假彩色、某波段按灰度、高程数据按地势显示。 3、不同遥感影像的对比识别 结合实验内容1和2,认识常用遥感数据的图像特征,识别不同传感器成像的异同点,该实验内容留作课后作业。 五、课后作业及要求 结合本次课的实验内容,对所提供的影像数据(包括MSS、ETM、CBERS、HJ)对比进行识别和分析,内容包括:

1、识别影像(包括卫星及传感器、太阳高度角及方位角、成像时间、空间 分辨率、覆盖范围、波段数及行列数、投影参数等相关信息),要求写出实际的操作过程及所得结果的依据所在; 2、对比分析同一地物在不同影像上的颜色、纹理、色调特征,对其成因进 行分析和探讨,可查找相关文献进行总结。

《遥感导论》实验指导书

目录 实验一ENVI窗口的基本操作 (1) 实验二认识遥感影像 (7) 实验三图像的彩色增强与色彩变换 (8) 实验四遥感影像的目视解译与制图 (13) 实验五遥感影像的计算机解译 (17)

实验一ENVI窗口的基本操作 一、实验目的 熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏方法,影像上距离和面积量算方法。 二、实验内容 1、熟悉遥感图像处理软件ENVI的窗口基本操作。 2、查看影像信息和像元信息。 3、距离测量与面积测量。 三、实验条件 电脑、ENVI4.5软件,厦门市TM遥感影像。 四、实验步骤 1、启动ENVI软件,界面如图1。 图1 ENVI软件界面 2、打开遥感影像,File → Open Image File,界面如图2。在打开文件对话框中,定位到存放影像数据的文件夹(如:预先下载的厦门市TM影像),打开遥感影像数据。 图2 打开影像文件 3、在自动打开的可用波段列表中,用“Load Band” 装载影像数据,显示三个影像窗口,如图3。 主图像窗口:主图像窗口由一幅以全分辨率显示的图像的一部分组成。该窗口在你第一次载入一幅图像时自动显示。窗口的原始大小由配置文件中(envi.cfg)的参数设置,窗口大小能动态缩放和调整。在主图像窗口中的功能

菜单条包括5 个下拉菜单,控制所有的ENVI 交互显示功能。 滚动窗口:滚动窗口是显示整幅影像的显示窗口,当显示的图像比主图像窗口以全分辨率能显示的图像大时出现滚动窗口,滚动窗口控制着显示在主图像窗口的图像部分。滚动窗口位置和大小初始值在envi.cfg 文件中设置并且可以被修改,也可以动态缩放。 缩放窗口:缩放窗口是一个小的图像显示窗口,显示主图像窗口的一部分。缩放窗口提供无限缩放能力,缩放系数出现在窗口标题栏的括号中。缩放窗口大小能动态地调整,其大小和默认的缩放系数同样在envi.cfg 文件进行设置。

(完整版)ERDAS遥感图像处理实验报告

西北农林科技大学 ERDAS实验报告 专业班级:地信111 姓名:杨登贤 学号:2011011506 2013/12/20 ERDAS实验报告

一.设置一张三维图。 (3) 1.底图与三维图 (3) 2.参数设置 (5) (1)三维显示参数 (5) (2)三维视窗信息参数 (6) (3)太阳光源参数 (6) (4)显示详细程度 (6) (5)观测位置参数 (7) 二.(几何纠正几何畸变图像处理):几何纠正结果图。 (7) (2)选择合适的坐标变换函数(即几何校正数学模型) (8) (3)数据控制点采集表 (9) (4)多项式模型参数 (9) (5)图像重采样参数 (10) (6)结果图 (10) 三.(数据输入\ 输出):镶嵌图(根据不同条件做出不同的几张)。 (11) 1.图像色彩校正设置 (12) 四.(图像增强处理):傅里叶高通/低通滤波图或效果图空间增强效果图。 (13) 1.空间增强卷积处理 (13) (1)原图像 (13) (2)卷积增强设置参数 (13) (3)卷积增强处理图像 (14) 2.傅里叶变换 (14) (1)快速傅里叶变换设置参数 (14) (2)低通滤波 (15) (3)高通滤波 (16) 五.光谱增强。 (18) 1.主成分变换 (18) (1)参数设置 (18) (2)处理图像 (19) 2.缨帽变换 (19) (1)参数设置 (19) (2)处理图像 (20) 3.指数计算 (20) (1)参数设置 (20) (2)处理图像 (21) 4.真彩色变换 (21) (1)参数设置 (21) (2)处理图像 (22) 六.(非监督分类):非监督分类结果图分类后处理结果图去除分析结果图。 (23) 1.参数设置 (23) 2.非监督分类结果图 (24) 3.分类后处理结果图 (25)

