文档库 最新最全的文档下载
当前位置:文档库 › 遥感影像解译不确定性的评估与表达

遥感影像解译不确定性的评估与表达

遥感影像解译不确定性的评估与表达
遥感影像解译不确定性的评估与表达

遥感影像解译不确定性的评估与表达

摘自《遥感数据的不确定性问题》

承继成郭华东史文中等编著

遥感数据的精度评估研究是从1975 年开始的(1973 年发射第一个遥感卫星)。最早Hord 和Brooner(1976),Van Genderen 和Lock(1977)及Ginevan(1979) 曾提出了建立测试评估地图的标准和技术的建议。Roslnfield(1982),Congalton(1983),Aronoff(1985)对遥感数据精度的评估标准和技术进行了较深入的研究,以后又有更多的人参与了该项研究工作。误差矩阵是主要的方法,它能很好地表达专题图的精度,已经成为普遍采用的方法。

一、遥感影像解译不确定性评估综述

遥感解译有人工目视判读和计算机自动分类处理。在本章中我们主要指计算机自动分类。造成遥感影像解译不确定性的原因有遥感数据固有的不确定性(包括地物波谱的固有的不确定性和遥感影像数据固有的不确定性等)和遥感数据获取、处理、传输、分类过程造成的误差。因此遥感数据解译过程中的不确定性是客观存在、不可避免的。任何解译的成果图件在不同程度上都存在着一定的不确定性,符合“任何人工模拟产品与客观真实世界之间总是存在一定差异”的原理。

遥感影像数据的不确定性是普遍存在的。一些遥感影像的分辨率很低,经过各种处理影像分类的可信度尽管有所提高但仍然存在不确定性( 表1),一些地物的可信度仍很低。

表 1 遥感影像分类的可信度(%)( 据吴连喜,2002)

遥感数据分类的不确定性度量方法通常用误差矩阵来度量。从误差矩阵中可以计算出分类精度的指标,如“正确分类比”。另一种指标是由Cohen 提出来的Kappa 系数,后来经Foody(1992) 修正后称为Tau 系数。

遥感数据分类的专题不确定性是指专题值与其真值的接近程度,其度量随专题数据类型的不同而不同(Lanter and Veregin,1992)。专题数据的类型有两种:分类专题数据(categorical thematic data) 和连续专题数据(continuous thematic data), 也有将其分为定性数据(qualitative data) 和定量数据的(quantitative data)。连续数据的不确定性度量指标与位置不确定性的度量指标相类似,如方差等(Lanter and Veregin,1992;Heuvelink,1993;Goodchild et al,1992)。

遥感数据不确定性的度量一般采用基于像元的分类结果评估,其不确定性度量评估流程如图1(Lunetta et al,1991)。

图 1 基于像元的遥感数据不确定性评估流程图( 据Lunetta et al,1991)

二、基于采样的检验方法

总结现有的文献主要有三种基于实验的检验方法:

(1) 对于某一类或全集正确量测的百分比(Rosenfield,1986);

(2) 某一置信水平下某一类或全集正确量测的百分比(Aronoff,1985;Hord and

Brooner,1976);

(3)基于某些参数的某一类或全集正确量测的百分比(Greenland et al,1985;Rosenfield and Fitzpatrick-Lins,1986)。

以上三种方法适用于各种非连续属性值的精度评估。非连续属性数据的评估可以通过对一组分类结果的评价得以实现。地面真实数据有时也称之为参考数据,通过将量测数据与参考数据的比较我们可以建立一个误差矩阵。该矩阵可以描述某一类别的分类精度或整体分类精度。基于这一矩阵可以对分类精度进行进一步地讨论。本节将

集中讨论遥感分类影像的精度评估问题。

1. 参考数据的采样

在基于采样数据的属性不确定性评估方法中,采样数据作为误差矩阵或其他统计分析的输入部分,在这个过程中选择适当的采样数据是非常重要的。有两个因素影响着采样数据的选择:采样样本的大小及采样数据分布模式。

在评估分类遥感影像的分类精度时,采样点的数量是十分重要的。获取地面采样数据是昂贵的,因此采样点的个数应尽可能减少。另一方面,为了在统计上有意义,采样点的数目应尽可能大,至少大于某一给定数目,例如30个。人们在采样点个数方面进行了许多探讨(Van Genderen and Lock,1977;Rosenfield,1982;Congalton,1988;Fukunaga and Hayes,1989)。

另一个重要因素是采样模型。选择适当的采样点分布方式,使所选择的样本可以代表全部分类的影像是十分重要的。一个较差的采样可能导致精度评估的偏重,使得对精度的估计过高或过低。通常使用的采样模式有五种:简单随机采样(Cochran,1977);集群采样(Kish,1965);分类随机采样(Barrett and Nutt,1979);系统采样(Barreff and Nutt, 1979)以及分类系统非一致采样(Berry and Baker,1968)。

Congalton(1988)对不同地区进行了采样模拟,并总结出在各种情况下简单随机采样与分类随机采样提供最佳采样结果的规律。

当采样个数与模式确定之后,即可实施采样,进而生成误差矩阵,依此进一步进行有关的属性精度评估。

2. 误差矩阵

误差矩阵,有时也称为混淆矩阵,是一个用于表示分为某一类别的像素个数与地

面检验为该类别数的比较阵列。一个误差矩阵的实例见表2。表2中的列通常表示参考数据,而行表示遥感分类的结果。误差矩阵通常用于表示分类的精度,因为它可用于指出某一类的或整体分类的精度。此外,用误差矩阵还可以表示出包含与丢失两种误差。在表2 中,A、B、C是三类待分类的类别名称。第一行的数目,如总数“52”表示为A的像素中根据实地检查有45个被分为类别“A”,2个像素被分为类别“B”,5个像素被分为“C”。

