文档库 最新最全的文档下载
当前位置:文档库 › 1-5-1正弦函数的图像

1-5-1正弦函数的图像

1-5-1正弦函数的图像
1-5-1正弦函数的图像

宝石学校活页课时教案(首页)

班级:高一年级 科目:数学 周次

教学时间 2012年2月 日 月教案序号 课题

1-5-1正弦函数的图像 课型 新授 教学目标

(识记、理解应用、分析、创见)

知识目标:正弦函数的图象; 能力目标:1)会用单位圆中的正弦线画出正弦函数图象;2)掌握正弦

函数图象的“五点作图法”; 3)培养观察能力、分析能力、归纳能力

和表达能力等;4)培养数形结合和化归转化的数学思想方法。 情感目标:培养学生主动探索、勇于发现的精神,渗透由特殊到一般的思想方法。 教学重点

及难点

教学重点:正弦函数的图像. 教学难点:正弦函数图像的画法与看图分析能力. 教学方法

观察、思考、交流、讨论、概括。 教学反馈

计 1-5-1正弦函数的图像

五个关键点:)0,2(),1,2

3(),0,(),1,2(

),0,0(ππππ-

高中必修4教案 第 2 页 共 4 页

一、情景设置

我们知道函数的图象为我们解决相关的函数问题提供了重要的方法和工具,前面我们已经探讨了各三角函数的定义以及相关的诱导公式,那么它们的图象是怎样的呢?

这节课让我们来共同探讨这一问题(主研正弦函数的图象)。

二、课题导入

1、如何作正弦函数的图象?

① 列表描点法:步骤:列表、描点、连线

如果我们仍用描点法来画正弦函数图象,由于对于角的每一个取值,在计算相应的函数值时,都是利用计算器或数学用表得来的,大多数是一些近似值,因此不易描出对应点的准确位置,因而画出的图象不够准确。为此,我们应考虑用其它方法来作正弦函数的图象。

② 几何作图法

ⅰ 作直角坐标系,并在直角坐标系中y 轴左侧画单位圆;

ⅱ 把单位圆分成12等份;

ⅲ 作各分点关于x 轴的垂线,得到对应于各角的正弦线;

ⅳ 找横坐标:把轴上从0到2π这一段分成12等份;

ⅴ 找纵坐标:把各角的正弦线向右平移,使它的起点与x 轴上对应的点重合,从而得到12条正弦线的12个终点;

ⅵ 连线:用平滑的曲线将12个点依次从左至右连接起来,即得y=sinx x ∈[0,2π]的图象。

2、如何作正弦函数在R 上的图象?

因为终边相同的角,所以函数sin y x =在[]2,2(1)x k k ππ∈

+,k Z ∈,0k ≠的图象与函数sin y x =,[]0,2x π∈的图象的形状完全一样,只是位置不同,只要将它向左、右平行移动(每次2π个单位长度),得到正弦函数sin y x =,x R ∈的图象,即正弦曲线。

高中必修4教案 第 3 页 共 4 页

回想我们是如何作出正弦函数在间的图象的?

① 列表描点法 误差大

② 几何作图法 精确但步骤繁

思考:在精确度要求不太高时,如何作出正弦函数的图象?

3、五点作图法

ⅰ 函数x y sin =,[]π2,0∈x 的图象中起着关键作用的点是哪些点?

ⅱ 几何作图法虽然比较精确,但是不太实用,如何快捷地画出正弦函数的图象呢?

五个关键点:)0,2(),1,2

3(),0,(),1,2(),0,0(ππππ

- 事实上,描出这五个点,函数x y sin =,[]π2,0∈x 的图象的形状就基本确定了。今后在精确度要求不太高时,常常先找出这五个关键点,用光滑曲线将它们连结起来即可得到函数的简图,我们把这种方法称为“五点作图法”。

三、活学活用:

例1

用五点法作函数sin ,y x =[]0,2x π∈与1sin ,y x =+[]0,2x π∈的图象.

解:按五个关键点列表

利用正弦函数的特征描点画图:

高中必修4教案 第 4 页 共 4 页

例2

用五点法作函数sin ,y x =-[]0,2x π∈的图象.

解:按五个关键点列表

利用正弦函数的特征描点画图:

四、课堂练习:

用五点法作函数sin ,y

x =- []0,2x π∈的图象.

五、课堂小结:

通过学习,你有哪些收获,还有哪些疑惑?