遥感实验

实验二:遥感图像的增强处理 1.实验目的和意义 (1)理解遥感图像的增强处理的方法和原理; (2)理解遥感图像彩色合成的原理,掌握遥感图像彩色合成的方法; (3)掌握遥感图像的增强处理,包括对比度变换(直方图)、空间滤波、HSL变换、多光谱变换(K-L变换,即主成分分析,PCA.;K-T变换,即缨帽变换)。 2、相关实验原理和步骤 (1)图像的彩色合成 A原理:色彩变换(RGB TO IHS)是将遥感图像从红(R)绿(G)蓝(B)三种颜色组成的色彩空间转换到以亮度(I),色度(H),饱和度(S)作为定位参数的色彩空间,以便使图像的颜色与人眼看到的更接近。其中,亮度表示整个图像的明亮程度,取值范围是0-1;色度代表像元的颜色,取值范围是0-360;饱和度代表颜色的纯度,取值范围是0-1. B:步骤:Transform-color transform-RGB to HLS,如图: 真彩色与假彩色的对比 真彩色假彩色

(2)主成分分析 A原理:主成分变换(Principal Component Analysis)是一种常用的数据压缩方法,它可以将具有相关性的多波段数据压缩到完全独立的较少的几个波段上,使图像数据更易于解释。ERDAS IMAGE提供的主成分变换功能最多能对256个波段的图像进行转换压缩。 B步骤:transform-principal component-Forward PC Rotation-compute New Statistics and Rotate;如图: 最后得到的分析结果图

(3)缨帽变换练习 A原理:采用缨帽变换可以将TM图像除热红外波段的6个波段压缩成3个分量,其中的土壤亮度指数分量是6个波段的加权和,反映了总体的反射值;绿色植被指数分量反映了绿色生物量的特征;土壤特征分量反映了可见光和近红外与较长的红外的差值,它对土壤湿度和植物湿度最为敏感。这样的三个分量就是TM数据进行缨帽变换后的新空间,它可以对植被、土壤等地面景物作更为细致、准确的分析,应用这种处理方法可增强影像上深色区域的信息。 B步骤:transform-tasseled cap-can_tmr.img。如图: (4)锐化处理; A原理:调整图像的锐化程度使地物在图像上的差别便于人眼识别,可达到信息增强的目的。对图像进行锐化增强实际上是利用变换函数把原图像进行灰度级转换,增大相邻像元的灰度值之差,从而达到突出图像细节的目的。B步骤:transform-image sharpening。 具体步骤及其效果图如下所示:

遥感实验报告

遥感原理与应用 实验报告 姓名:学号:学院:专业: 年月日 实验一: erdas视窗的认识实验 一、实验目的 初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握几个视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验步骤 打开imagine 视窗 启动数据预处理模块 启动图像解译模块 启动图像分类模块 imagine视窗 1.数据预处理(data dataprep) 2.图像解译(image interpreter) 主成份变换 色彩变换 3.图像分类(image classification) 非监督分类 4. 空间建模(spatial modeler) 模型制作工具 三、实验小结 通过本次试验初步了解遥感图象处理软件erdas的主要功能模块,在此基础上,基本掌握了几个视窗操作模块的功能和用途。为后续的实验奠定了基础。 实验二遥感图像的几何校正 掌握遥感图像的纠正过程 二、实验原理 校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 几何校正包括几何粗校正和几何精校正。地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了几何粗校正。利用地面控制点进行的几何校正称为几何精校正。一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要进行一种通用的精校正方法的实验。该方法包括两个步骤:第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关系,实现不同图像空间中像元位置的变换;第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完成标准图像空间中每一像元亮度值的计算。 三、实验内容 根据实验的数据,对两张图片进行几何纠正 四、实验流程