表2 误差矩阵实例

根据误差矩阵可以导出若干关于总体分类或对于某一类别分类的精度描述指标。

分类的总体精度是用误差距阵内对角线元素之和除以总的采样个数来表示的。例如,在表2的例子中,该值为(45+63+70)/200=89%,即总体分类精度为89%。为描述对某一类别的分类精度,我们定义了用户精度和生产者精度(Story and Congalton,1986)。

对于类别A的生产者精度是用下列公式计算的,即类别A的正确分类个数除以对于类别A的总采样个数,即A的列总和。例如在以上的例子中,生产者精度为:45/50= 90%。该指标指出了一个地面采样点被正确地分类的概率。事实上,它是对丢失误差的一个量度,该误差指出了该采样数据中没有被正确分类的百分比。丢失误差是由该类所在列中非对角线元素之和除以该列总和而得。例如在以上的例子中,丢失误差为:

(3+2)/50=10%。因此,有:

生产者精度+ 丢失误差=100%

另一方面,类别A的用户精度定义为:正确分类为A的个数除以分为类别A的总和(即A所在行的总和)。在以上例子中,该值为45/52=86.5%。事实上,该指标指出一个采样分类点表示实际地面真实情况的百分比。用户精度表示了包含误差,A类的包含误差用A所在行的非对角线元素之和除以该行的总和。在以上的实例中,该值为:(2+5)/52=13.5%。用户精度与包含误差有以下关系:

用户精度+ 包含误差=100%

Chrisman(1986)指出,输入GIS中数据应附有一个误差矩阵。这应以原始的误差矩阵形式表示,而非由该矩阵导出的一系列参数。只有这个原始矩阵才能表示出每一类别的各种精度与误差,用户可根据其自己的要求从中导出新的参数。

3.kappa 系数

两个最常用的属性精度量测量是二维正态概率和Kappa 系数。由于二维正态概率是基于“正确百分率”,因而不能统计出包含与丢失误差。另一方面,Kappa 系数提供两幅图观测协议的不同量度,而协议是由几率形成的(Congalton and Mead,1983;Cangalton et al,1983)。Kappa系数定义为:

K=(P0-P e)/(1-P e)

式中,P0是观测精度估计,而P e是期望精度估计。

一个0.80的Kappa系数可以解释为该分类以80%的程度优于随机地给像素赋类别值。Kappa系数的优点在于它已经包含了丢失误差和包含误差。一个条件Kappa 系数可以表示对于某一类别的分类精度(Campbell,1987;Rosenfield,1986;Chrisman,

1984)。建议Kappa参数成为表示总体属性不确定性的一个标准指数,而条件Kappa 参数则成为某一类别精度描述的指标。

误差矩阵是一个常用的遥感影像分类不确定性描述模型。为使对分类精度的描述具有代表性,样本大小及采样模式是两个重要的考虑因素。基于误差矩阵,一系列的误差指标可以被导出,如用户精度、生产者精度、包含误差、丢失误差等。这些参数可用于描述某一类或整体分类的精度。然而,在某些情况下需要知道每一个像素的不确定性。以上的误差描述指标不能满足此要求。

4. 内部与外部检验

确定属性数据的统计质量方法有三种:即演绎法推论、内部检验和外部检验(Kennedy Smith,1986)。通常用演绎法推断属性数据质量是利用具有由内部或外部检验导出的属性质量的量测值。内部检验方法是通过比较若干相互独立的重复观测量,其平均值被视为“真值”。在质量控制中,内部检验的结果是准确性。

另一方面,外部检验是通过将量测值与“真值”或可以写作“真值”的量进行比较。外部检验的结果可以满足用户的需求(Kennedy Smith,1986),但这种检验不能区分开各种误差源或过程的误差影响,其结果包含了各种误差的影响。

在利用外部检验确定属性的数据质量时,首先要选定一定检查点,可以选择随机抽样点。为确使每一类别内均有一定的点被选中为检查点,人们通常建议使用分类随机采样方式。Hay(1979)建议对总体至少应选择50~100个采样点,而对于每一类至少应选择30个采样点。使用外部检验法确定属性数据质量的过程描述如下(详细描述见Hord and Brooner,1976):

(1) 定义一置信水平(例如99.7%), 从正态分布表中查出此表所对应的值,即

zα=3.0。

(2) 确定采样个数(N),例如N=200 。

(3) 计算检查点正确分类的百分比(P), 例如P=89% 。

(4) 利用以下不等式确定检验精度(Drummond,1991):

(-zα2-N)x2+(zα2+2NP)x-NP > 0 对于N = 200以及zα=3.0,有:

0.81< x <0.95

因此可以说在99.7%的置信水平、对200个点采样精度为89%的情况下分类精度为81%~95%。很明显,如果减少检查点的个数或升高置信水平,确定的分类区间宽度将加大。

该方法的一个缺点是整体分类精度有可能被拒绝,尽管对某一类的分类精度是可以接受的。

遥感分类结果对于某些应用应具有一个最小的正确分类百分比。在该种情况下假设检验最为适合。预先确定精度的假设检验是一个经常使用的质量控制方法,接受性采样是质量控制的一个重要分支。关于统计质量控制的详细讨论见Grant与Leaven Worth (1988) 论述。

类别属性数据外的另一种数据是连续属性数据。以下讨论连续属性数据不确定性的处理方法。

三、误差矩阵的内容与表达

遥感影像解释成果的可信度或不确定性问题往往是采用误差矩阵方法进行检验,

这是公认的科学方法。

北京国土资源遥感公司2001 年在《长江三峡库区移民工程遥感动态监测》报告中,介绍了土地利用的遥感监测精度,不同的分类方法具有不同的精度(表3~表6)。

其中生产者精度是遥感影像分类的结果与训练样方比较所得的精度,指地表检验样本被正确分类出的百分数。即在用来检验如100个随机抽样的样本中经与地面实况核对数的判对率,如a11/∑a

