文档库 最新最全的文档下载
当前位置:文档库 › 变频器的故障排除 第1讲 变频器过压故障及案例分析

变频器的故障排除 第1讲 变频器过压故障及案例分析

变频器的故障排除 第1讲 变频器过压故障及案例分析
变频器的故障排除 第1讲 变频器过压故障及案例分析

李方园(1973-)

男,浙江舟山人,毕业于浙江大学电气自动化专业,高级工程师,长期从事于变频器等现代工控产品的应用与研究工作。

摘要:变频器过压故障保护是变频器中间直流电压达到危险程度后采取的保护措施,这是电压型交-直-交变频器设计上的一大缺陷,在变频器实际运行中引起此故障的原因较多。本文分析了变频器过压故障发生的原因,以及解决过压问题的一些通用措施,并以“离心机变频减速运行过压”案例阐述了过压故障排除的步骤。

关键词:变频器;过压故障;制动单元;电动与发电

Abstract:AC inverter overvoltage fault’

s protection is protection measures to avoid the

risk of the common DC voltage which is one of the design defects for VSI inve rter with AC-

DCAC model. There are many reasons for this malfunction during the actual oper ation. This

paper analyzes the inverter overvoltage fault causes, and to resolve the issue o f

overvoltage by some common measures. Finnaly

the example of “inverter overvoltage when slow down running of the centrifuges”

is

explained and the overvoltage troubleshooting steps are carried out.

Key words:AC inverter; Overvoltage fault; Brake Unit; Motor and Generator

1 前言

变频器过压故障保护是变频器中间直流电压达到危险程度后采取的保护措施,这是电压型交-直-交变频器设计上的一大缺陷,在变频器实际运行中引起此故障的原因较多,可以采取的措施也较多,在处理此类故障时要分析清楚故障原因,有针对性的采取相应的措施去处理。

2 变频器过压问题的提出

通用变频器大都为电压型交-直-交变频器,变频器的基本结构可以知道三相交流电首先通过二极管不控整流桥得到脉动直流电,再经电解电容滤波稳压,最后经无源逆变输出电压、频率可调的交流电给电动机供电。一般而言,负载的能量可以分为动能和势能两种。动能(由负载的速度和重量确定其大小)随着物体的运动而累积,当动能减为零时,该物体就处在停止状态。图1所示为电机传动的四种运行方式,在本章中所涉及到负载的共同特点,就是要求电机不仅运行于电动状态(一、三象限),而且要运行于发电制动状态(二、四象限)。

图1 电机传动的四种运行方式

对于变频器,如果输出频率降低,电机转速将跟随频率同样降低,这时会产生制动过程,由制动产生的功率将返回到变频器侧,由于二极管不控整流器能量传输不可逆,产生的再生电能传输到直流侧滤波电容上,产生泵升电压;而以GTR、IGBT为代表的全控型器件耐压较低,过高的泵升电压有可能损坏开关器件、电解电容,甚至会破坏电机的绝缘,从而威胁系统安全工作,这就限制了通用变频器的应用范围。因此,必须将这些功率消耗掉,如可以用电阻发热消耗。在用于提升类负载时,如负载下降,能量(势能)也要返回到变频器(或电源)侧,这种操作方法被称作“再生制动”。

如果在负载减速期间或者长期被倒拖时,由电机侧流到变频器直流母线侧产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧或者通过直流母线并联的方式由其他电动状态的电机消耗的方法叫做回馈制动。显然,如需要将能量直接返回到电源侧还需要一种特殊的装置,即能量回馈单元。

总而言之,为了改善制动能力,不能单纯期望靠增加变频器的容量来解决问题,而必须采用处理再生能量的方法:电阻能耗制动和回馈制动。

从上可以知道,变频器过压主要是指其中间直流回路过压,而中间直流回路过压主要危害有以下几点:

(1) 引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和,励磁电流过大,从面引起电机温升过高。

(2) 损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响。

(3) 对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间直流回路过压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。

正是基于过压的严重危害性,在以下变频器应用场合,用户必须考虑配套使用制动方式:电机拖动大惯量负载(如离心机、龙门刨、巷道车、行车的大小车等)并要求急剧减速或停车;电机拖动位能负载(如电梯,起重机,矿井提升机等);电机经常处于被拖动状态(如离心机副机、造纸机导纸辊电机、化纤机械牵伸机等)。

3 产生变频器过压的原因

一般能引起中间直流回路过压的原因主要来自以下两个方面:

(1) 来自电源输入侧的过压

正常情况下的电源电压为380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591V,个别情况下电源线电压达到450V,其峰值电压也只有636V,并不算很高,一般电源电压不会使变频器因过压跳闸。电源输入侧的过压主要是指电源侧的冲击过压,如雷电引起的过压、补偿电容在合闸或断开时形成的过压等,主要特点是电压变化率dv/dt和幅值都很大。

