文档库 最新最全的文档下载
当前位置:文档库 › 偶联剂表面改性Sb_2O_3的研究

偶联剂表面改性Sb_2O_3的研究

偶联剂表面改性Sb_2O_3的研究
偶联剂表面改性Sb_2O_3的研究

Sb 2O 3表面含有一定数量的羟基,因而具有亲

水性,与有机高聚物相容性差,不仅影响其阻燃效果,而且导致高聚物制品的机械性能和加工性能下降。因此,对其进行表面改性,使Sb 2O 3表面连接一层有机长链分子,便可以使Sb 2O 3粉末具有亲油性,提高与单体及高聚物树脂的相容性,另一方面还可提高Sb 2O 3的添加量,降低生产成本。

本文研究了不同偶联剂对Sb 2O 3的改性效果,考察了反应时间和反应温度对表面改性效果的影响,通过实验和理论计算确定了偶联剂的最佳用量,并阐述了偶联剂的作用机理。

1

实验部分

1.1

原料

Sb 2O 3,平均粒径895nm ,广东东莞市达利锑

品冶炼有限公司;硅烷偶联剂,A-151,A-172和

KH-570,南京康普顿曙光有机硅化工有限公司;钛酸酯偶联剂,NDZ-101,NDZ-201和NDZ-311,

南京康普顿曙光有机硅化工有限公司;正庚烷,分析纯,江苏宜兴市第二化学试剂厂;去离子水,自制。

1.2实验设备

500mL 玻璃夹套釜;数控恒温水槽,THD-06Q ,宁波天恒仪器厂;激光粒径分析仪,LS-230,

美国Coulter 公司,测量范围在0.04~2000μm ,以重均粒径作为比较的标准;视频光源接触角测试仪,OCA20,德国Data-physics 公司。

1.3试验方法

称取适量的硅烷偶联剂和钛酸酯偶联剂,溶

于正庚烷中,加入经干燥的Sb 2O 3粉末,在一定反应温度下搅拌若干时间,然后烘干。用液压机压制成片后用去离子水进行接触角测试。

2

结果与讨论

2.1

不同偶联剂对改性效果的影响

偶联剂表面改性Sb 2O 3的研究

(福建省建筑科学研究院,福州,350025)

摘要研究了不同偶联剂表面改性Sb 2O 3的改性效果和条件,结果发现钛酸酯偶联剂NDZ-101的

改性效果最佳,其最佳用量为1.0%与理论计算值相当;当改性时间大于30min ,改性温度大于60℃,改性效果趋于稳定。

关键词

三氧化二锑

偶联剂

表面改性

Study on Surface Modification for Sb 2O 3with Coupling Agent

He Song

(Fujian Academy of Building Research,Fuzhou,350025)

Abstract:The effects and conditions of surface modification for antimonous oxide (Sb 2O 3)with different coupling agents were studied,the conclusions were obtained as follows:titanate coupling agent NDZ-101has the best modifying effect and the optimum loading of the coupling agent is 1.0wt%;the modifying effect stabilizes when modificntion time is longer than 30min and modification temperature is higher than 60℃.

Keywords:antimonous oxide;coupling agent;surface modification

收稿日期:2008-07-14

塑料助剂2008年第5期(总第71期)

46

称取质量分数为Sb 2O 3粉末2%(质量分数,下同)的硅烷偶联剂和钛酸酯偶联剂,溶于正庚烷中,加入经干燥过的Sb 2O 3粉末,在60℃的条件下搅拌1h ,然后烘干。经压制后测得对去离子水的接触角如表1所示。

由表1可见,硅烷偶联剂对Sb 2O 3的改性效果不明显,而钛酸酯偶联剂对Sb 2O 3的改性效果较好,其中NDZ-101效果最佳。钛酸酯偶联剂在填料表面形成一层单分子覆盖膜,改变其固有的亲水性质,使填料表面性质发生根本性变化[1]。

经过偶联剂改性后Sb 2O 3的粒径略有增大,如图1所示,经NDZ-101改性后,Sb 2O 3的粒径从原来高分辨率的双峰分布变为粘连的三峰分布,而平均粒径从0.895μm 增加到1.082μm 。

2.2反应时间对改性效果的影响

在反应温度为60℃和偶联剂NDZ-101用量

为1.5%的情况下,测得不同反应时间对Sb 2O 3接触角的影响,如图2所示。

由图2可见,当反应温度和偶联剂用量固定

时,接触角随反应时间的增大而缓慢增大,在反应时间小于30min 前,接触角变化量稍大,而当反应时间大于30min 后,接触角大小趋于稳定(约

133°)。因此,在反应时间为30min 时,偶联剂与Sb 2O 3已经完全反应。

2.3反应温度对改性效果的影响

在偶联剂NDZ-101用量为1.0%,反应时间为

1h 的情况下,测得不同反应温度对Sb 2O 3接触角的影响,如图3所示。

由图3可见,当反应时间和偶联剂用量固定时,接触角随反应温度的增大而增大,当反应温度为60℃时,接触角大小趋于稳定(约142°)。因此,反应温度大于60℃后,温度对接触角的影响较小。

2.4钛酸酯偶联剂的最佳用量

在反应温度为60℃和反应时间为1h 的情况

130

135

140

145

5060

7080

改性温度/℃

接触角/(°)

图3改性温度对接触角的影响

Tab.3

The effect of modification temperature on

the contact angle

表1

不同偶联剂对接触角的影响

Tab.1The effect of diffecent coupling agents on

the contact angles

偶联剂A-151A-172KH-570NDZ-101NDZ-201NDZ-311接触角/(°)