用户精度是遥感影像分类的结果与客观真实世界(实况)比较所得的精度,指分类图上样本类别与地表真实类别符合的百分数,如a11/∑A ij

表 3 土地利用遥感监测精度的几个参数定义

表4 最大似然分类精度评价表

总精度0.862 Kappa 系数0.838

表5 神经网络的辅助数据参与分类结果

表 6 纹理与TM分类结果

北京国土资源遥感公司在同一地区还进行了遥感影像的公路解译及其长度的量测,并与GPS 方法实测的结果时行了对比,见表7:

表7 北京某地区遥感影像公路解译及其长度的量测数据(北京国土资源遥感公司)

即使同一类地物的不同个体在物体特征方面也不可能完全一致,而只可能十分相似。人工模拟产品与客观世界之间的不确定性是由于测量标准本身存在着不确定性,如常用作测量标准的有:

●GPS 测量与数据处理的精度

第一种:单机定位方法,定位精度为15m 左右;

第二种:码差分数据后处理,定位精度为1~2m;

第三种:相位差分数据后处理,定位精度<1m;

第四种:RTK实时差分数据处理,定位精度0.05~0.10m(5~10cm)。

●国家测绘水准点是国家级大地测量、测绘的基准点,四级测绘点的精度为

5cm。

●地形图的成图标准,按国家规程:

1:1 万地形图:山区点位中误差<10m;

平原区点位中误差<5m。

北京市第二次土地资源详查产生的土地利用图精度很高但仍然存在着误差, 不过是属于许可范围内的误差。中国农业大学信息学院对第二次详查成果的点位精度进行了测试。测试是用精度较高的2001年电子版(1:1万)为基准,测量了共32.6个点位,在确认GPS 测量精度的基础上对同名地物的平原区46 个和山区23 个点位进行测量,其结果如下(表8~表11):

地形图为基准的结果:平原为 6.58m,山区为 6.87m;

GPS 为基准的结果:平原为10.21m,山区为10.44m。

表8 以1999 年地形图为基准的量测精度检验结果(平原)(单位:m)

表9 以1999 年地形图为基准的量测精度检验结果(山区)(单位:m)

表10 以GPS为基准的量测精度检验结果(平原)(单位:m)

表11 以GPS为基准的量测精度检验结果(山区)(单位:m)

另外,即使对于同一个地物,如某一地区的海岸线的长度如果采用不同的长度标准来量测,如采用以公里、米、厘米(分米)为单位和以毫米为单位量测的结果肯定是不一样的。用来量测的单位长度越小,所得的测量结果的长度越大,这是复杂性和不确定性的另一种表现方式。参见表12 误差矩阵。

地类:

1. 牧草7. 荒山( 阴坡)

2. 长势旺盛的马尾松( 阳坡) 8. 灌木

3. 长势旺盛的马尾松( 阴坡) 9. 杂木

4. 长势差的马尾松( 阳坡) 10. 水体

5. 长势差的马尾松( 阴坡) 11. 水田

6. 荒山( 阳坡) 12. 杉树林( 阴坡)

表12 误差矩阵

遥感影像解译手册

遥感影像解译手册 河南省环境监测中心 2012.12

1 生态遥感监测与评价工作流程 (1) 1.1 生态遥感监测与评价的主要目标包括: (1) 1.2 工作流程 (1) 1.3 提交成果 (2) 2 遥感影像处理 (2) 2.1 遥感影像简介 (2) 2.2 遥感影像准备 (2) 2.3 原始影像导出 (4) 2.4 波段合成与分离 (6) 2.5 影像校色处理 (8) 2.6 地图投影 (10) 3 几何纠正 (20) 3.1 几何纠正简介 (20) 3.2 几何纠正基本步骤 (21) 3.3 质量检查 (25) 3.4图像拼接 (26) 4 遥感解译 (27) 4.1 土地利用/覆盖数据的解译 (27) 4.2 具体操作 (29) 5 检查 (31)

1 生态遥感监测与评价工作流程 1.1 生态遥感监测与评价的主要目标包括: (1)利用前年Landsat TM数据监测全国土地利用/覆盖分布; (2)对全国生态环境质量进行评价,并分析前年间全国生态环境质量空间分布及变化趋势; (3)结合近几年间我国社会、经济、环境、人类活动因子,分析生态环境重大变化区域的脆弱机制,为制定生态保护和恢复的对策提供依据。 1.2 工作流程 生态遥感监测与评价的具体流程如图1。 图1

1.3 提交成果 主要有四部分: (1)影像,以县和整景为单位,两类; (2)解译数据,以省为单元的当年现状图层及动态图层; (3)生态报告; (4)地面核查数据,照片、数据库、报告。 2 遥感影像处理 2.1 遥感影像简介 遥感是通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息(如电场、磁场、电磁波、地震波等信息),并进行提取、判定、加工处理、分析与应用的一门科学和技术。遥感,从字面上来看,可以简单理解为遥远的感知,泛指一切无接触的远距离的探测;从现代技术层面来看,“遥感”是一种应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感影像,凡是只纪录各种地物电磁波大小的胶片(或相片),都称为遥感影像,在遥感中主要是指航空像片和卫星像片。 本次生态遥感监测与评价利用前年Landsat TM影像进行解译获得数据。 2.2 遥感影像准备 首先建立几个文件夹: (1)原始影像:用于存储从总站分发的未经几何纠正的影像。 (2)待纠影像:用于存储由原始影像进行波段合成操作产生的未经几何纠正的影像。