(2) 来自负载侧的过压

主要是指由于某种原因使电动机处于再生发电状态时,即电机处于实际转速比变频频率决定的同步转速高的状态,负载的传动系统中所储存的机械能经电动机转换成电能,通过逆变器的6个续流二极管回馈到变频器的中间直流回路中。此时的逆变器处于整流状态,如果变频器中没采取消耗这些能量的措施,这些能量将会导致中间直流回路的电容器的电压上升,达到限值即行跳闸。

比如当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过压跳闸故障。

4 案例分析:离心机变频减速运行过压

(1) 故障现象

某离心机厂的离心机选用艾默生变频器EV2000-4T0015G变频器(如图2所示),在调试时,变频器总是在减速过程中报E005故障(减速过压)。

图2 离心机外观 (2) 分析处理

查找故障原因,并根据说明书进行定位(如图3所示)。

图3 E004/E005/E006过压故障定位

在定位过程中,现场检查该变频器时,发现在从最高频率减速到34Hz时,制动单元受自身使用率的影响,已经自动停止工作,制动单元出现黄灯警告,放电工作停止,而此时离心机还在回馈能量给变频器的直流母线,结果导致直流母线电压超过变频器允许值,从而报E005故障。将制动单元的拨码开关S1的第四位选择为ON(表1所示),即使用率改为100%,故障解除。

表1 制动单元S1选择开关

出现上述问题的原因在于离心设备是个大惯性负载,在停车减速时,减速时间才150多秒。

(3) 案例归纳

由于制动单元是变频器的外设,因此遇到变频器过压故障必须查看制动单元的显示状态,并根据提示进行故障排除。表2所示为本案例使用的艾默生制动单元的待机显示、动作指示、故障指示、工作超时指示等状态。

表2 艾默生制动单元显示举例

除了本案例的制动率之外,还必须注意制动单元的选择情况。在进行制动单元的选择时,制动单元工作时流过开关管的最大瞬时电流要小于该器件的额定电流是选择的唯一依据,通过计算出最大电流值,就可以选择合适的制动单元,计算公式如下:

式中,UC为制动单元直流母线电压值,在交流380V进线电源时取800V;RB为制动电阻阻值(Ω);IC为制动电流瞬时值(A)。

一般变频器的硬件过压保护值为760V,考虑其动作的滞后,将其适当加大,但不会超过800V,因此在计算IC时适当加大了UC。

(4) 经验点

能耗制动的基本应用就是变频器、制动单元和制动电阻,且是一一对应的。由于制动单元一般具有通用性,制动电阻又可以自由选配功率和阻值,所以一对一的单机应用型能耗制动方案对品牌并无特殊要求。

能耗制动的基本应用方案一般都以下三种:

无保护型

图4所示就是适用于用户选用的普通制动电阻。只要确保制动电阻的功率和散热条件良好,并不至于发生火灾隐患的情况下,就可以选用无保护型接线。

图 4 无保护型制动单元配线

图4中,制动单元以艾默生TDB系列为例,其端子说明如下:P为直流母线正端,N为直流母线负端,可以输入的电压规格为DC600V/40A;PB为制动电阻的一端,另外一端为P,接输出制动电阻;G为制动单元接地;TA/TB/TC为故障继电器的公共点、常闭点和常开点,可以接交流220V/10A或直流30V/1A以下的控制回路。

接触器保护型

通过进线接触器来保证变频器与制动单元的电气安全,也就是说当制动单元发生故障或者制动电阻热保护,立即切断接触器,变频器和制动单元就处于安全保护状态。采用接触器保护型的接线方式必须确

保制动单元的动作触点和制动电阻的热触点处于有效的状态内,否则容易导致接触器不动作或频繁动作,反而造成系统损坏。

控制端子保护型

通过定义控制端子为变频器的保护功能时封锁变频器的电压输出,也就是说当制动单元发生故障或者制动电阻热保护,变频器的控制端子就处于有效接通的状态,变频器就认为外部设备故障,显示故障报警代码并停止输出。这种功能是利用变频器特有的对输入外部设备的故障监视功能。

5 结束语

对于过压故障的处理,关键一是中间直流回路多余能量如何及时处理;二是如何避免或减少多余能量向中间直流回路馈送,使其过压的程度限定在允许的限值之内。

因此,可以归纳为下面主要的对策:在电源输入侧增加吸收装置,减少过压因素;从变频器已设定的参数中寻找解决办法;分析工艺流程,在工艺流程中寻找解决办法;采用增加制动电阻的方法;在输入侧增加逆变电路的方法;采用在中间直流回路上增加适当电容的方法;在条件允许的情况下适当降低工频电源电压;多台变频器共用直流母线的方法;通过控制系统功能优势解决变频器过压问题。