六、作业

教材第26页的练习题。

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

4.4.1正弦函数图像与性质练习题.doc

正弦、余弦函数的图像及性质习题 一、选择题 1、若[]π2,0∈x ,函数x x y cos sin -+=的定义域是 A .[]π,0 B .???? ??23,2ππ C . ?? ?? ??ππ,2 D .?? ? ? ??ππ2,23 2、函数x y sin 1-=的最小值是 A .1- B .0 C .2- D .1 3、若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2 π +2k π(k ∈Z ) D .- 2 π +2k π(k ∈Z ) 4、使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 5、已知函数f(x)=2sin x(>0)在区间[,]上的最小值是-2,则的最小值等于( )A. B. C.2 D.3 6.若函数的图象相邻两条对称轴间距离为 ,则等于 . A . B . C .2 D .4 7.函数y=3cos ( 52x -6 π )的最小正周期是( ) A . 5 π2 B . 2 π 5 C .2π D .5π 8.下列函数中,同时满足①在(0, 2 π )上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2 x D .y=|sinx| 9、函数??? ?? ?- ∈=32,6,sin ππx x y 的值域是 ??3π- 4 π ?322 3 cos()3 y x π ω=+ (0)ω>2 π ω12 12

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦型函数的图像

函数sin()y A x ω?=+的图像 一、教学目标 1. 会用TI 图形计算器作出函数sin()y A x ω?=+(其中0,0A ω>>)的图像。通过观察图像,猜想,,A ω?对函数图像的影响; 2. 会借助计算器的图像功能, 领会控制变量法,体会定量地分析问题的过程; 3. 通过实践, 感受数学解决问题的方式, 获取定量地处理问题的经验. 二、教学难点与重点 重点: ,,A ω?对函数sin()y A x ω?=+图像的影响; 难点:定量分析,,A ω?对图像的影响. 三、教学过程 1. 引例. 动点P 绕原点O 作逆时针匀速圆周运动,初始位置如图所示,已知圆半径为3,角速度为2/rad s ,试建立点P 纵坐标y 与运动时间x 之间的函数关系,并作出该函数的图像。 [学生建立函数关系式:3sin(2)6y x π=+,并利用TI 图形计算器画出该函数的图像。] 观察这个函数的图像走势,与我们学过的哪个函数图像很接近? [学生:正弦函数] 这两个函数图像虽然很接近,但仍有差异。是什么因素造成这种差异? [学生: 3,2,6π ] 那么这三个参数对函数图像分别带来什么影响呢? 如果从正弦函数sin y x =的图像入手,可以通过怎样的变换得到3sin(2)6y x π =+的图像呢? {目的:引出控制变量法} [学生:操作TI 图形计算器观察函数图像的变化。] 教师引导学生想到利用控制按钮建立对应的参量,并想到控制变量法。 2. 提出课题 sin()y A x ω?=+ 形如sin()y A x ω?=+(其中,,A ω? 为常数)的函数,我们称为正弦型函数。 根据我们已有的知识,知道这个函数是周期函数,那么我们研究这类型函数时可以根据需要,锁定它的一个周期进行研究。对于一个函数,我们可以探究这个函数的哪些方面? [学生:研究函数的性质和函数的图像。]

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案) 神木职教中心 数学组 刘伟 教学目标:1、理解正弦函数的周期性; 2、掌握用“五点法”作正弦函数的简图; 3、掌握利用正弦函数的图像观察其性质; 4、掌握求简单正弦函数的定义域、值域和单调区间; 5、初步理解“数形结合”的思想; 6、培养学生的观察能力、分析能力、归纳能力和表达能力等 教学重点:1、用“五点法”画正弦函数在一个周期上的图像; 2、利用函数图像观察正弦函数的性质; 3、给学生逐渐渗透“数形结合”的思想 教学难点:正弦函数性质的理解和应用 教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾 终边相同角的诱导公式: )(sin )2sin(Z ∈=+k k απα 所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2 Ⅱ 新知识 1、用描点法作出正弦函数在最小正周期上的图象 x y sin =,[]π2,0∈x (1)、列表

(2)、描点 (3)、连线 因为终边相同的角的三角函数值相同,所以x y sin =的图像在…, [][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相 同 2、正弦函数的奇偶性 由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=- 所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在??????++- ππ ππ k k 22, 22 是增函数,在?? ? ???++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

根据正弦型函数的图象求解析式

根据正弦型函数的图象求其解析式(一)课前系统部分 1、设计思想 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。 为此我们根据“用已知知识去探讨新知识”的教学方式,沿着“复习已知知识--提出由简单到复杂的问题--解决问题--反思解决过程”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计: 创设一个现实问题情境作为提出问题的背景,并且用示波器演示电压的图形,让学生对数学的学习产生形象直观的感觉,逐步将现实问题转化、抽象成过渡性数学问题,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质。 2、课标及教材分析 “根据正弦型函数的图象求其解析式”是职高教科书数学第一册第七章第三节的延展内容,它是在学习好正弦函数,正弦型函数后的一个升华内容,是三角函数图象知识的高层次运用,也是解决生活实际问题的一个重要思想方法,因此具有一定的应用价值。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“根据正弦型函数的图象求解析式”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