23.546.3

89.8

128.7

103.5

115.2

145

140

135

130

50607080

改性时间/min 接触角/(°)

图2

改性时间对接触角的影响

Fig.2The effect of modification time on the contact angle

图1NDZ-101对Sb 2O 3粒径的影响

Fig.1The effect of ND2-101on the panticle diameter of Sb 2O 3

-■-未改性

-□-用NDZ-101改性

粒径/μm

12345

670.1

110

容积/%

■■■■■■■■■■■

■■■■

■■

■■

■■■■

■■■■

■■■

■■■

■■

■■

第5期何松.偶联剂表面改性Sb 2O 3的研究47

下,测得不同用量的偶联剂NDZ-101对Sb 2O 3接触角的影响,如图4所示。由图4可以看出,当改性时间和改性温度固定时,接触角随NDZ-101用量的增加而先增后减,在偶联剂用量为1.0%时,接触角达到最大值。这是因为当NDZ-101用量较少时,偶联剂的极性基团与Sb 2O 3表面羟基键合,而非极性的饱和长碳链伸向空间,形成单分子层包覆,所以接触角变大。当NDZ-101用量继续增加时,多余的偶联剂反向排列,形成多分子层包覆,其极性基团向空间伸展,导致接触角变小。由图4可见,NDZ-101的最佳用量为1.0%。

施凯等[2]利用单分子层模型理论导出了钛酸酯系列偶联剂最佳理论用量的关系式:

W 偶联剂

W 填料

(%)=6M ρN A

Dd

2×100%式中:M -偶联剂的摩尔质量/(kg ·mol -1);

ρ-填料的密度/(kg ·m -3);

N A -阿佛加德罗常数/mol -1;D -填料粒子的平均直径/m ;

d -偶联剂分子的计算直径,数值上等于Ti -O 键长的两倍,即4.16×10-10m

Sb 2O 3的密度为(5.5~5.7)×103kg/m 3,平均粒径为0.895μm ,偶联剂NDZ-101的摩尔质量M =957.362g/mol 。根据上述用量关系式可知偶联剂NDZ-101的最佳理论用量为1.09%。

可见,偶联剂NDZ-101的实际最佳用量基本

符合模型计算所得的理论最佳用量。

3

结语

通过对不同偶联剂及反应条件下Sb 2O 3表面

改性效果的研究,发现钛酸酯偶联剂NDZ-101的改性效果最佳,偶联剂的最佳用量为1.0%,反应时间大于30min ,反应温度大于60℃,改性效果趋

于稳定。改性后Sb 2O 3的平均粒径从0.895μm 增加到1.082μm 。

参考文献

[1]罗士平,周国平.钛酸酯偶联剂对无机填料表面改性的

研究[J].合成材料老化与应用,2001,(1):9~14

[2]施凯,田立英.CaCO 3填充体系中钛酸酯系列偶联剂用量

关系式的导出[J].中国塑料,1990,4(1):35~40

图4

NDZ-101用量对接触角的影响

Fig.4The effect of ND2-101content on the contact angle

120

130

140

150

接触角/(°)

NDZ-101含量/%

1

2

3

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

STEVENAGE 消息,杜邦公司(DuPont Packaging)宣布扩大其杜邦Biomax 誖包装产品,包括可再生来源制成的Biomax 誖Thermal 300热稳定剂,可以使聚乳酸(PLA)热成型

包装制品承受运输,贮存和使用期间的高温。它的推出扩大了PLA 使用范围—一种可代替石化衍生产品的生物基产品—不局限于冷冻食品和饮料。

新型Biomax 誖Thermal 300是得到美国食品药物监管局授权的聚合物改性剂,其可提高PLA 包装材料在高至95

℃下的尺寸稳定性,当在推荐程度(质量百分数2%~4%)下

使用并且通过两步成型工艺制造时,包装可在储藏和运输过程中的高温下保存更长的时间。将低含量Biomax 誖

Thermal 300添加至PLA 时对材料透明性仅有很小的影响,并同时在两步热成型工艺中加速循环时间。Biomax 誖Thermal 300含有50wt%的可回收组分。“因为其以生物组

分作为基底,PLA 可广泛应用于食品包装中如蛤壳等,以及其它一些工业应用中。”杜邦可回收包装材料的北美全球市场经理Susan Homan 说道。“但是,由于其在55℃时即会发生变形,因此它的应用领域仅限制于冷冻食品和饮料之中。通过提供这种改性剂而提高PLA 的工作温度,杜邦希望可以扩展这种材料的应用范围。”

Biomax 誖Thermal 是杜邦公司推出的用于PLA 的第二种改性剂。2007年推出的增韧改性剂Biomax 誖Strong 可提高PLA 的加工性,耐久性,冲击强度以及在刚性结构

中的弹性,并可作为加工助剂提高挤出工作效率。这两种改性剂均为PLA 材料带来相应的好处并可直接在挤出工艺中添加至材料之中。Biomax 誖Thermal 将会首先在美国地区推向市场,然后将在2009年初推向欧洲和亚洲地区。

杜邦研发新一代聚乳酸包装材料热稳定剂

塑料助剂2008年第5期(总第71期)