避雷器故障排除案例分析 图文 民熔

避雷器产品介绍 民熔 HY5WS-17/50 氧化锌避雷器 10KV高压配电型 A级复合避雷器 参数: 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量:100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压)

注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 避雷器故障排除案例,一:避雷器质量不良引起的事故雷雨高某生产厂及生活区高、低压全部停电。经检查;35kV 高压输电线中的B相导线断落;雷击时变电所内高压跌落式熔断器有严重的电弧产生。低压配电室内也有电弧现象并伴有爆炸声;有一台低压配电柜内的二次线路被全部击坏。 变电所;输电线路呈三角形排列;全线架设了避雷线?35kV变电所的入口处;装设了避雷器和保护间隙。保护间隙被雷击坏后;一直没有修复?在变电所的周围还装设了两根24m高的避雷针;防雷措施比较全面;但还是遭受到雷害。 雷击发生后;进行了认真检查;防雷系统接地电阻均小于4Ω;符合规程要求。检查有关预防性试验的记录;发现35kV变电所内的B相避雷器;其试验数据当时由于生产紧张等原因;一直未予以处理

变频器的常见故障及处理方法介绍

变频器的常见故障及处理方法介绍 在变频器维修时我们需要根据变频器的故障来判断,一般发生的故障和损坏的特征一般可分为:一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象。另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。 关于变频器的常见故障以及维修方法详解 1.维修变频器整流块损坏 变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。 中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。 在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。 2.变频器充电电阻易损坏维修 导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。 其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。

变频器IGBT模块故障维修案例

故障现象 某一抽油机变频器设备,是1140v/30kw抽油机专用变频器,运行过程中中间一相IGBT模块处被烧黑,其上母线尖峰吸收电容(3μf/1200v无感电容两只串联再并联)一个腿被打断,不能正常运行。 初步判断 用万用表检测主电路部分,中间一相被熏黑,但检测好,其他两相也正常。 维修过程 (1)首先更换损坏器件。将3μf /1200v电容更换后,再将隔离开关合上,给控制柜送电,控制柜没反应,电源灯不亮,电压表没有指示。 (2)输入端接有高压熔断器,怀疑是它损坏了。用万用表高压档检测熔断器后三个端子对电压,都正常,均为690v,因控制电路用是220v电源,怀疑1140/220v变压器有问题。后来断电后用万用表检测熔断器两端阻值,有一相通,另两相断,断定原判断有误,有两相熔断器烧断。检测熔断器,有电显示,应是未断那相1140/220v变压器初级绕组串过去,因是单相供电,形不成电压,1140v/220v变压器不工作,控制柜因不到电压而不能工作。 (3)将熔断器更换后,柜子送电正常,工频启动,工作正常,工频维修完毕。接着维修变频部分。 (4)通控制电。一送电,显示板上故障保护灯就亮,怀疑干扰,但多次送、停电都这样,因处于保护状态,不能开机。后将短路保护插线拔掉(因主电路没通电,控制电路送电,无影响),送电正常。开机也正常,用万用表检测频率到达50hz时电压,三相输出电压都平衡,线间电压为8.2v,对中线为5.0v,工作正常。 (5)检查短路保护板。将输入端短路保护取样电流传感器拔下,测量板上电源电压,±12v正常,但+5v供电电压+3.0v,将集成快74hc14拔下,+5v正常,说明该集成块已经损坏,更换一只新的。 (6)将输入端短路保护取样电流传感器插上。先插正母线上电流传感器,测±12v,工作正常;再插负母线上电流传感器,测±12v电压,+12v+ 9.0v,-12v 正常。说明负母线上电流传感器损坏。将该电流传感器取下更换。 (7)将拔下线都插上,并与主板连接好。通控制电,工作正常。为进一步

一般变频器常见故障及处理

一般变频器常见故障及处理 目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用 16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。 1.参数设置类故障 常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1.1参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: 第一,确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 第二,变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 第三,设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 第四,给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 2.过压类故障 变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以 380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。 2.1输入交流电源过压 这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。 2.2发电类过电压 这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。 第一,当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。

互感器的常见故障及处理(终审稿)

互感器的常见故障及处 理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、 1. 电压互感器有下列故障现象之一,应立即停用: (1)高压保险连续熔断两次(指10kV电压互感器); (2)内部发热,温度过高; (3)内部有放电“噼叭”声或其它噪声; (4)内部发出焦臭味、冒烟、着火; (5)套管严重破裂放电,套管、引线与外壳之间有火花放电; (6) GIS互感器设备有漏气或SF6气体压力低于最小运行压力值; 2. 发现电压互感器有上述严重故障,其处理程序和一般方法为: (1)退出可能误动的保护及自动装置,断开故障电压互感器二次开关(或拔掉二次保险)。(2)电压互感器三相或故障相的高压保险已熔断时,可以断开,隔离故障。 (3)高压保险未熔断,高压侧绝缘未损坏的故障,可以断开隔离开关,隔离故障。 (4)高压保险未熔断,电压互感器故障严重,高压侧绝缘已损坏,禁止使用隔离开关或取下熔断器来断开有故障的电压互感器,只能用断路器切除故障,然后在不带电情况下断开隔离开关,恢复供电。 (5)故障隔离,一次母线并列后,合上电压互感器二次联络,重新投入所退出的保护及自动装置。 (6)电压互感器着火,切断后,用干粉、1211灭火器灭火。 3. 10kV电压互感器一次侧熔丝熔断的处理: (1)现象:熔断相的相电压降低或接近零,完好相电压不变或略有降低,有功无功表指示降低。