实验二 遥感图像的辐射定标

实验二遥感图像的辐射定标 1.实验目的与意义: (1)了解辐射定标原理 (2)使用ENVI软件自带的定标工具定标 (3)学习波段运算进行辐射定标 2.为什么要进行辐射定标,定标的原理是什么? 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。 原理:辐射定标是将传感器记录的电压或数字量化值(DN)转换为绝对辐射亮度值(辐射率)的过程,或者转换为与地表(表观)反射率、表面温度等物理量有关的相对值的处理过程。 3.辐射定标过程 一般有两种方式: 第一种:利用计算公式,在ENVI中利用band math计算福亮度和反射率。 第二种:利用ENVI自带的定标工具进行定标,获取福亮度或反射率。 第一种方法:用波段运算得到Radiance和Reflectance (1)表观辅亮度radiance的计算 radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0 即 (2)表观反射率的计算 ρ=π*L*d2/(ESUN*cos(θ)) 其中ρ为表观反射率; L为上一步计算出来的表观辐亮度; d为日地距离,这个数据通过下面的表格中获取; ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射; θ为太阳天顶角。(这个可以通过影像的元数据获取)在本次实验的数据中radiance=(193+1.52)/255*b1-1.52 Reflectance=3.14*(b1)*1.0128^2/(1957*0.7381)步骤如下:打开文件L5120036_03620100819_MTL.txt ,点击Band Math,输入(193+1.52)/255*b1-1.52,之后即可计算出辐射度,文件保存为radiance1。

遥感实验报告七

合肥工业大学资源与环境工程学院 《遥感图像处理与分析》 实验报告(七) 姓名 学号 专业 班级 任课教师

实验七:图像分类 一、实验目的 理解计算机图像分类的基本原理 掌握数字图像非监督分类以及监督分类的具体方法和过程 理解两种分类方法的区别 二、实验材料 Landsat遥感影像1幅 ERDAS IMAGINE9.2遥感图像处理软件 计算机 三、实验内容及步骤 (一)非监督分类 (1)启动非监督分类模块:在ERDAS面板工具中选择DA TAPrep-Unsupervisd Classification命令,打开非监督分类对话框或是在ERDAS面板工具中选择 Classifier-Classification-Unsupervised Classification打开非监督分类对话框(2)选择图像处理文件和输出文件,设置被分类的图像和分类结果,并选择生成分类模块文件产生一个模版文件。 (3)这里Number of Classes定为14,Maximum Iterations定为7如下图所示 (4)点击OK按钮,执行非监督分类,打开原图与结果图:

分类评价: (1) 打开原始图像和分类后的图像:点击ERDAS-Viewer 面板,先后打开原始图像和分 类后的图像,在打开分类结果图像时,在Raster Option 选项卡中取消选中的Clear Display 复选框,保证两幅图叠加显示 (2) 设置各类别的颜色:单击Raster-Tool ,打开Raster 工具面板,选择Raster-Attributes , 打开Raster Attribute Editor 对话框 (3) 调整字段显示顺序,在Raster Attribute Editor 窗口,选择Edit 菜单-Column Properties 命令,打开Column Propertis 对话框,在Columns 列表中选择字段,通过Up 、Down 、Top 、Bottom 按钮调整其在属性表的显示顺序 (4) 同上,在Raster Attribute Editor 对话框中单击某一类别的Color 字段,在弹出的As Is 中选择合适的颜色 (5) 确定类别精度并标注类别:在Raster Attribute Editor 对话框中点击Opacity 字段名, 进入编辑状态,依据需要输入0(透明)或1(不透明)。通过在Utility 菜单下设置分类结果在原始图像背景上闪烁(Flick )、卷帘显示(Swipe )、或混合显示(Blend ),