48

偶联剂表面改性Sb_2O_3的研究

Sb 2O 3表面含有一定数量的羟基,因而具有亲 水性,与有机高聚物相容性差,不仅影响其阻燃效果,而且导致高聚物制品的机械性能和加工性能下降。因此,对其进行表面改性,使Sb 2O 3表面连接一层有机长链分子,便可以使Sb 2O 3粉末具有亲油性,提高与单体及高聚物树脂的相容性,另一方面还可提高Sb 2O 3的添加量,降低生产成本。 本文研究了不同偶联剂对Sb 2O 3的改性效果,考察了反应时间和反应温度对表面改性效果的影响,通过实验和理论计算确定了偶联剂的最佳用量,并阐述了偶联剂的作用机理。 1 实验部分 1.1 原料 Sb 2O 3,平均粒径895nm ,广东东莞市达利锑 品冶炼有限公司;硅烷偶联剂,A-151,A-172和 KH-570,南京康普顿曙光有机硅化工有限公司;钛酸酯偶联剂,NDZ-101,NDZ-201和NDZ-311, 南京康普顿曙光有机硅化工有限公司;正庚烷,分析纯,江苏宜兴市第二化学试剂厂;去离子水,自制。 1.2实验设备 500mL 玻璃夹套釜;数控恒温水槽,THD-06Q ,宁波天恒仪器厂;激光粒径分析仪,LS-230, 美国Coulter 公司,测量范围在0.04~2000μm ,以重均粒径作为比较的标准;视频光源接触角测试仪,OCA20,德国Data-physics 公司。 1.3试验方法 称取适量的硅烷偶联剂和钛酸酯偶联剂,溶 于正庚烷中,加入经干燥的Sb 2O 3粉末,在一定反应温度下搅拌若干时间,然后烘干。用液压机压制成片后用去离子水进行接触角测试。 2 结果与讨论 2.1 不同偶联剂对改性效果的影响 偶联剂表面改性Sb 2O 3的研究 何 松 (福建省建筑科学研究院,福州,350025) 摘要研究了不同偶联剂表面改性Sb 2O 3的改性效果和条件,结果发现钛酸酯偶联剂NDZ-101的 改性效果最佳,其最佳用量为1.0%与理论计算值相当;当改性时间大于30min ,改性温度大于60℃,改性效果趋于稳定。 关键词 三氧化二锑 偶联剂 表面改性 Study on Surface Modification for Sb 2O 3with Coupling Agent He Song (Fujian Academy of Building Research,Fuzhou,350025) Abstract:The effects and conditions of surface modification for antimonous oxide (Sb 2O 3)with different coupling agents were studied,the conclusions were obtained as follows:titanate coupling agent NDZ-101has the best modifying effect and the optimum loading of the coupling agent is 1.0wt%;the modifying effect stabilizes when modificntion time is longer than 30min and modification temperature is higher than 60℃. Keywords:antimonous oxide;coupling agent;surface modification 收稿日期:2008-07-14 塑料助剂2008年第5期(总第71期) 46

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,

硅烷偶联剂

Unitive@ silane coupling agents MP-320 2,3-环氧丙基丙基三甲氧基硅烷 2,3-epoxypropyl trimethoxy silane ·环氧官能团偶联剂,提供可稳定储存且不泛黄1的粘接促进效果,适宜作为聚硫、聚氨酯、环氧、丙烯酸类密封剂和胶黏剂的粘合促进剂 ·可显著提高涂料、油墨对玻璃、金属、陶瓷等无机材料的附着力和耐水性。 ·改善环氧树脂电子材料、灌封料、印刷电路板的电气性能,尤其是湿态电气性能。 ·作为无机填料的表面处理剂,适用于硅微粉、玻璃微珠、氢氧化铝、陶土、滑石粉、硅灰石、白炭黑、石英粉、金属粉末等。

MP-321 氨基官能团三甲氧基硅烷 Aminofunctional trimethoxysilane · 是一款强附着性多功能Adherant 附着力促进剂, 为一种含有氨基官能团硅烷偶合物。 · 针对特定的镁、铝、铁、锌等复合金属材料、氧 化涂层的涂覆和黏合的要求而设计。 · 更适用于接着剂、弹性体、填缝剂,油墨等,以 提高长时间的优良附着性涂膜耐水性、防蚀性与抗盐雾性。 · 对环氧树脂、酚醛、三聚氰胺、丙烯酸、聚氨酯、 有机硅等有优异的相容性,高温烘烤260℃不影响光泽度及色彩的鲜艳性。 MP-383 巯基官能团硅烷偶联剂 (3-Mercaptopropyl)trimethoxy silane · 随着巯基官能团的引入使得其具有碳碳双键的光聚合反应,与树脂体系产生双重交联固化。巯基官能团还可与聚 氨酯树脂发生亲核加成反应,在光固化和双组份交联固化体系作为金属表面保护剂具有特殊功效。 · 用其处理金、银、铜等金属表面,可增强其表面的耐腐性、抗氧化性以及耐水性和耐老化性、增加其与树脂等高 分子的粘接性。 · 用于处理白炭黑,炭黑,玻璃纤维、云母等无机填料,能有效提高橡胶的力学性能和耐磨性能等。 MP-397 异氰酸酯基硅烷偶联剂 3-Isocyanatopropyltrimethoxysilane · 在涂料、油墨、粘合剂中作为交联剂和助粘剂使用。出众的湿性粘附性能在玻璃、金属和其他无机基底上广泛应 用;还可以较好的附着于难以粘附的有机材料,如尼龙和其他塑料产品。 · 在大气湿度存在下可以快速水解,不黄变且具有非常好的热稳定性、化学稳定性和UV 稳定性。 · 适合的聚合物:丙烯酸类、硅树脂类(Si)、PU-预聚物等。 MP-328 乙烯基三(2-甲氧基乙氧基)硅烷 Vinyl tris(2-methoxyethoxy) silane · 特殊的乙烯基硅烷偶合物,对各类塑 胶、金属、玻璃及其他无机材料具有持久的湿膜和干膜附着力。 · 可明显增强涂膜的耐湿热、水煮和盐 雾性能,在气干性塑胶涂料及UV 光固化体系同样有效。 · 优异的储存稳定性在各类涂料,油 墨,胶黏剂中有广泛的应用。