遥感导论-习题及参考答案第五章 遥感图像目视解译与制图答案

第五章遥感图像目视解译与制图 ·名词解释 色调:全色遥感图像中从白到黑的密度比 纹理特征:也叫内部结构,指遥感图像中目标地物内部色调有规则变化造成的影像结构。 光机扫描成像:依靠探测元件和扫描镜对目标地物以瞬间视场为单位进行的逐点、逐行取样,以得到目标地物电磁辐射特性信息,形成一定谱段的图像。 目视解译标志:直接标志和间接标志.直接标志是地物本身的有关属性在图像上的直接反映。间接标志是指与地物的属性有内在联系,通过相关分析能够推断其性质的影像特征。 目视解译过程:是解译者通过直接观察或借助一些简单工具(如放大镜等)识别所需地物信息的过程。遥感制图:通过对遥感图像目视判读或利用图像处理系统对各种遥感信息进行增强与几何纠正并加以识别、分类和制图的过程。 ·问答题 阐述遥感图像目视解译的方法和具体工作步骤 答:遥感图像目视解译步骤: 1.目视解译准备工作阶段 ①明确解译任务与要求;②收集与分析有关资料;③选择合适波段与恰当时相的遥感影像。 2.初步解译与判读区的野外考察 ①初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译奠定基础。 ②野外考察:填写各种地物的判度标志登记表,以作为建立地区性的判度标志的依据。在此基础上,制定出影像判度的专题分类系统,建立遥感影像解译标志。 3.室内详细判读 ①统筹规划、分区判读②由表及里、循序渐进③去伪存真、静心解译。 4.野外验证与补判 ①野外验证包括:检验专题解译中图斑的内容是否正确;检验解译标志. ②疑难问题的补判:对室内判读中遗留的疑难问题的再次解译。 5.目视解译成果的转绘与制图 一种是手工转绘成图;一种是在精确几何基础的地理地图上采用转绘仪进行转绘成图 简述可见光、热红外和微波遥感成像机理 答:可见光成像是对目标的反射率的分布进行记录。热红外成像原理:红外热成像使人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。微波成像原理发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回接收机的方向,被天线获取。 遥感图像目视解译方法主要有哪些?列出其中5种方法并结合实例说明它们如何在遥感图像解译中的应用。 答:方法:直接解译法/对比法/综合解译法/逻辑推理法/地学分析法

遥感解译方法及应用

遥感解译方法及应用 一、遥感的概念 近年来,一方面,由于空间科学、信息科学、计算机科学、物理学等科学技术的进步与发展,为遥感技术奠定了必要的技术基础,另一方面,由于人类生产活动不断地向深度和广度进军,遥感技术得到较为广泛的应用,因而使得遥感技术获得了飞跃的发展,已经成为发达国家和一些发展中国家十分重视的一项科学技术. 随着我国工农业生产的高速发展,人类对自然资源,特别是对矿产资源的需求量与日俱增. 因而,调查与管理资源则成为迫切需要解决的问题.其次,人类的生活环境正在不断地遭受到人为和自然的污染.例如:工业排污对水体和大气的污染造成人为的环境污染.而诸如洪水、泥石流、滑坡、森林火灾、火山爆发等自然灾害,则形成灾害性环境,它们都对生命财产造成极大的威胁. 在这种情况下,只有实时监测人为环境污染和自然灾害环境的发生,才能更有效地采取防护和治理措施,以减少对人类的危害程度.欲解决上述问题,完全依赖现场观察已感不足, 于是,由于航空遥感和航天遥感的相继问世便能获得大范围的地面遥感图像和实时动态信息,所以,这两种遥感方式则成为自然资源的调查与管理,环境的监测与灾害预报的一种新的探测手段. (一)遥感的概念 遥感顾名思义就是遥远的感知.即借助于专门的探测仪器,把遥远的物

体所辐射(或反射)的电磁波信号接收纪录下来,再经过加工处理,变成人眼可以直接识别的图像,从而揭示出所探测物体的性质及其变化规律.属于空间科学的范畴.是物理、计算数学、电子、光学、航空(天)、地学等密切结合的新兴学科,对工农业、国防、自然科学研究具有重大的意义. 1各类地质体的电磁辐射(反射、吸收、发射等)特性及其测试、分析与应用; 2、遥感数据资料的地学信息提取原理与方法; 3、遥感图像的地质解译与编图; 4、遥感技术在地质各个领域的具体应用和实效评估. (二)遥感平台(分类) 指放置遥感器的运载工具.按高度可分为航空和航天平台.在不同高度进行多平台遥感,可获得不同比例尺、分辨率和地面覆盖面积的遥感图像. 1、航空平台:是指在大气层内飞行的飞行器,高度为100m—30km,主要有飞机、直升机、飞艇、气球等. 2、航天平台:是指在大气层之外飞行的飞行器,高度为几百—几万公里;如人造地球卫星、探控火箭、宇宙飞船、航天飞机、太空站等. (三)遥感的发展简况 1839年第一张黑白航片问世到20世纪30年代,主要应用于军事侦察,1941年出版了《航空照片应用与判读》为各方面应用提供了理论基础进入20世纪50年代,苏美广泛应用,黑白、彩色航片进行军事、

遥感图像解译过程

一.遥感图像的预处理 在遥感图像的应用之前,常常需要对遥感图像进行一些必要的处理,如不同格式的遥感数据的输入输出处理、多波段彩色合成处理、遥感图像的辐射校正处理、几何校正处理、拼接处理、裁切处理等,这些都称为遥感图像的预处理。 1.遥感数据的输入输出和多波段合成 获得遥感数据之后,利用遥感数据之前,首先需要把各种格式的原始遥感数据输入到计算机中,转换为各种遥感图像处理软件能够识别的格式,才能够进行下一步的应用,这就需要对原始数据进行输入输出并转换为所需要的格式。单波段的原始遥感数据合成为多波段的彩色遥感数据,因为人眼对彩色物体的分辨能力大大高于对黑白物体的分辨能力,彩色遥感图像的信息量更大;而且利用多波段的彩色遥感图像,还可以进行三个不同波段的遥感图像的彩色合成,以提高对不同地物的识别能力。彩色遥感影像要求选择不少于3个波段的多光谱图像,各波段的配准误差不大于0.2m m。 2.遥感图像的辐射校正 由于传感器本身的特性和大气、地形因子以及其它各种生态环境因子的影响,使传感器所接收的地物光谱反射信息,不能全部真实地反映图同地物的特征,影响了图像的识别精度,因此必须进行辐射校正,改进图像质量。 辐射校正主要包括三个方面: ●传感器的灵敏度特征引起的辐射误差校正,如光学镜头的 非均匀性引起的边缘减光现象的校正、光电变换系统的灵 敏度特性引起的辐射误差校正等。 ●光照条件的差异引起的辐射误差校正,如太阳的高度角的 不同引起的辐射误差校正、地面的倾斜引起的辐射误差校 正等。 ●大气的散射和吸收引起的辐射误差校正等。 3.图像几何校正 几何校正是指从具有几何畸变的图像中消除畸变的过程,也就是定量地确定图像上像元坐标与地理坐标的对应关系,即把数据投影到平面上,使之符合投影系统的过程。为了将所获取的数据投影到理性的空间平面上产生精确的换算模型,需要借助一组地面控制点来进行几何校正。控制点选择应均匀分布而且在影像图与地形图上都容易确定的同名地物点上。所选点位图像清晰,在地形图及图像上均能正确识别和定位。如农田林网的交叉点,小沟系上道路桥的两端位置,小河流、渠的交叉点,道路交叉点,水库坝上的拐角