遥感实验二报告

遥感实验二实验报告 学院:资源与环境 专业:11 城规 姓名:李恒玺 学号:2011081018 指导老师:吴静

实验报告: 1、实验目的: 识别自己下载的地物特征 2、实验步骤: 1)我下载的是北京2010/11/4LANDSAT7 ETM+,条带号:123 行编号:32。2)此图像的基本信息为: 数据标识:LE71230322010308EDC00 快视图:[ 查看大图] 卫星:LANDSAT7 条带号:123 行编号:32 行象元数:1000 列象元数:1100 传感器:ETM+ 接收站标识:EDC 数据获取日期:20101104 白天/夜晚:DAY 开始时间:2010-11-04 02:45:51 结束时间:2010-11-04 02:46:18 平均云量:.01 左上云量:0 右上云量:0 左下云量:.01 右下云量:.04 太阳方位角:159.82481384 太阳高度角:31.99302864 中心纬度:40.32566 中心经度:116.73708 左上点纬度:41.28471 左上点经度:115.87321 右上点纬度:40.95814 右上点经度:118.11105 左下点纬度:39.68246 左下点经度:115.38956 右下点纬度:39.36360 右下点经度:117.57607 3)将下载的图像在ERDAS软件的Layer Stack中做多波段合成,合成后的图像为:

4)用灰阶方式以及各种不同的彩色合成方式显示组合的影像,观察不同波段影像的异同,及不同彩色合成方式对影像的表现力,并用文字说明。 ○1水体:将图像在Display as Ture color 中RGB分别为9,1,8可以很清楚显 示水体,显示的图像为: ○2白云:在RGB为3,7,2可以较好的显示云朵,也可以从外形和云朵的颜色的看出。

《ENVI》实训指导

《ENVI》实训指导书 ENVI快速入门 一、软件概况介绍: ENVI(The Environment for Visualizing Images)遥感影像处理软件是由美国著名的遥感科学家用IDL开发的一套功能齐全的遥感影像处理软件,它是处理、分析并显示多光谱数据、高光谱数据和雷达数据的高级工具。曾获2000、2001年美国权威机构NIMA遥感软件测评第一。 ENVI的应用领域包括:地质、林业、农业、模式识别、军事、自然资源勘探、海洋资源管理、环境和土地利用管理等。 二、ENVI的安装 1、ENVI永久许可 1)ENVI浮动license:服务器版,多个用户可以同时访问一个服务器,服务器需要安装license,客户端不需要安装license,但是需要进行设置。 2)ENVI加密狗:加密狗也需要license安装,但是有灵活、不依赖网卡的特点。 3)ENVI网卡加密:利用网卡号的唯一性进行加密,如果更换机器时,需要将原来的网卡拔下重新安装在新机器上。 2、ENVI临时许可 三、目录结构介绍 一般情况下ENVI安装在RSI文件夹下,完全版本包括IDL60、License等文件夹,ENVI的所有文件及文件夹保存在IDL60\products\ENVI40下。 ?Bin:相应的ENVI运行目录。 ?Data:数据目录,保存一矢量文件夹(一些矢量数据)和一些例子数据(有 些数据有头文件,有些数据没有头文件)。 ?Flt_func:ENVI常规传感器的光谱库文件。例如:aster、modis、spot、tm 等。 ?Help:ENVI的帮助文档。 ?Lib:IDL生成的可编译的程序,用于二次开发。 ?Map_proj:影像的投影信息,文本格式,客户可以进行定制。 ?Menu:ENVI菜单文件,可以进行中、英文菜单互换。并不是所有的英文菜单 都已经汉化,汉化工作我们正在做,以后会陆续推出。 ?Save:应用IDL可视化语言编译好的、可执行的ENVI程序。 ?Save_add:客户自主开发的、可执行程序。 ?Spec_lib:波谱库,不同地区可以有不同的波谱库,用户可以自定义。 四、中文菜单和英文菜单的互换 1、文件互换 在RSI\IDL60\products\envi40\menu目录下,display.men、 display_shortcut.men、envi.men三个文件是ENVI的菜单文件,可以将其(中文或英文)菜单文件备份后,将另外(英文或中文)菜单文件考入此目录下