复合偶联剂改性和KH

复合偶联剂改性和KH-560改性硅微粉的性能对比 【摘要】本文着重介绍了通过复合硅烷偶联剂和KH-560硅烷偶联剂进行表面处理后的硅微粉,在与环氧树脂混合后,通过多种性能的试验、分析、对比,结果表明,复合硅烷偶联剂改性的硅微粉性能优于KH-560单一改性的硅微粉。 【关键词】复合改性KH-560 硅微粉性能 目前,国内生产偶联化活性硅微粉的企业,主要以传统的生产工艺和KH-560单一硅烷偶联剂进行硅微粉表面处理改性,其质量难以控制,活性硅微粉作为环氧树脂配方设计中的功能性填料,其质量好坏将直接影响到环氧树脂固化物的机械性能、物理性能、电气绝缘性能填料加入量,而填料加入量的多少又直接影响到环氧树脂固化物的收缩率、内应力和生产成本。 本公司在以KH-560硅烷偶联剂生产偶联化活性硅微粉的基础上,又研究、开发设计了复合硅烷偶联剂以单分子的形态,进行硅微粉表面处理改性,从而彻底改变了传动比诉活性硅微粉简单包覆生产工艺。复合硅烷偶联剂扆性硅微粉颗粒,除保留了单一KH-560改性硅微粉的一切特性外,在活性度、抗沉降性、低吸水率、久置不易水解、填充量增大等方面,都得到不同程度的提高。复合硅烷偶联剂改性硅微粉能与多种环氧树脂有较好的相容、亲和、浸润性,在进行环氧树脂配方配制工艺过程中,受温度、时间影响较小,能保持硅微粉颗粒在环氧树脂配方体系混合物中分布均匀,无分层现象;同时,既不促进也不阻滞醉体系的反应,仍保持原有的环氧树脂配方体系的生产工艺,从而充分展现了复合改性硅微粉的活性度和应用效果。 一、复合改性粉与KH-560单一改性粉性能评价 用同一颗粒组合的硅微粉,分别用复合硅烷偶联剂及KH-560硅烷偶联剂进行表面处理改性,对改性后的活性硅微粉进行憎水性、沉降率、吸水率、粘度、浸润性、吸油率及机械强度等性能的测试,性能评价如下: 1.憎水性:活性硅微粉憎水时间的长短是检验硅烷偶联剂与硅微粉颗粒包覆牢固及紧密程度的标志,憎水时间长,活性度好,能使硅微粉在环氧树脂混合料中保持颗粒分布均匀不分层;反之,会引起颗粒在环氧树脂混合料中上下分布不均,从而影响制品机械强度。 两种活性硅微粉憎水性的检测方法相同:用1000ml的烧杯装800ml水,取5g粉,60目样筛过筛,憎水性见表1。 表1 两种活性硅微粉憎水性 填料复合改性硅微粉单一改性硅微粉备注 时间>8h ≥40min 单一改性硅微粉开始有细粒下降至40min沉完

硅烷偶联剂改性

改性剂用量对沉降体积的影响改性剂用量与沉降体积的关系曲线,见图1。从图1可看出,沉降体积随着改性剂用量的增加而增加,但是提高幅度不是很大。在实际应用中真正起到改性作用的是少量的改性剂所形成的单分子层,因此过多的增加改性剂的用量是不必要的,不仅会在粒子间搭桥导致絮凝,使稳定性变差,而且还增加不必要的经济付出。实验所选择的硅烷偶联剂的用量在1%~2%。 2.2 改性时间对沉降体积的影响实验结果见图2。从图2可看出,当改性时间为10min时,沉降体积达到极大值,然后随着改性时间的增加,沉降体积缓慢下降。在改性时间为30min 和60min时,均保持在一个相对稳定的水平。但是改性时间为40min时出现异常,沉降体积大幅度下降。硅烷偶联剂对高岭土进行表面改性,理论上以化学键合作用为主,改性效果不会出现较大的变化,出现异常的原因还有待进一步的研究。 2.3 改性温度对沉降体积的影响采用硅烷偶联剂作为改性剂时,为了保证较好的改性效果,需要确定适宜的表面改性温度。改性温度对沉降体积的影响,见图3。从图3可看出,沉降体积随改性温度的增加而增加。当温度升高至90℃时,沉降体积达到最大值14.4ml。继续提高温度,则沉降体积下降。因此,改性剂对高岭土的最佳改性温度为90℃。 沉降性能分析称取2g改性前后的纳米高岭土,置于50ml液体石蜡中,磁力搅拌10min,倒入刻度试管,静置观察沉降性能。纳米高岭土在液体石蜡中的沉降体积随时间的变化关系,见图4。从图4可看出,未经改性的纳米高岭土由于表面具有亲水性,在有机相中倾向于团聚,大粒子沉降较快,小粒子被沉降较快的大粒子所夹带,所以在开始的时间内沉降很快,沉降速度随时间增加逐渐减慢;而高岭土经过改性处理后,表面呈现亲有机性,在有机相中倾向于分散均匀,所以在开始的时间内沉降速度较未改性高岭土慢。 随着沉降时间的增加,沉降体积均达到平衡。未改性高岭土的平衡沉降体积为13.4ml,而经过硅烷偶联剂改性处理后,样品的平衡沉降体积为21.3ml。在相同的实验条件下,沉积物的体积变大,说明改性高岭土在液体石蜡中的分散性和稳定性提高。 2.5 FT-IR分析硅烷偶联剂改性前后的纳米高岭土的红外吸收光谱,见图5。从图5可看出,改性处理后,高岭土在2800cm-1~3000cm-1之间出现的微弱峰是-CH3 和-CH2 的伸缩振动吸收峰;在1120cm-1 ~1000cm-1之间的Si-O和Si-O-Si振动吸收区变宽,这是由于硅烷偶联剂与高岭土表面形成的R-Si-O-Si与高岭土的Si-O-Si振动吸收带重合所致;出现在1034cm-1处的Si-O的伸缩振动吸收峰移至1036cm-1处;在3670cm-1处的微弱的OH吸收峰消失,这是表面官能团化学键的振动模式受到影响的结果。上述吸收峰的变化均说明硅烷偶联剂与高岭土发生了化学键合作用。 从表1可看出,硅烷偶联剂改性后,高岭土表面O元素的含量下降15.92%,C元素的含量为17.03%,而Si和Al元素的含量变化不大。硅烷偶联剂改性前后纳米高岭土的C1s价带谱图,见图7。从图7可知C1s峰发生偏移,在287.5eV附近出现C-O峰,另外,硅烷偶联剂引入了Si元素,其特征峰发生偏移,从102.35eV移至102.85eV,上述现象均说明硅烷偶联剂对于纳米高岭土的改性不是一种物理吸附而是一种化学键合作用。