(2)处理:断开电压互感器隔离开关,取下低压熔丝,做好安全措施后,检查外部无故障,更换同一规格的一次熔丝。若送电时发生连续熔断,此时可能互感器内部有故障,应该将电压互感器停用。 4. 10kV电压互感器二次侧熔丝熔断的处理: (1)现象: 1)电压互感器对应的电压回路断线信号表示,警铃响。 2)故障相相电压指示为零或偏低,有功、无功表指示为零或偏低。 (2)处理方法: 1)检查二次电压回路的保险器是否熔断或接触不良。 2)如果不是保险器的问题,应立即报告值班调度员。 3)检查电压回路有无接头松动或断线现象。 4)如找不到原因,故障现象又不能消除,应立即进行停电检查。 5. 110kV电压互感器的事故处理: 110kV及以上电压互感器一次侧无熔断器保护,二次侧用低压自动开关来断开二次回路的短路电流。 (1) 现象:母线电压表、有功功率表、无功功率表降为零;主电压回路断线,母线电压回路断线信号,距离保护振荡闭锁;(2) 处理:立即汇报调度;退出该母线上的线路距离保护出口连接片;试送电压互感器二次侧自动开关,若不成功应及时报告上级领导;不准将电压互感器在二次侧并列,以免扩大事故。二、电流互感器 1. 电流互感器有下列故障现象时,应立即停用,但事后必须立即报告值班调度员及有关人员:(1)有过热现象;(2)内部有臭味、冒烟;(3)内部有严重的放电声;(4)外绝缘破裂放电;(5) GIS互感器设备有漏气或SF6气体压力低于最小运行压力值; 2. 电流互感器二次开路故障的处理:(1)现象: 1)电流互感器声音变大,二次开路处有放电现象。 2)电流表、有功功率表和无功功率表指示为零或偏低,电度表不转或

变频器线路板常见维修方法

变频器线路板常见维修方法 往往变频器的故障只有一点,而对于维修者最重要的就是找到故障点,有针对性地处理问题,尽量减少无用的拆卸,尤其是要尽量减少使用烙铁的次数。除了经验,掌握正确的检查方法是非常必要的。正确的方法可以帮助维修者由表及里,由繁到简,快速的缩小检测范围,最终查出故障并适当处理而修复。 首先谈谈故障的检查方法 报警参数检查法: 所有的变频器都以不同的方式给出故障指示,对于维修者来说是非常重要的信息。通常情况下,变频器会针对电压、电流、温度、通讯等故障给出相应的报错信息,而且大部分采用微处理器或DSP处理器的变频器会有专门的参数保存3次以上的报警记录。 (例1)某变频器有故障,无法运行并且LED显示“UV”(under voltage的缩写),说明书中该报警为直流母线欠压。因为该型号变频器的控制回路电源不是从直流母线取的,而是从交流输入端通过变压器单独整流出的控制电源。所以判断该报警应该是真实的。所以从电源入手检查,输入电源电压正确,滤波电容电压为0伏。由于充电电阻的短路接触器没动作,所以与整流桥无关。故障范围缩小到充电电阻,断电后用万用表检测发现是充电电阻断了。更换电阻马上就修好了。 (例2)有一台三垦IF 11Kw的变频器用了3年多后,偶尔上电时显示“AL5”(alarm 5 的缩写),说明书中说CPU被干扰。经过多次观察发现是在充电电阻短路接触器动作时出现的。怀疑是接触器造成的干扰,在控制脚加上阻容滤波后果然故障不再发生了。 (例3)一台富士E9系列3.7千瓦变频器,在现场运行中突然出现OC3(恒速中过流)报警停机,断电后重新上电运行出现OC1(加速中过流)报警停机。我先拆掉U、V、W到电机的导线,用万用表测量U、V、W之间电阻无穷大,空载运行,变频器没有报警,输出电压正常。可以初步断定变频器没有问题。原来是电机电缆的中部有个接头,用木版盖在地坑的分线槽中,绝缘胶布老化,工厂打扫卫生进水,造成输出短路。 (例4)三肯SVF303,显示“5”,说明书中“5”表示直流过压。电压值是由直流母线取样后(530V左右的直流)通过分压后再由光耦进行隔离,当电压超过一定阀值时,光耦动作,给处理器一个高电平。过压报警,我们可以看一下电阻是否变值,光耦是否有短路现象等。 由以上的事例当中不难看出,变频器的报警提示对处理问题有多么重要,提示你正确的处理问题的方向。 类比检查法:

富士变频器常见故障及判断报告

富士变频器常见故障及判断 一、富士变频器常见故障及判断 (1) OC报警键盘面板LCD显示:加、减、恒速时过电流。对于短时间大电流的OC (损坏) :电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。小容量( 7.5G 11以下)变频器的24V风扇电源短路时也会造成OC324V风扇电源会损它功能正常。若出现“1、OC 2”报警且不能复位或一上电就显示“OC 3”;若一按RUN键就显示“OC 3” (2) OLU报警键盘面板LCD显示:变频器过负载。当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。 (3) OU1报警键盘面板LCD显示:加速时过电压。当通用变频器出现“OU 一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环 LCD

780VDC时OU报警;当低于350VDC LU报警。 (4) LU报警键盘面板LCD显示:欠电压。如果设备经常“LU欠 (H03设成1后确认)然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且(电源)驱动板出了问题。 (5) EF报警键盘面板LCD显示:对地短路故障。G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。 (6)Er1报警键盘面板LCD显示:存贮器异常。关于G/P9系列变频器“ER1不复位”故障的处理:去掉FWD—CD 直按住RESET键直到LED电源指示灯熄灭再松手;然后再重新上ER1这种方法也不能解除 (7) Er7报警键盘面板LCD显示:自整定不良。G/P11系列变频器 (小容量变频器)。另外就是检查内部接触器是否吸合(30G 11以上;且当变频器带载输出时才会报警)、接触器的辅助触点是否接触良好;若内部接触器不吸合可首先检查驱动板上的1A 保险管是否损坏。也可能是驱动板出了问题—可检查送给主板的两芯信号是否正常。 (8)Er2报警键盘面板LCD显示:面板通信异常。11kW以上的变频器当24V风扇电源短路时会出现此报警(主板问题)。对于E9系 DTG

互感器及二次回路故障诊断与处理

互感器及二次回路故障诊断与处理

目录概述 电压互感器 电流互感器

概述

变电站的一次设备和二次设备 ?一次设备是直接发、输、供电的电气设备,如发电机、变压器、输电线路、电力电缆、断路器、隔离开关、母线、避雷器、电流互感器、电压互感器、阻波器等 ?二次设备是指对一次设备工作状况进行监视、测量、控制、保护、调节所必须的设备,如监控装置、保护、自动装置等,通常还包括直流、站用电系统的交流、电流互感器、电压互感器的二次绕组引出线。

保护柜 计量柜 测控柜 保护报文 保护信息 跳闸 重合闸 装置异常 电压切换异常 电源异常 网络 后台 报文 断路器端子箱 T A 手合 手分 位置 、信息 刀闸分合 断路器机构箱 刀闸机构 位置 信息 分合 电机加热照明电源 DL 分合 G 位置 刀闸机构 分合 位置 电机加热照明电源 电压小母线 切换后电压 保护信息管理机 切换后电压 母线保护 故障录波 辅助接点 所用电柜 GPS 对时 GPS 对时 防误回路 母线保护 母差动作 失灵起动 母线保护 母刀位置 操作箱 一次设备与二次设备连接关系 T V

互感器及其二次回路 互感器 电压互感器 电流互感器 是一次回路和二次回 路的联络设备。 一次回路的 高电压、大 电流 二次回路的 低电压、小 电流 作用接入方式 变换作用 电气隔离作用 高电压、大电流变换为标准的低电 压、小电流。如100V,5A,1A 将二次设备与一次设备相隔离,保 证了设备和人身安全 电压互感器一次绕组以并联形式接入一次回路;二次负荷以并联形式接在电压互感器的二次绕组回路。 电流互感器一次绕组以串联形式接入一次回路;二次负荷以串联形式接在电流互感器的二次绕组回路。

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(0C) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检 测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流 上限设置太小、转矩补偿(V/F )设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“ 0C” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTR0-VERT2kW 变频通电就跳“ 0C ”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(0U ) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单 元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“ 0U”。

分析与维修:首先要搞清楚“ 0U ”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191 )时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电 电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“ Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触 器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳 压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004 变频器,上电显示正常,但是加负载后跳 “ DCLINKUNDERVOLT ” (直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是 那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任 何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流 桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一 路桥臂开路,更换新品后问题解决。 四、过热(OH )。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW 变频器客户反映在运行半小时左右跳“OH ”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。 五、输出不平衡