遥感图像地学分类实验指导

遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

遥感图像实验报告

遥感图像实验报告 一.实验目的 1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。 2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法, 土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。 3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。 二.实验内容 1、遥感图像的分类 2、土地利用变化分析,植被变化分析 3、遥感空间建模技术 三.实验部分 1.遥感图像的分类 (1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统; (2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理; (3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器; (5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:

图1.1 1992年土地利用图 图1.2 2001年土地利用图

(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。 图1.3 1992年精度图 图1.4 2002年精度图 2.土地利用变化 2.1 两年土地利用相重合区域 (1)在两年的遥感影像中选择相同的区域。 Subset(x:568121~684371,y:3427359~3288369),过程如下:

图2.1 截图过程图 图2.2.2 截图过程图

(2)土地利用专题地图如下: 图2.2.3 1992年专题地图 图2.2.4 2001年土地利用图

太原理工大学遥感原理与应用实验指导书

《遥感原理与应用》实验指导书 矿业工程学院 测绘科学与技术系

实验一、遥感图像几何校正(2学时)实验二、遥感图像辐射增强(2学时)实验三、遥感图像非监督分类(2学时)

实验一、遥感图像几何校正(2学时)

原理与方法简介遥感影像由于遥感平台位置和运动状态变化、地形起伏、地球表面曲率、大气折射、地球自转等诸多因素的影响而产生与地面目标位置和(或)形状方面的不相一致的几何畸变,通过一定的数学算法,使这种畸变消除或接近消除,这就是几何校正。常用的几何校正计算方法主要有以下三种: 1)邻域法(Nearest neighbor )——将最接近的像元值赋予输出像元(图1.1); Figure1.1Nearest Neighbor 邻域法优点:极值和一些细节不会丢失,对植被分类、查找具线性特征的边界或侦测湖水的混浊度和温度是重要的。该方法适用于分类之前,计算速度快,适合于具有定性和定量特点的专题图像研究。 其缺点是:从较大的栅格重采样到较小栅格时会出现阶梯状斜线;可能会丢失或重复一些数值;用于线形专题图(如道路、水系)可能引起线状网络数据断开或出现裂隙。 2)双线性内插法(bilinear interpolation )——利用二次样条函数计算2×2窗口中的4个像元值并赋予输出像元(图1.2)。 Figure1.2Bilinear Interpolation 113V dy D V V V m +?-= 224V dy V V Vn +?-=

m m n V dx D V V Vr +?-=或:i i i i i i i r V D y D x D V W V ??-?-==∑∑==41241))((W i ——权重因子 Δx i ,Δy i ——r 点与i 点的坐标变化 V i ——i 像元值 双线性内插法的优点是:图像较平滑,不会出现阶梯现象,空间精度较高,常用于需要改变像元大小的场合,如SPOT/TM 的融合。 其缺点是:由于像元作过平均计算,相当于低通滤波(Low-frequency convolution )的效果,边界平滑,某些极值会丢失。 3)立方卷积内插法(Cubic convolution )——利用三次函数计算4×4窗口中的像素值并赋予输出像素(图1.3) 。 Figure 1.3Cubic Convolution 类似于双线性内插,只是所用窗口为4*4,而非2*2,即对16个像元作平均运算而得出输出像元的数据文件值。 ]} 2)2,2([*)2,2(]1)2,1([*)2,1()]2,([*)2,(]1)2,1([*)2,1({4 1--++-+++ --++-+++ -+-++ +-+--+-=∑=n j i d f n j i V n j i d f n j i V n j i d f n j i V n j i d f n j i V V i r 其中:i=int(x r ),j=int(y r ) d(i ,j)——(i ,j)和(x r ,y r )坐标距离 V(i ,j)——(i ,j)像元值 V r ——输出像元数据文件值