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

偶联剂的种类、特点及应用

偶联剂是一种重要地、应用领域日渐广泛地处理剂,主要用作高分子复合材料地助剂.偶联剂分子结构地最大特点是分子中含有化学性质不同地两个基团,一个是亲无机物地基团,易与无机物表面起化学反应;另一个是亲有机物地基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中.因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间地界面作用,从而大大提高复合材料地性能,如物理性能、电性能、热性能、光性能等.偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品地耐磨性和耐老化性能,并且能减小用量,从而降低成本.偶联剂地种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯地偶联剂等,目前应用范围最广地是硅烷偶联剂和钛酸酯偶联剂. 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早地偶联剂.由于其独特地性能及新产品地不断问世,使其应用领域逐渐扩大,已成为有机硅工业地重要分支.它是近年来发展较快地一类有机硅产品,其品种繁多,结构新颖,仅已知结构地产品就有百余种.年前后由美国联碳()和道康宁( )等公司开发和公布了一系列具有典型结构地硅烷偶联剂年又由公司首次提出了含氨基地硅烷偶联剂;从年开始陆续出现了一系列改性氨基硅烷偶联剂世纪年代初期出现地含过氧基硅烷偶联剂和年代末期出现地具有重氮和叠氮结构地硅烷偶联剂,又大大丰富了硅烷偶联剂地品种.近几十年来,随着玻璃纤维增强塑料地发展,促进了各种偶联剂地研究与开发.改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂地合成与应用就是这一时期地主要成果.我国于世纪年代中期开始研制硅烷偶联剂.首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂. 结构和作用机理 硅烷偶联剂地通式为(),式中为非水解地、可与高分子聚合物结合地有机官能团.根据高分子聚合物地不同性质应与聚合物分子有较强地亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等.为可水解基团,遇水溶液、空气中地水分或无机物表面吸附地水分均可引起分解,与无机物表面有较好地反应性.典型地基团有烷氧基、芳氧基、酰基、氯基等;最常用地则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物.由于氯硅烷在偶联反应中生成有腐蚀性地副产物氯化氢,因此要酌情使用. 近年来,相对分子质量较大和具有特种官能团地硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等.等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中地甲基硅烷氧端基水解生成地硅羟基与碳纤维表面地羟基官能团进行键合,结果复合材料地拉伸强度和模量提高,空气孔隙率下降.早在年美国大学地等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面地研究中发现,用含有能与树脂反应地硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强度可提高倍以上.他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键.这是人们第一次从分子地角度解释表面处理剂在界面中地状态. 硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中地羟基反应,又能与有机物中地长分子链相互作用起到偶联地功效,其作用机理大致分以下步:()基水解为羟基;()羟基与无机物表面存在地羟基生成氢键或脱水成醚键;()基与有机物相结合.