富士变频器维修实例

很多工厂供电是发电机发电,当发电机有故障时,输出高压电常把变频器及电子仪器烧坏!这种情况是我们经常见过的,去年深圳就有一家拉丝厂一次就坏了二十几台30KW变频器, 停产十几天,造成重大损失,工厂在发电机搞了很多保护方法可效果不太明显!后来我们想 了一个被动的保护方法,就是在变频器或仪器的输入端的空气开关上加了压敏电阻(380V 用821K,220V471K),这样当有高压电时压敏就会短路,空气开关跳闸,保护了变频器,变频器故障率大大减小,压敏电阻很便宜,这个方法可说是花小钱办大事 2: 最近维修一台安川616G5-55KW变频器,损坏严重,其原来是有一个快熔断了(三相 各有一个快熔),电工可能是没有经验,没有检查模块是否有问题,又一时找不到快熔,就 用一条铜线代替,开机后发出一声巨响,两个模块炸裂,吸收回路坏,推动板也无法维修,换新板,造成重大损失!按我们经验,如果快熔断则模块大多有问题,但模块坏快熔不一定断!铜线代替快熔的做法我们已见过不少次!3: 有一位电工打来电话,说他在给变频器 试机时发现变频器输出电压有1000多伏(输入380V),问是否是变频器故障?是否会烧电机?他还不明白变频器只会降压,不会升压!!原来他是用数字万用表测量,由于变频器输 出电压是高频载波,普通没防干扰的数字表在这里测量是很不准! 4 今天有的朋友打来 电话,说到压敏电阻问题,他问到有的变频器里面输入端也有压敏电阻,也应该有保作用!但根据我们修过的变频器的实际情况来看,轻伤的就只烧断电路板的铜线,重伤的就烧坏整 流模块,开关电源,CPU板,电容,造成重伤的原因可能是当压敏电阻短路爆炸时它的金 属碎片到处飞;爆炸时发出强大的静电及电磁波(很象雷击);烧断电路板的铜线使空气开 关不动作。所以在变频器外面另加压敏电阻情况就好很多! 5 有的人 买模块时要求型号一字不差!其实完全没必要这样,如模块7MBR25NF-120与 7MBR25NE-120的参数是一样的,前者只多了四个定位脚!由于IGBT模块的驱动是电压 控制,有更好的互换性,只要耐压、电流参数一样,不同型号的IGBT模块很多是可互换!有的安装尺寸不同的还可另钻孔!GTR模块则还需要考虑其放大倍数,互换性差一点!我 们维修变频器那么便宜就是充分利用模块的互换性,避开用市场上热销的模块,不然模块价 格高或难找到! 6 怎样选购模块:维修变频器,判定模块的质量也是关键!首先你要看 模块是否被拆开过(看外观痕迹),现在有很多模块是维修过的,参数正常但质量很差!耐 压值是最重要的参数,可用耐压表测量,输入380V的变频器的输出模块耐压值要大于1000V,220V则要600V!电流则可用电容表来比较判定大小!IGBT模块还可以用指针式万用表10K 档检测其是否能动作,用指针(黑—红)去触发模块的G—E,可使模块C—E导通,当G—E 短接时则C—E关闭!这方法是最简单最基本的测量方法,是维修新手可以做到的,专业 的可不是这样测量!7 不少人维修变频器更换的模块没几天又坏掉,弄不 清原因就拿到我们这里来,原来是有的螺丝没拧紧!看起来好象是小事,但对变频器却是致 命的!我们发现,有很多变频器当装在有震动的设备上(如工业洗衣机、机床等)运行一段 时间后,其主回路的连接螺丝和模块的紧固螺丝容易松动,此时最先损坏一般是模块,如果 换了模块后没有紧固其它螺丝,则模块很快坏掉,就埋怨模块质量不好!也特别强调不要把 变频器装在有震动的设备上,不然多好的变频器可能很快就坏了!8 很多人搞不清富士 G9-5.5KW变频器整流模块CVM40CD120的结构,在这里简单说一下: 整流部分:R、S、T、A(+)、N-(-)充电可控硅:A、P1、Gth(触发) 制动管:DB、N-、G7(触发);DB、B+ 是其续流二极管电源开关管:D8、S8、G8热敏电阻:Th1、Th29 富士G9变 频器3.7KW-7.5KW有一个共同的问题:其散热风扇功率大,转速高,当在尘多的工作环境中寿 命会比较短!当风扇坏了以后变频器也不会马上跳“过热”保护(可能是保护温度值设置太高),这时整个变频器的内部温度很高,使到驱动电路及电源电路的小电容容易老化,通常是开关 电源最先停止工作!变频器没有显示!!这时候应把风扇及电源电路的二个小电容换掉就可