综合遥感实验报告

本科学生实验报告 姓名周文娜学号094130090 专业_地理科学_班级 B 实验课程名称遥感导论 实验名称遥感图像分类---监督分类,非监 督分类 指导教师及职称胡文英 开课学期2011 _至__2011 学年_下学期云南师范大学旅游与地理科学学院编印

一、实验准备 实验名称:遥感图像分类---监督分类,非监督分类 实验时间:2011年6月10日 实验类型:□验证实验□综合实验□设计实验 1、实验目的和要求: (1)理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的。 (2)进一步理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的,同时深刻理解监督分类与非监督分类的区别。 2、实验相关设备: 计算机一台,及ERDAS软件 3、实验理论依据或知识背景: (1)监督分类的概念: 首先需要从研究区域选取有代表性的训练场地作为样本。根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。 监督分类包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 (2)非监督分类的概念: 非监督分类的前提是假定遥感影像上的同类物体在同样条件下具有相同的光谱信息特征。非监督分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特征提取,再统计特征的差别来达到分类的目的,最后对巳分出的各个类别的实际属性进行确认。 监督分类和非监督分类的根本区别点在于是否利用训练场地来获取先验的类别知识,监督分类根据训练场提供的样本选择特征参数,建立判别函数,对待分类点进行分类。因此,训练场地选择是监督分类的关键。由于训练场地要求有代表性, 训练样本的选择要考虑到地物光谱特征,样本数目要能满足分类的要求,有时这些还不易做到, 这是监督分类不足之处。

遥感实验报告

重庆交通大学 学生实验报告 实验课程名称遥感原理与应用 开课实验室测量与空间信息处理实验室 学院 2013 年级测绘工程专业 1班学生姓名刘文洋 学号 631301040126 开课时间 2015 至 2016 学年第 1 学期

目录 实验一 ENVI 视窗的基本操作 (2) 实验二遥感图像的几何校正 (4) 实验三遥感图像的增强处理 (8) 实验四遥感图像的变换 (12) 实验五遥感信息的融合 (15) 实验六遥感图像分类 --- 监督分类 (17) 实验七遥感图像分类 --- 非监督分类 (19) 实验八遥感图像分类后处理 (22)

实验一ENVI 视窗的基本操作 一、实验目的 初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验内容 视窗功能介绍;文件菜单操作;显示数据;裁剪数据;合并波段 三、实验步骤 1、首先打开ENVI4.7软件,看见的只有菜单栏,如图所示: 2、打开每个下拉菜单浏览其下拉栏中都有哪些功能,比如:我们如果需要打开遥感文件,则可以选择File下的打开功能open image file,打开遥感图像如下图:

裁剪数据打开basic tools的resize data功能,如果需要对图像进行一系列处理,可以利用Transform,Classification等功能进行操作,在后续实验中我们也会用到其中的一些功能进行图像的一系列操作,到时候在详细叙述。 3、再熟悉了ENVI4.7的一些基本知识后我们可以简单地操作下,比如对一组数据分别用Gray Scale和Load RGB导入,看看两幅图的区别以及各自的优缺点。 四、实验结果分析 在这次的实验中,我们简单的熟悉了下ENVI4.7的一些功能,发现它是可以对遥感图像进行图像几何纠正,直方图均衡,监督分类,非监督分类等一系列操作,为我们后续利用软件对遥感图像处理打下了基础。