遥感影像判读考试重点

第一章: 1.遥感影像判读: 既是一门学科,又是图像处理的一个过程 作为一门学科,遥感影像判读的目的是为了从遥感图像上得到地物信息所进行的基础理论和实践方法的研究 作为一个过程,它完成地物信息的传递并起到揭示遥感图像内容的作用,其目的是取得地物各组成部分和存在于其他地物的内涵的信息 2.遥感影像判读的任务与实施: 任务根据应用范围:巨型、大型、中型和小型地物与现象的判读 实施组织方法:野外判读、飞行器目视判读、室内判读、综合判读 3.遥感信息的利用方式: 瞬时信息的定性分析:确定相关目标是否存在 空间信息的定位:空间分布规律 瞬时信息的定量分析:定量反演目标参数 时间信息的趋势分析:地表物质能量迁移规律 多源信息的综合分析 4.遥感信息的技术支撑: 观察与测量仪器的改变、产品形式的改变、生产工艺的改变、新一代传感器的研制、 地理信息系统的支持、遥感应用模型的深化 5.遥感影像判读的质量要求: 判读结果的完整性(详细性):与给定任务的符合程度,用质量指标评价 判读的可靠性:与实际的符合程度,用质量和数量指标评价 判读的及时性:资料及时;指定限期完成 判读结果的明显性:便于理解和应用 用户精度:正确分类/所有分为该类制图精度 制图精度:正确分类/参考数据中的该类 对角线:正确分类 总体精度: 第二章: 1.遥感常用电磁波波段: 紫外线:0.01-0.38μm,碳酸盐岩分布、水面油污染 可见光:0.38-0.76μm,鉴别物质特征的主要波段;遥感最常用的波段 红外线:0.76-1000μm,近红外0.76-3.0μm; 中红外 3.0-6.0μm; 远红外6.0-15.0μm; 超远红外15-1000μm (近红外又称光红外或反射红外;中红外和远红外又称热红外)微波:1mm-1m,全天候遥感;有主动与被动之分;具有穿透能力;发展潜力大 2.地物的电磁辐射特性概念: 3.从近紫外到中红外(0.3-6μm)波段区间能量最集中而且相对来说较稳定 4.被动遥感主要利用可见光、红外等稳定辐射 5.对流层:地表到平均高度12km处,航空遥感活动区,侧重研究电磁波在该层内的传输特性;电离层:在80~1000 km,卫星的运行空间

如何解译卫星遥感数据

如何解译卫星遥感数据 卫星遥感数据是地理信息系统数据库的重要组成部分。以它为基本数据源,根据它的属性信息建立数据解译标志,可提取基础地理信息数据。如果进一步分析和研究卫星遥感数据的其他相关信息,将其转化为算术运算和逻辑运算,可建立较为完善的遥感信息解译模型,实现计算机对遥感数据的自动处理并解译和提取基础地理信息数据,大大提高遥感数据提取和判读技术,增加数据采集的客观性,避免人机交互式采集时人工判读的主观性和不同人判读时的不一致性,缩短数据采集周期,减少工作量,提高工作效率。 人类通过遥感卫星传感器获取和积累了大量遥感数据信息,但目前还不能有效处理和充分利用这些数据,遥感信息解译模型的建立则可以改变这种状况。此外,遥感信息模型作为地理信息模型的一部分,它的发展也有利于地理信息系统技术的应用和发展。 遥感信息解译标志和模型建立的条件 现在,各卫星遥感传感器所选接收电磁波谱的波段范围大体相同,其全色波段范围也是基本一致的,目前主要依靠接收地面反射电磁波获取卫星遥感数据,有利于建立合适的遥感影像解译标志和模型。经过几十年的应用,已经积累了大量的卫星遥感数据和经验,且数据的质量稳定可靠,有利于建立公用的遥感数据解译标志和模型。卫星遥感技术发展很快,如法国SPOT5卫星影像分辨率可达到2.5米,并可获得立体像对,进行立体观测,为高精度的基础地理信息数据采集提供了可靠保障,也为遥感影像解译标志的建立

和遥感影像信息模型的开发与研究提供了有利条件。卫星遥感传感器和遥感数据处理技术的发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高和遥感 数据增强处理技术的发展,为遥感影像解译标志和遥感影像信息模型的开发和研究提供了有利条件。计算机硬件技术的快速发展为遥感影像数据的快速解译和处理提供了可靠的支持。遥感数据处理和解译软件的发展为遥感信息模型的研究提供了更好的技术支持。 影像解译标志的建立 遥感影像解译标志也称判读要素,它能直接反映判别地物信息的影像特征,解译者利用这些标志在图像上识别地物或现象的性质、类型或状况,因此它对于遥感影像数据的人机交互式解译意义重大。建立遥感影像解译标志可以提高我国遥感影像数据用于基础地理信息数据采集的精度、准确性和客观性。 由于我国幅员辽阔,地貌和气候差异很大,可根据地貌、气候条件,把全国划分为不同类型地貌样区,在简型地貌样区建立各基础地理信息要素的解译标志,有利于用正确的方法确定采集范围。对于某些特殊地理信息要素,可建立专门解译标志。在建立遥感信息模型时,可把这些属性添加到逻辑运算内。对于建立解译标志所采用影像的季节应避免植被覆盖度高的夏季,避免使用积雪较多、云层遮盖或烟雾影响较大的数据。要根据满足基础地理信息数据提取的要求选择遥感影像波段组合顺序及与全色波段进行融合。在对