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

互感器的常见故障及处理

一、 1. 电压互感器有下列故障现象之一,应立即停用: (1)高压保险连续熔断两次(指10kV电压互感器); (2)内部发热,温度过高; (3)内部有放电“噼叭”声或其它噪声; (4)内部发出焦臭味、冒烟、着火; (5)套管严重破裂放电,套管、引线与外壳之间有火花放电; (6)GIS互感器设备有漏气或SF6气体压力低于最小运行压力值; 2. 发现电压互感器有上述严重故障,其处理程序和一般方法为: (1)退出可能误动的保护及自动装置,断开故障电压互感器二次开关(或拔掉 二次保险)。 (2)电压互感器三相或故障相的高压保险已熔断时,可以断开,隔离故障。(3)高压保险未熔断,高压侧绝缘未损坏的故障,可以断开隔离开关,隔离故障。(4)高压保险未熔断,电压互感器故障严重,高压侧绝缘已损坏,禁止使用隔离开关或取下熔断器来断开有故障的电压互感器,只能用断路器切除故障,然后在不 带电情况下断开隔离开关,恢复供电。 (5)故障隔离,一次母线并列后,合上电压互感器二次联络,重新投入所退出的保 护及自动装置。 (6)电压互感器着火,切断后,用干粉、1211灭火器灭火。 3. 10kV电压互感器一次侧熔丝熔断的处理: (1)现象:熔断相的相电压降低或接近零,完好相电压不变或略有降低,有功 无功表指示降低。 (2)处理:断开电压互感器隔离开关,取下低压熔丝,做好安全措施后,检查

外部无故障,更换同一规格的一次熔丝。若送电时发生连续熔断,此时可能互感器 内部有故障,应该将电压互感器停用。 4. 10kV电压互感器二次侧熔丝熔断的处理: (1)现象: 1)电压互感器对应的电压回路断线信号表示,警铃响。 2)故障相相电压指示为零或偏低,有功、无功表指示为零或偏低。 (2)处理方法: 1)检查二次电压回路的保险器是否熔断或接触不良。 2)如果不是保险器的问题,应立即报告值班调度员。 3)检查电压回路有无接头松动或断线现象。 4)如找不到原因,故障现象又不能消除,应立即进行停电检查。 5. 110kV电压互感器的事故处理: 110kV及以上电压互感器一次侧无熔断器保护,二次侧用低压自动开关来断开二 次回路的短路电流。 (1) 现象:母线电压表、有功功率表、无功功率表降为零;主电压回路断线,母线电压回路断线信号,距离保护振荡闭锁; (2) 处理:立即汇报调度;退出该母线上的线路距离保护出口连接片;试送电压互感器二次侧自动开关,若不成功应及时报告上级领导;不准将电压互感器在二次 侧并列,以免扩大事故。 二、电流互感器 1. 电流互感器有下列故障现象时,应立即停用,但事后必须立即报告值班调度员 及有关人员: (1)有过热现象; (2)内部有臭味、冒烟;

变频器常见故障维修方法

变频器常见故障维修方法 在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。 一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。 2、测试逆变电路 将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障 二、动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。 3、上电后检测故障显示内容,并初步断定故障及原因。 4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。 三、故障判断 1、整流模块损坏

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“OC” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTRO-VERT2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“OU”。

分析与维修:首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。 四、过热(OH)。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW变频器客户反映在运行半小时左右跳“OH”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。

变频器的常见故障及维修详解

变频器的常见故障及维修 变频器的发展应该说经历了一段很漫长的时间,中国变频器市场也经历了从80年代初--90年代中期日本变频器独领风骚,到现在的欧美变频器渐占主导地位的局面。在这中间我们不得不提到台湾产的变频器。作为一个半导体电子产品的集结地和加工中心,变频器这个和半导体IC业密切相关的行业在台湾也取得了巨大的发展。为台湾变频器在市场上也赢得了一席之地。并以其低廉的价格和较好的性能受到了中低档用户的青睐。处于领先地位的品牌主要有台达,台安,东元,其他我们还能碰到的品牌有爱德利,利佳,宁茂,欧林,九德松益等。 台湾变频器相对来说功能较简单,特别是早期的产品,像台安欧林主要功能就是调速,简单而实用。如台安早期的N1系列,和欧林的OL—2001系列OL—4001系列。但随着半导体技术的发展,以及用户客观使用场合使用要求的提高,变频器的功能也越来越丰富。台湾变频器也有了长足的发展,随着控制理论的成熟,控制方式也由原来的V/F控制提升至电压矢量控制,主要的功率器件也由大功率双极型晶体管GTR改善为绝缘栅双极型晶体管IGBT,变频器性能大为提高。 在功能上,台湾产变频器虽然无法和欧美及日本变频器相提并论,但功能上也越来越完善。台安,台达都有RS232/485通讯功能,内置PID功能,台达变频器还带有PG卡选件,参数里更带有电子齿轮设置,调速更精确。(VFD-V系列)。由于纺织行业的一些特殊性,台安变频器推出了内建摆频功能的SV300系列变频器。对于东元变频器来说由于采用了安川变频技术,东元无论从外形还是内部参数都和安川极为接近,功能也极其相近。由于是安川变频的成熟技术,质量还是相当可靠。分类也和安川变频接近。功能也十分强大,包括多种通讯方式