Erdas遥感图像处理实验指导书

《遥感图像处理》实验指导书 实验一、ERDAS视窗的基本操作 实验目的:初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 实验内容:视窗功能介绍;文件菜单操作;实用菜单操作;显示菜单操作;矢量和删格菜单操作等。 视窗操作是ERDAS软件操作的基础, ERDAS所有模块都涉及到视窗操作。本实验要求掌握视窗的基本功能,熟练掌握图像显示操作和矢量菜单操作,从而为深入理解和学习ERDAS软件打好基础。 1、视窗功能简介 二维视窗(图1-1)是显示删格图像、矢量图形、注记文件、AOI等数据层的主要窗口。通过实际操作,掌握视窗菜单的主要功能、视窗工具功能。 图1-1 二维视窗 重点掌握ERDAS图表面板菜单条;ERDAS图表面板工具条;掌握视窗菜单功能和视窗工具功能等基本操作。

2、图像显示操作(Display an Image) 第一步:启动程序(Start Program) 视窗菜单条:File→open→ RasterLayer→Select Layer To Add对话框。 第二步:确定文件(Determine File) 在Select Layer To Add对话框中有File和Raster Option两个选择项,其中File就是用于确定图像文件的,具体内容和操作实例如表。 参数项含义实例 Look in确定文件目录examples File name确定文件名xs_truecolor File of type确定文件类型IMAGINE Image(*.img) Recent选择近期操作过的文件------ Go to改变文件路径------- 图1-2 参数设置 第四步:打开图像(Open Raster Layer) 3、实用菜单操作 了解光标查询功能;量测功能;数据叠加功能;文件信息操作;三维图像操作等。 4、显示菜单操作 掌握文件显示顺序(图1-3);显示比例;显示变换操作等。

遥感地学分析实验报

实验一植被覆盖度反演 一、实验目的 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。通常林冠称郁闭度,灌草等植被称覆盖度。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI,本次实验完成植被覆盖度反演。 二、实验数据 实验选取两景覆盖北京市的Landsat8 OLI影像、土地覆盖类型图以及北京行政边界矢量数据为数据源。其中,土地覆盖类型图是作为掩膜文件使用,其目的是为了便于植被覆盖度的估算;北京行政边界矢量数据是裁剪出北京市行政区内的范围。Landsat8 OLI影像是从地理空间数据云网站上下载得到的,其成像时间为2013年10月份。与Landsat7的ETM+成像仪相比,OLI成像仪获取的遥感图像辐射分辨率达到12比特,图像的几何精度和数据的信噪比也更高。OLI成像仪包括9个短波谱段(波段1~波段9),幅宽185km,其中全色波段地面分辨率为15m,其他谱段地面分辨率为30m。 三、实验方法 本文反演植被覆盖度所采用的是像元二分模型方法,像元二分模型是一种简单实用的遥感估算模型,它假设一个像元的地表由有植被覆盖部分与无植被覆盖部分组成,而遥感传感器观测到的光谱信息(S)也由这2个组分因子线性加权合成,各因子的权重是各自的面积在像元中所占的比率,如其中植被覆盖度可以看作是植被的权重。因此,像元二分模型的原理如下:VFC = (S - Ssoil)/ ( Sveg - Ssoil) S为遥感信息,其中Ssoil 为纯土壤像元的信息, Sveg 为纯植被像元的信息。 改进的像元二分法——遥感信息选择为NDVI VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) 两个参数的求解公式 NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) 当区域内可以近似取VFCmax=100%,VFCmin=0% VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) 当区域内不可以近似取VFCmax=100%,VFCmin=0%,当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值;当没有实测数据的情况下,植被覆盖度的最大值和最小值根据经验估算。 其中, NDVIsoil 为裸土或无植被覆盖区域的NDVI值, 即无植被像元的NDVI 值;而NDVIveg 则代表完全被植被所覆盖的像元的NDVI 值, 即纯植被像元的NDVI 值。 四、实验处理步骤 1、实验处理流程如下图所示

相关文档