遥感图像目视解译

嘉应学院地科院 《遥感导论》课程 实验报告 班级:1603 学号:161080142 姓名:郑秋彦 指导教师:朱长柏 成绩:

****** 遥感图像目视解译 一、实验目的 1. 学习影像判读的基本原理和方法 2. 掌握影像判读中判读标志的建立方法 3. 解译判读各土地覆盖类型在图像上的影像特征 4. 了解和认识影像对地物的表现 5. 掌握GIS软件的数字化功能、基本统计功能、空间分析功能。 二、实验数据和软件 1、实验数据:栅格数据(aaa1.tif、嘉应学院.jpg)、地图文档(无标题.mxd) 2、软件:ArcGis10.2 三、实验过程及结果 1、打开并显示图像 1)打开arcgis的arcmap点击文件,新建地图文档文档 (2)点击工具栏的【窗口】,选择【目录】,在目录连接到数据所在文件加,添加

3)再将aaa1.tif图拉进空白窗口,(如果内容列表出现红色感叹号,点击感叹号,选择放置aaa1.tif栅格数据路径,点击添加) 得到下图:

2、创建面要素 1)在目录连接到的文件夹上右键新建【个人地理数据库】,在这个数据库右键新建【要素数据集】 2)在【下一步】,点击【添加坐标系】导入

4)添加aaa.tif,后面两步默认选择,点击【完成】 5)在创建好的【要素数据集】上右键新建【要素类】,然后填写名称,要素类型选择【面要素】 6)下一步,在【新建要素类】对话框添加TYPE,NAME字段名,数据类型都选择文本,在【字段属性】的长度都填上10,点击完成

7)在内容列表的面要素上右键【编辑要素】,点击【开始编辑】,在编辑工具栏,点击【编辑器】的编辑窗口,选择【创建要素】,然后出现【创建要素】对话框,点击你的面要素,在【构造工具】下选择【矩形】,在编辑窗口鼠标光标变成一个十字右下角带矩形的光标

遥感影像解译标志的建立

遥感影像解译标志也称判读要素,它能直接反映判别地物信息的影像特征,解译者利用这些标志在图像上识别地物或现象的性质、类型或状况,因此它对于遥感影像数据的人机交互式解译意义重大。建立遥感影像解译标志可以提高我国遥感影像数据用于基础地理信息数据采集的精度、准确性和客观性。 由于我国幅员辽阔,地貌和气候差异很大,可根据地貌、气候条件,把全国划分为不同类型地貌样区,在简型地貌样区建立各基础地理信息要素的解译标志,有利于用正确的方法确定采集范围。对于某些特殊地理信息要素,可建立专门解译标志。在建立遥感信息模型时,可把这些属性添加到逻辑运算内。对于建立解译标志所采用影像的季节应避免植被覆盖度高的夏季,避免使用积雪较多、云层遮盖或烟雾影响较大的数据。要根据满足基础地理信息数据提取的要求选择遥感影像波段组合顺序及与全色波段进行融合。在对数据进行增强处理时,要避免引起信息损失。 在影像上选择典型的标志建立区的要求是:范围适中以便反映该类地貌的典型特征,尽可能多的包含该类地貌中的各种基础地理信息要素类且影像质量好。标志区的选取完成后,寻找标志区内包含的所有基础地理信息要素类,然后选择各类典型图斑作采集标志,然后去实地进行野外校验,对不合理的部分进行修改,直到与实地相符为止。同时拍摄该图斑地面实地照片,以便于影像和实际地面要素建立关联,表达遥感影像解译标志的真实性和直观性,加深使用者对解译标志的理解。

遥感影像解译标志的建立有利于解译者对遥感信息作出正确判断和采集,这对于用人机交互方式从遥感影像上采集基础地理信息数据是十分必要的,尤其是在作业区范围很大、作业人员知识背景差异也很大且外业踏勘不足的情况下,可以使作业人员迅速适应解译区的自然地理环境和解译采集要求。但是人机交互式解译毕竟无法对大量卫星遥感数据进行快速处理,这就需要建立较为完善的遥感信息解译模型,以便于用计算机对遥感信息进行解译和采集。遥感影像解译标志是遥感信息模型建立的前提和基础,有了较为准确的遥感信息解译标志,才能建立较为实用的遥感信息模型。