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

一起500kV电容式电压互感器缺陷故障案例分析

一起500kV电容式电压互感器缺陷故障案例分析 发表时间:2019-07-09T11:51:17.997Z 来源:《电力设备》2019年第6期作者:陈江添 [导读] 摘要:电容式电压互感器在发生内部电容击穿故障时,会改变中间变压器的变比,从而引起二次电压的变化。 (广东电网有限责任公司东莞供电局东莞 523000) 摘要:电容式电压互感器在发生内部电容击穿故障时,会改变中间变压器的变比,从而引起二次电压的变化。本文介绍了一起CVT二次电压偏低的故障缺陷,通过红外测温、停电测试及设备解体,最终确认缺陷原因为CVT分压电容C2发生击穿引起二次电压异常。结果表明,在确保元件制造质量与安装质量的同时,应加强对二次电压的测量和记录,对异常情况及时上报并消缺有助于设备的安全稳定运行。 关键词:电容式电压互感器;二次电压偏低;电容击穿 0 引言 电容式电压互感器(Capacitor V oltage Transformers)简称CVT,与电磁式电压互感器相比,具有电场强度裕度大、绝缘可靠性高、不与开关断口电容形成铁磁谐振并能削弱雷电波头等电气优点。电容式电压互感器一般适用于110kV及以上电压等级,目前在电力系统已得到广泛应用。 电容式电压互感器由电容分压器和电磁单元组成,可兼顾电压互感器和电力线路载波耦合装置中的耦合电容器两种设备的功能,CVT 的电气原理如图1所示。电容分压器由高压电容C1和分压电容C2组成,电磁单元位于油箱内,由中间变压器、谐振电抗器、阻尼器和避雷器组成,二次绕组端子、电容低压端、接地端及保护间隙等位于端子箱内,部分CVT设备中间电压端子A′不引出(引出为试验用),部分老旧的CVT设备中间变压器一次绕组侧还并接有避雷器。 图1 CVT电气原理图 本文介绍了一起500kV电容式电压互感器二次电压偏低的异常情况,从CVT原理和结构出发分析了缺陷的可能原因,通过解体检查验证了CVT分压电容C2已经被击穿,并就CVT日常运行维护提了几点建议。 1 设备缺陷概述 1.1 运行中CVT二次电压情况 某500kV变电站#2主变变高侧三相CVT的二次电压监测如下,#2主变变高A相CVT在近三年的监测中存在二次电压偏低。B相、C相CVT二次电压一直稳定在60~61.3V之间,A相CVT二次电压则在57.6~59.4V间波动,电压幅值与其余两相比较有-5%左右差别,设备运行状况相对稳定。 1.2 运行中红外测温情况 现场使用FLIR公司生产的P630红外线成像仪对#2主变变高CVT各相进行测温,采用同类分析判断法发现三相CVT瓷瓶表面温度分布均匀,相间温差较小,最大温差为0.5度,无明显的发热现象。 1.3 设备停电试验情况 结合#2主变停电机会,我们对#2主变变高侧三相CVT进行了停电检查。检查发现二次电压偏差较大的A相CVT的C2电容量为102000pF,与出厂值相比增大4.52%,介损值为0.320%,超过规程要求,也比B、C两相明显偏大。三相CVT测试数据如下: 由CVT电容分压和中间变压器变比原理可知,当分压电容C2的电容量增大或高压电容C1的电容量减小时,或者中间变压器一次绕组匝间短路导致变比k增大时会出现CVT二次绕组输出电压降低的现象。停电试验结果显示A相CVT的C2电容量与出厂值相比增大4.52%,这与二次电压偏低一致。由于C2电容单元一般由20个左右的电容元件串联而成,只有电容元件击穿或者进水受潮才会导致电容量增加,结合绝缘电阻测试情况,排除受潮可能性。最后判断分压电容C2可能有电容元件发生击穿,决定对A相CVT进行更换。 2 设备解体情况 本次主要对下节C2电容进行解体检查,解体时拆下CVT下节上法兰的上盖板,取出内置的13个扩张器,将电容单元与电磁单元分开,吊出电容器心子,此时可看到下节电容元件共有141个,其中高压臂电容C13有119个电容元件串联。外观检查发现C2单元上面几个元件侧面有黑色炭化痕迹,如图2所示。 用电容表和500V兆欧表由下至上测量C2各个电容元件的电容量和绝缘电阻值,其中第15个元件测试数值在1.9-2.4μF之间闪烁不定,

相关文档
相关文档 最新文档