正弦函数余弦函数图像教案及反思

1.4.1 正弦函数、余弦函数的图象 教材分析 三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。 由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标 1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力. 2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点 教学重点:正弦函数、余弦函数的图象. 教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课 1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)? 2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R时的图象? 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案) 海黄和紫檀哪个更有价值 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手 串。”端木轩的尚女士向记者引见说。 海黄紫檀领风骚 手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 “目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。 一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价

格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。“你看这10年间海南黄花梨价钱涨了百余倍,都说 水涨船高,这海黄手串的价钱自然也是一路飙升。” “这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。”檀梨总汇的李女士说着取出手串 让记者感受一下,托盘里一串直径2.5m m的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。 同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左 右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。 “和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。”正说着店里迎来一位老顾客,这位顾客通知记者,受经济条件所限,他是先从1000元以内的小叶檀手串玩起,再一步一步升级的。“我这算是以藏养藏吧,往常手里面也有上万元的了。”

正弦函数的性质与图像

北师大版必修4§1.5《正弦函数的性质与图像》第一课时 设计者:江西省南康中学 邱小伟 一、教学目标 1.知识与技能 (1)理解正弦线的概念和函数sin ,[0,2]y x x p =?的性质。 (2)了解正弦函数图像的画法,掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。 2.过程与方法 通过利用单位圆研究正弦函数性质的过程,增强学生自主分析问题、解决问题的能力。 3.情感态度价值观 通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、教材分析 1.教材的地位与作用 《正弦函数的图像与性质》是高中《数学》必修4(北京师范大学版)第一章第五节的内容,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数的图像,为今后余弦函数、正切函数的图像与性质、函数 的图像的研究打好基础,起到了承上启下的作用。因此,本节的学习有着极其重要的地位。 本节共分两个课时,本课为第一课时,主要是利用正弦线画出 sin ,[0,2]y x x p =?的图象,考察图象的特点,介绍“五点作图法”。 2.教学重、难点 重点:函数sin ,[0,2]y x x p =?的性质;正弦函数图像的五点作图法。 难点:正弦函数值的几何表示;正弦函数sin y x =图像的画法。 难点突破:在正弦函数定义的基础上,给出正弦函数值的几何表示(正弦线),再运用几何画板软件,带领学生一起直观形象地去探索正弦函数的图像,在清楚了正弦曲线的基本形状基础上,让学生通过练习动手实践掌握正弦曲线的五点作图法。 三、教法分析 根据上述学习目标分析和教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为: 1.计算机辅助教学 借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。 2.讨论式教学

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

正弦、余弦函数图像

1.4.1 正弦函数、余弦函数的图像 (一) 给定任意一个角,其正弦值、余弦值均存在,且满足唯一性,即角与正弦、余弦值之间可以建立一一对应关系,符合函数的要求。 形如y =Asin(ωx +φ)(ω≠0)的函数称为正弦函数; 形如y =Acos ωx +φ (ω≠0)的函数称为余弦函数; 其中y =sinx 、y =cosx 是正弦函数与余弦函的基本形式:所有的正弦函数、余弦函数,通过“换元”思想,都可以转化为y =sinx 与 y=cosx 的形式,故二者是研究正弦函数与余弦函数的基石。 (二) 在诱导公式的帮助下,我们可以将任意一个角的三角函数值转化为求某一个锐角的三角函数,再以有序实数对(角,三角函数)的形式在坐标系内描点,从而得到三角函数的图象;除了基础的描点法,我们也可以利用三角函数线,得到函数的图象。 (三) 0到2π,是任意角的冰山一角;0到2π一段上的函数图象,也仅仅是三角函数图象的一部分.另一方面,当角的终边旋转一周后继续旋转,角的大小在逐渐变化的同时,角的正弦线“玩接力”样依次重复出现,可以预见,2π到4π,4π到6π,6π到8π,…,是0到2π一段上函数图象的“复制”与“粘贴”,每一段的首尾相接,便是函数图象的“真身”。 (四) 正弦函数、余弦函数的图象告诉我们: ①从自变量x 的角度看,函数图象可沿着x x 轴上任何一个故正弦函数、R ; ②从因变量y 的角度看,正弦函数、余弦y =1与y =?1两条互相[?1,1],好比正弦函数、余弦函数为一个“加工厂”,投入的角多大多小,产成品----“函数值”只能在[?1,1]; ③正弦函数、余弦函数的图象可以看作某一部分(如图中的阴影部分)的重复拼接,故画函数图象时,可以以此为单元。 (五) 基于正弦函数、余弦函数图象的特征,有了重复单元,就有了整个正弦函数、余弦函数的图象;在画函数图象时,重复单元的绘

相关文档
相关文档 最新文档