遥感图像的判读

获取遥感图像的目的在于提取和分析人类感兴趣的地物信息。目视判读是遥感信息提取的基础方法,也是目前最为准确和最常用的方法。即使作为发展趋势的计算机自动提取,仍需要以目视判读为基础和以目视判读为标准。 进行遥感图象目视判读时必须充分运用地物目标时空分布的规律性,如气候、植被、土壤等景观要素的纬度地带性、经度相关性、高度垂直带性、物候季节性等。要密切注意各类地物目标之间的相关规律,有些规律现象表现得比较稳定明确,如水平地带性、垂直带性等,有些现象则具有随机性、不确定性和模糊(或过渡)性,例如地震(带)的分布,土壤分布等受很多因素的影响。应充分利用各种解译标志,包括直接标志和间接标志,相互补充,彼此验证。只要坚持以遥感成像机理与专业知识、规律相结合的指导思想,通过实践,不断探索和总结,就能归纳出具有相对普遍性与稳定性的解译标志,并举一反三灵活应用这些解译标志进行正确的判读, 目视判读可分为航空图像判读和卫星图像判读。 一、航空像片目视判读 航空像片目视判读是凭借人眼观察或借助简单仪器对航片进行分析和量测,以获取所需要的地面各种信息的过程。 在航空像片上,不同地物有其不同的影像特征,这些特征是判断地物的依据,我们称作判读标志。判读标志是地物自身性质、形态等特征在像片上的反映。因而根据判读标志可以直接从像片上辨认出地物的属性及其空间分布等特征。 一般地,把影像形状、大小、色调与阴影作为常用的航片判读标志。 1、形状 任何地物都具有一定的几何形状。由于地物各部分反射光线的强弱不同,所以在像片上反映出相应的形状,依据影像的形状特征,就可以辨认出其相应的地物。 例如:居民地的房屋影像一般均表现为规则的方块形状,河流常呈弯曲的条带状,公路常呈笔直的线状且灰度浅亮,湖泊常呈不规则的封闭区间,等等。 2、大小 地物影像的(尺寸)大小,不仅能反映地物的一些数量特征,而且还能据此判断地物的性质。 例如单轨铁路和双轨铁路从形状上往往不易区分,但量算它们的宽度,则容易区分。 由于地形和像面倾斜影响,同一航片上,同样尺寸的地物,位于高处者影像尺寸大些;像面倾斜时,不同部位的地物大小也不一样。 3、色调 色调在黑白航片上指影像的黑白深浅程度。它是地物对入射光线反射率高低的客观记录,像片上的色调从白到黑逐渐变化,一般可划分为7级:白、灰白、浅灰、灰、深灰、浅黑、黑。 例如:居民地的色调和周围山地或植被的色调、铁路和公路的色调与形状、河流深浅的色调,等等。 4、阴影 地物的阴影可分为本身阴影和投落阴影两部分。本身阴影(简称本影)是地物本身未被阳光直接照射到的阴暗部分的影像;投落阴影(简称落影)是在地物背光方向上地物投射到地面的阴影在像片上的构像。 在像片判读中,本影有助于获得地物的立体感;在利用落影长度判断地物高

遥感图像解译方法

北京揽宇方圆信息技术有限公司 遥感图像解译方法 遥感图像解译分为两种:一种是目视解译,它指专业人员直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。另一种是遥感图像计算机解译,它以计算机系统为支撑环境,利用模式识别技术和人工智能技术相结合,根据遥感图像中目标地物的各种影像特征(颜色、形状、纹理与空间位置),结合专家知识库中目标地物的解译经验和成像规律等知识进行分析和推理,实现对遥感图像的理解,完成对遥感图像的解译。其中计算机解译通常又可分为基十像元的遥感目标识别和面向对象的遥感目标识别两种。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 北京揽宇方圆信息技术有限公司

遥感影像判读

实习一卫星遥感影像目视解译 一、实习目的 目视判读是卫星图像应用的最基本方法,用计算机进行自动分类时,训练样本的选择以及自动分类决策等,也都需要目视判读作为基础。了解卫星遥感影像的波段特性以及对应的地物波谱特性;建立遥感影像解译标志,从影像中目视解译出耕地、林地、草地、水体、居民地、盐碱地、沼泽地等土地利用类型。二、原理与方法 原理 地物光谱特性(标题为小四,宋体,加粗) 在以遥感图像中识别地物和现象的属性及其研究它们之间的关系和演化变化规律时,必须首先了解和掌握地物的光谱特性,以及它们空间和时间特性的变化。不同地物在不同波段反射率存在着差异。因此,在不同波段的遥感图像上即呈现出不同的色调。同类地物的反射光谱是相似的,但随着该地物的内在差异而有所变化。这种变化是由于多种因素造成的,如物质成分、内部结构、表面光滑程度、颗粒大小、几何形状、风化程度、表面含水量及色泽等差别。这就是判读识别各种地物的基础和依据。 方法 (一)直接判定法 在卫星图像上直接判定一般是依据其色调标志和图型标志进行直接判定,色调(或色彩)标志在卫星图像直接判定中的重要性,对色调分析必须要结合具体的图形或图像特征,即“色”要附于一定的“形”上,色调才具有实际意义,才可能判定识别地物。 (二)对比分析法 对比分析法是对卫星图像不同波段、不同时相的图像进行对比分析,以 及与地面已知资料或实地进行对比。对比的目的在于建立卫星图像与实地地 物和现象的对应关系,总结判读经验,发现图像异常,以便从卫星图像上提 取更多信息,使判读成果更为准确可靠。 (三)逻辑推理法

基于卫星图像的特点判读时更多的是应用地学规律的相关分析和实际经验,进行逻辑推理法的判读,即借助各种地物和自然现象间内在联系,结合图像上表现出的特征,用专业知识的逻辑推理方法,判定某一地物和现象的存在及其属性。卫星图像的视域宽广,能显示较大区域的地物和现象的空间分布。根据地物和现象在自然界中固有的相互依存关系和规律,运用逻辑推理法,就能从易被人们忽视,或难于发现的潜在的或微小的图像差异中,寻找出识别地物的依据,从而提取更多有用的信息。 三、实习仪器与数据 计算机、ENVI和ARCVIEW GIS软件,TM4、3、2波段合成标准假彩色合成图像。 表1 TM 遥感影像的波段划分及其光谱效应 四、实习步骤 1、建立解译标志 指在遥感图像上能具体反映和判别地物和现象的影像特征。根据土地利