硅烷偶联剂对碳化硅粉体的表面改性

硅酸盐学报 · 409 ·2011年 硅烷偶联剂对碳化硅粉体的表面改性 铁生年,李星 (青海大学非金属材料研究所,西宁 810016) 摘要:采用KH-550硅烷偶联剂对SiC粉体表面进行改性,得到了改性最佳工艺参数,分析了表面改性对SiC浆料分散稳定性的影响。结果表明:SiC微粉经硅烷偶联剂处理后没有改变原始SiC微粉的物相结构,只改变了其在水中的胶体性质;减少了微粉团聚现象。与原始SiC微粉相比,改性SiC微粉表面特性发生了明显变化,Zeta电位绝对值提高,浆料的分散稳定性得到了明显改善。 关键词:碳化硅;表面改性;硅烷偶联剂;分散性 中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2011)03–0409–05 Surface Modification of SiC Powder with Silane Coupling Agent TIE Shengnian,LI Xing (Non-Metallic Materials Institute of Qinghai University, Xining 810016, China) Abstract: The surface characteristics of SiC powder were modified by a KH-550 silane coupling agent. The process parameters of the modification were optimized, and the effect of surface modification on the dispersion stability of SiC slurry was analyzed. The results show that the SiC powder modified by silane coupling agent can not change the original phase structure of SiC micro-powders but reduce the aggregation of SiC particles in the powders. Compared to the original SiC powder, the surface characteristics of the modi-fied SiC powder change significantly. Zeta potential of SiC increases, and the dispersion stability of SiC slurry is improved. Key words: silicon carbide; surface modification; silane coupling agent; dispersibility 在半导体制造和煤气化工程领域,许多工程都在使用SiC陶瓷[1–2]。然而经机械粉碎后的SiC粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高[3]。加入表面改性剂,改善SiC粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。 SiC微粉的表面改性方法主要有酸洗提纯法、无机改性法和有机改性法等。国外SiC表面改性主要采用无机包覆改性方法[4–6],在国内,SiC表面改性采用的方法主要为有机改性法[7],有机体系的包覆改性大多是在粉体表面直接包覆有机高聚物。一般情况下,有机高聚物与无机粉体表面之间只产生物理吸附而不是牢固的化学吸附,改性效果不明显,而硅烷偶联剂是具有两性结构的化学物质,其分子的一端基团可与粉体表面的官能团反应,形成强有力的化学键合,另一部分可与有机高聚物基料发生化学反应,在粉体表面形成牢固的包覆层。 在机械力粉碎的基础上,采用KH-550硅烷偶联剂对粉碎后的SiC粉体表面进行有机包覆,提出了表面包覆的最佳工艺参数,并对改性SiC粉体进行表征,分析了改性对SiC陶瓷浆料分散性和流动性的影响。 1 实验 1.1 原料 实验选用自行加工的SiC粉体,D50=0.897μm,SiC含量为98.98% (质量分数,下同);硅烷偶联剂(KH–550,化学纯,北京申达精细化工有限公司产); 收稿日期:2010–09–25。修改稿收到日期:2010–10–30。 基金项目:青海省外经贸区域协调发展促进资金项目(2009–2160604)资助。第一作者:铁生年(1966—),男,教授。Received date:2010–09–25. Approved date: 2010–10–30. First author: TIE Shengnian (1966–), male, professor. E-mail: Tieshengnian@https://www.wendangku.net/doc/008626529.html, 第39卷第3期2011年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 3 March,2011

硅烷偶联剂改性纳米二氧化硅(1)

硅烷偶联剂改性纳米二氧化硅 概述 现代材料表面改性技术是一门由多种学科发展而来的技术组合,其发展经历了很长,很复杂的过程。表面改性技术通过对基体材料表面采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能。它包括化学热处理(渗氮、渗碳、渗金属等)、表面涂层(低压等离子喷涂、低压电弧喷涂)、激光重熔复合等薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性,使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 纳米粉体是能够通过表面处理的方法来获得或者保持其特有的纳米粒子的特性,这种表面处理方法工业上称为包膜处理或表面改性处理。由于对纳米粉体的制造要求不同于常规无机粉体的制造要求,因此表面改性处理主要针对防止纳米粉体团聚,并帮助纳米粒子在应用体系中也以纳米形态存在,这个处理过程通常称为粉体改性处理,使用的表面处理剂称为有机改性剂。 近年来,用无机纳米SiO2粒子增韧改性聚合物和杂化材料的研究取得了显著效果。由于纳米SiO2具有表面界面效应,量子尺寸效应,宏观量子隧道效应和特殊光、电特性,高磁阻现象以及其在高温下仍具有的高强、高韧、稳定性好等奇异特性,使纳米SiO2可广泛应用于各个领域,具有广阔的应用前景和巨大的商业价值。但同时由于纳米SiO2的粒径小、比表面积大、具有亲水基团(一OH),表面活性高,稳定性差,使得颗粒之间极易相互团聚在聚合物中不易分散,并且由纳米效应引起的一系列优异特性会被减弱或消失。同时由于SiO2表面亲水疏油在有机介质中难以浸润和分散,直接填充到材料中,很难发挥其作用,为了避免此现象发生就需要在其颗粒表面进行接枝改性。常用的改性剂有硅烷偶联剂、钛酸酯偶联剂、超分散剂等。 一、实验目的 1)了解表面改性的目的、方法和基本原理。 2)掌握KH-520改性纳米二氧化硅制备方法及操作。 3)掌握改性纳米二氧化硅的表征方法。 二、实验原理 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物, 其通式为RSiX3,式 中R代表氨基、巯基、乙烯基、环氧基、氰基及甲基丙乙烯酰氧基等基团,这些基团和不同的基体树脂均具有较强的反应能力,X 代表能够水解的基团, 如卤素、烷氧基、酰氧基等。因此, 硅烷偶联剂既能与无机物中的羟基又能与有机聚合物中的长分子链相互作用, 使两种不同性质的材料偶联起来, 从而改善生物材料 的各种性能 硅烷偶联剂在两种不同性质材料之间的界面作用机理已有多种解释, 如化学键理论、可逆平衡理论和物理吸附理论等。但是, 界面现象非常复杂, 单一的理论往往难以充分说明。通常情况下,化学键合理论能够较好地解释硅烷偶联剂同无机材料之间地作用。根据这一理论,硅烷偶联剂在不同材料界面的偶联过程是一个复杂的液固表面物理化学过程。首先,硅烷偶联剂的粘度及表面张力低,

铝酸酯偶联剂

一种实用型改性高岭土的生产方法 铝酸酯偶联剂(DL-411)分子式: [Al(OR)3]n (R为烷基或烯丙基)白色粉末。也有的常温下呈液态,但放置时会缓慢地变成白色固体。加温即溶,能经蒸馏而不分解。在水中立即分解。易溶于苯,难溶于乙醇。往无水乙醇中加入铝粉,加热制取;也可于二甲苯中,以二氯化汞与碘为催化剂反应制取。可用于由醛、酮类制醇时作还原剂,常用的有铝酸三甲酯[Al(OCH3)3]n,熔点125℃,沸点-320℃;铝酸三异丙酯[Al(OC3H7-i)3]n,熔点125℃,沸点242℃(1.333kPa);铝酸三苄酯[Al(OC6H5CH2)3]n,熔点81℃。 DL-411产品适用范围适用于各种无机填料(如碳酸钙、硅灰石粉、滑石粉、硫酸钡、叶腊石粉、高岭土、粉煤灰、海泡石、氧化铝等),无机阻燃剂(如氢氧化镁、氢氧化铝、硼酸锌、三氧化锑等)和颜料(如氧化铁红、锌钡白、钛白粉、氧化锌、立德粉等)的表面活化改性。经改性后的填料、阻燃剂、颜料,可适用于塑料、橡胶、涂料、油墨、层压制品和粘结剂等复合制品。 与其它偶联剂(如钛酸酯、硼酸酯等)相比,经铝酸酯偶联剂DL-411活化改性处理后的无机粉体,除质量稳定外,还具有色浅、无毒、味小及对PVC的协同热稳定性和润滑性,适用范围广,无须稀释剂,使用方便,价格低廉。经DL系列铝酸酯偶联剂活化改性处理的各种无机粉体,因其表面发生化学或物理化学作用生成一有机分子层,由亲水性变成亲有机性。实践证明,无机粉体表面经铝酸酯偶联剂改性后用于复合制品中,偶联剂的亲无机端与亲有机端能分别与无机填料表

面和有机树脂发生化学反应或形成缠结结构,增强了无机粉体与有机树脂的界面相容性,所以用铝酸酯偶联剂改性,不仅可以改善填充无机粉体的塑料制品的加工性能,而且也可以明显改善制品的物理机械性能,使产品吸水率降低,吸油量减少,填料分散匀均。 预处理法:填料先在高速混合机(预热到物料温度达100-110℃)中搅拌烘干(敞口)10~15分钟,使填料含水量低于0.3%,缓缓加入计量的掐碎的偶联剂(注意勿使偶联剂被搅拌桨打到混合机内壁),改性时间10-20分钟。用于无机粉体改性时,建议加少量硬脂酸作为协同剂,可在保证质量前提下降低成本。硬脂酸用量一般为粉体的0.50%。用法是在高速混合机中投入偶联剂对填料进行活化改性3~5分钟后,加入少量硬脂酸,再高速搅拌15分钟即可。千万注意勿与偶联剂先加入或同时加入,即可与偶联剂起良好的协同效应。如生产PVC管材最好在偶联剂改性3~5分钟后加入硬酯酸,在大量增加活化好的高岭土可保持PVC管材良好的韧性、抗冲性、并能明显提高制品光泽度。

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、硫基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。 在进行偶联时,首先X基与水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成-SiO-M共价键(M表示无机粉体颗粒表面)。同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。 1、硅烷偶联剂种类及适用对象 (1)硅烷偶联剂种类 根据分子结构中R基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷以及异氰酸酯基硅烷等。 (2)硅烷偶联剂适用对象 硅烷偶联剂可用于许多无机粉体,如填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等效果最好,对高岭土、水合氧化铝、氧化镁等效果也比较好,对不含游离酸的钛酸钙效果欠佳。 (3)硅微偶联剂选择 选择硅烷偶联剂对无机粉体进行表面改性处理时,一定要考虑聚合物基料的种类,也即一定要根据表面改性后无机粉体的应用对象和目的来仔细选择硅烷偶联剂。

2、硅烷偶联剂使用方法及用量 (1)硅烷偶联剂使用方法: 应用硅烷偶联剂的方法有两种: 一种是将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法,该方法表面改性处理效果好,是常用的表面改性方法。 另一种方法是将硅烷与无机粉体(如填料或颜料)及有机高聚物基料混合,即迁移法。 多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。水解时间依硅烷偶联剂的品种和溶液的pH值不同而异,从几分钟到几十分钟不等。配置时水溶液的pH值一般控制在3-5之间,pH值高于5或低于3将会促进聚合物的生成。因此,已配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。 (2)硅烷偶联剂用量计算: 硅烷偶联剂用量与偶联剂的品种及填料的比面积有关,假设为单分子层吸附,可按下式进行计算: 硅烷偶联剂用量=(填料质量×填料比表面积)/硅烷偶联剂最小包覆面积 硅烷偶联剂最小包覆面积以硅烷偶联剂的品种不同而异。一般来说,实际用量要小于用上述公式计算的用量。当不知道无机粉体的比表面积数据或硅烷偶联剂的最小包覆面积时,可将硅烷偶联剂用量选定为无机粉体质量的0.10%-1.5%。 大多数硅烷偶联剂既可以用于干法表面改性,也可以用于湿法表面改性。

常用硅烷偶联剂

A-151物理性能 化学名称:乙烯基三乙氧基硅烷 分子式:CH2=CH-Si(OC2H5)3 外观:无色透明液体。 沸点:161℃。 密度:0.9027。 折射率:1.3960。 易水解,放出乙醇,生成乙烯基硅三醇的缩合物。 与有机金属化合物反应,分子内Si—OC2H5键中的乙氧基可被相应的有机基取代。在有机过氧化物作用下,Si—CH=CH2键可进行游离基聚合反应。在铂催化剂作用下,Si—CH=CH2键可与含Si—H键的化合物发生加成反应。可由乙烯基三氯硅烷与无水乙醇反应来制取,也可由四乙氧基硅烷与乙烯基溴化镁反应来制取。用来合成有机硅中间体及高分子化合物,也可用作硅烷偶联剂,应用于交联聚乙烯。 硅烷偶联剂A-151用途 用作制备湿气固化硅烷交联聚合物,如硅烷交联聚乙烯(XLPE),使热塑性树脂、热固性树脂具有更好的耐热性、耐酸碱性及更优异的机械强度。有机硅改性丙烯酸乳液、有机硅改性丁苯胶乳等有机硅改性聚合物,用于提高聚合物的憎水性和附着力。提高无机粉体材料对高分子聚合物的结合力、相容性及附着力。 1.用于聚乙烯交联制造电线、电缆绝缘和护层材料。乙烯基三乙氧基硅烷是交联聚乙烯的重要交联剂,其交联工艺与通用的过氧化物交联,辐射交联法相比,具有设备简单、投资少、易于控制,应用聚乙烯密度范围宽,适于生产特殊形状的扇形线芯,并有挤出速度高等特点。由于硅烷交联聚乙烯(XLDPE)具有优异的电气性能,良好的耐热性及耐应力开裂性能,故已被广泛应用于制造电线、电缆绝缘和护套材料。目前,主要适用于轻型电缆、计算机用电缆和弱电制品电线,以及耐热消防电线,家用电器电热线,或用作电视机等内部配线的同轴软线芯的绝缘。是防止焊接时绝缘体变形以及电绝缘体热变形而产生的高频性质劣化的极有利材料。还可用于海底通信电缆,长途对称高频通信电缆、控制电缆等。 2.用于聚乙烯交联剂耐热管材、耐热输管以及薄膜。交联聚乙烯(XLDPE)具有良好的耐芳烃、耐油、耐应力开裂、机械强度高、而热性好等优异性能。能在80℃下使用50年。可用于石油长输管道、天燃气、煤气管道的防腐保温外防护层及与之配套的防腐保温热收缩套补口材料。乙烯基三乙氧基硅烷还可用于乙烯一醋酸乙烯共聚物、氯化聚乙烯,乙烯—丙烯酸—乙醋共聚物的交联。 3.适用于浸渍处理玻璃纤维及无机含硅填料。改善与提高树脂与玻璃纤维的浸润,粘接性能,从而有效地提高玻璃及塑料层压制品的机械强度和电性能。特别是湿态机械强度和电性能。还显著改善了玻璃钢的耐候性、耐水性、耐热性、延长了制品的使用寿命。另外,还赋予制品较好的电磁波透射性。 4.本品与多种单体共聚、可制成特种涂料。该涂料具有优异电性能和防湿热、防盐雾、防霉菌三防性能。适用于宇航、无线电通讯、雷达、电子元器件等国防尖端产品的零部件及飞机的涂复防护。 5.用作处理特种橡胶填充剂。用本品处理特种橡胶的填充剂,可以改善其分散性能,从而提高其填充剂与橡胶的掺混份额和提高橡胶的撕裂强度。并能改善橡胶与金属、织物的粘接性能。 6.用于制备电子元器件塑封材料的密封剂。在1、2聚丁二烯塑封材料中,采用本品处理填充剂石英粉,以改善聚丁二烯树脂与石英粉的表面三向结合,增强塑料致密性,从而提高塑封材料的防潮能力。 7.用作电子元件的表面防潮处理。可用在园片型微调瓷介质电容器反高压复合介质电容器的表面防潮处理,提高产品的防潮性能和表面光洁度,提高产品合格率。 8.用于复合玻璃中间层的表面处理。制造飞机风挡玻璃等制品,加入本品浸渍聚甲基丙烯酸丁脂胶片,

偶联剂的种类、特点及应用

偶联剂的种类、特点及应用 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。偶联剂分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能、光性能等。偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐老化性能,并且能减小NR用量,从而降低成本。偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯的偶联剂等,目前应用范围最广的是硅烷偶联剂和钛酸酯偶联剂。 1 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早的偶联剂。由于其独特的性能及新产品的不断问世,使其应用领域逐渐扩大,已成为有机硅工业的重要分支。它是近年来发展较快的一类有机硅产品,其品种繁多,结构新颖,仅已知结构的产品就有百余种。1945年前后由美国联碳(UC)和道康宁(DOW CORNING)等公司开发和公布了一系列具有典型结构的硅烷偶联剂;1955年又由UC公司首次提出了含氨基的硅烷偶联剂;从1959年开始陆续出现了一系列改性氨基硅烷偶联剂;20世纪60年代初期出现的含过氧基硅烷偶联剂和60年代末期出现的具有重氮和叠氮结 构的硅烷偶联剂,又大大丰富了硅烷偶联剂的品种。近几十年来,随着玻璃纤维增强塑料的发展,促进了各种偶联剂的研究与开发。改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂的合成与应用就是这一时期的主要成果。我国于20世纪60年代中期开始研制硅烷偶联剂。首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂。 1.1 结构和作用机理 硅烷偶联剂的通式为RNSIX(4-N),式中R为非水解的、可与高分子聚合物结合的有机官能团。根据高分子聚合物的不同性质,R应与聚合物分子有较强的亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等。X为可水解基团,遇水溶液、空气中的水分或无机物表面吸附的水分均可引起分解,与无机物表面有较好的反应性。典型的X基团有烷氧基、芳氧基、酰基、氯基等;最常用的则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物。由于氯硅烷在偶联反应中生成有腐蚀性的副产物氯化氢,因此要酌情使用。 近年来,相对分子质量较大和具有特种官能团的硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等。LAWRENCE等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中的甲基硅烷氧端基水解生成的硅羟基与碳纤维表面 的羟基官能团进行键合,结果复合材料的拉伸强度和模量提高,空气孔隙率下降。早在1947年美国JOHNSHOPKINS大学的WITTRW等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面的研究中发现,用含有能与树脂反应的硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强 度可提高2倍以上。他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键。这是人们第一次从分子的角度解释表面处理剂在界面中的状态。

相关文档