GIS遥感图像的目视解译教程

实验二遥感影像的目视解译 一、实验要求 1.了解shape格式的矢量文件 了解shape文件格式,包括文件结构及用途等,学会shape文件的复制、粘贴、命名、及使用方法。 2.创建shape文件 分别创建点、线、面shape文件。 要求:投影系统以沈阳农业大学quickbird影像为基准 3.shape文件的图形编辑 各类shape图形的创建、裁切及合并,设定捕捉。 4.shape文件的属性编辑 属性表字段的添加与删除,属性表记录与图形的对应方式及选择方法,属性表记录数据的编辑。 5.Shape文件向coverage文件的格式转换及拓扑 了解转换方法及应用范畴 6.绘制沈阳农业大学校内重点建筑、面shape文件并拓扑 绘制包括操场、宿舍、教学楼、绿地、实验用地在内的面文件 进行格式转换与拓扑 7.实验结果一:基本地理数据统计及汇总 对6中所绘制地物面状地物标注其左上、右下坐标点并进行面积、周长的统计,线状地物标注起始坐标点并进行长度统计,填入下列表格(小数点后取1位数字): 表3-1 实验三面状地物基本信息汇总表 单位(m m2) 8.实验结果二:将农大解译图截图插入实验结果中 加上label标注。 二、实验步骤 (步骤的文字描述、命令描述、实验过程中的抓图等内容)

1、shape文件包含四个文件,文件后缀分别就是 在粘贴、复制、改名时需要全部编辑,否则就就是不对的2、创建shape文件 分别创建点、线、面shape文件。 要求:投影系统以沈阳农业大学quickbird影像为基准 步骤如下图所示 先在左边的文件列表内选择好存储位置,在进行创建文件 编写创建文件名,与文件的点、线、面格式 注意import里要选择基准图像

遥感基础与图像解译原理期末复习

遥感基础与图像解译原理期末复习
07 级 李润琪
宋 木
题型:
10 个判断,5 个名词解释,10 个简答(不超过 30 字) 个应用题(小计算) ,4 ,选择题
考试范围:
微波,雷达,气溶胶都不是考试范围。考查内容以最基本的为主。
复习大纲:
1~6,有很多考试内容,考察的很重点。判断题中有 4 个,名词解释和简答都有。 1~2,PPT-1;3~6,PPT-2 1、遥感的定义及其分类 (1)定义:他应该没有无聊到问什么是遥感吧…… 广义:利用目标物体的电磁波特性、力场特性、机械波特征,在一定距离对该 物体进行探测的理论与方法。 (包括成像方式与非成像方式) 狭义: 收集地物电磁波信息, 并对所得信息进行综合处理以达到探测目的的原 理与方法。 (一般指成像方式遥感) (2)分类: 按遥感平台分为:地面遥感、航空遥感、航天遥感 按电磁波的来源分为:主动式遥感与被动式遥感 按信息收集方式分为:扫描方式和非扫描方式。
扫描方式包括:对像扫描和对物扫描(振荡式扫描、线阵推帚式扫描、面阵推帚式扫描)
按所用电磁波波段范围分为:可见光遥感、近红外遥感、热红外遥感、微波遥感等 按遥感资料提交方式分为:成像方式和非成像方式遥感
成像方式遥感又分为:光学摄影方式和扫描成像方式 光学摄影方式包括:单波段、宽频、多波段摄影(多镜头、单镜头带分光设备)
2、遥感的基本特性及其主要内容 (1)主要内容:定性、定量、定位 --- 什么、多少、在何处 遥感物理:研究地物电磁波辐射特性及信息传输 遥感光学:研究传感器,即遥感信息的获取手段 图像处理:研究遥感信息处理系统 遥感应用:遥感信息的应用研究 (2)基本特征: 空间特性(多种分辨率、信息量大) 光谱特性(从全波段到数百个波段) 时相特性(周期性、即时、微波的全天候等) 3***、电磁波谱及地物电磁波谱特性(参见补充 1、4) 电磁波谱定义:将电磁波按照频率和波长排列的变化规律。 电磁波谱遥感的应用范围:遥感所使用的电磁波的波长是,紫外的一部分 (0.3~0.4 微米) ,可见光(0.4~0.7 微米) ,红外线的一部分(0.7~14 微米) , 微波(约 1 ㎜~1m) 。[其实就是那 5 个大气窗口,个人觉得答大气窗口就行 了……]
?
1

遥感影像的目视解译与制图

遥感影像的目视解译与制图 第五章:遥感图象的目视解译与制图遥感图像目视解译与制图遥感图像解译(Imagery Interpretation)是从遥感图像上获取目标地物信息的过程。遥感图像解译分为两种:目视解译:指专业人员通过直接观察或借助判读仪器如:放大镜)在遥感图像上获取特定目标地物信息的过程。遥感图像计算机解译:以计算机系统为支撑环境,利用模式识别技术与人工智能技术相结合,根据遥感图像中目标地物的各种影像特征颜色、形状、纹理与空间位置),结合专家知识库中目标地物的解译经验和成像规律等知识进行分析和推理,实现对遥感图像的理解,完成对遥感图像的解译。目视解译的重要性目视解译是信息社会中地学研究和遥感应用的一项基本技能。遥感技术可以实时地、准确地获取资源与环境信息,如重大自然灾害信息等,可以全方位、全天候地监测全球资源与环境的动态变化,为社会经济发展提供定性、定量与定位的信息服务。通过目视判读遥感图像地理学家可以了解山川分布,研究地理环境等地质学家可以了解地质地貌或深大断裂考古学家可以在荒漠中寻找古遗址和古城堡由于目视判读需要的设备少,简单方便,可以随时从遥感图像中获取许多专题信息,因此是地学工作者研究工作中必不可少的一项基本功。目视解译的重要性遥感图像处理和计算机解译的结果,需要运用目视解译的方法进行抽样核实或检验。通过目视解译,可以核查遥感图像处理的效果或计算机解译的精度,查看它们是否符合地域分异规律,这是遥感图像计算机解译的一项基础工作。图像增强处理和信息提取均离不开目视分析。如不了解计算机处理过程中的有关图像的地学意义或物理意义,单纯强调计算机解译或遥感图像理解,有可能成为一种高水平的计算机游戏。计算机技术的日益发展,会更加迫切要求运用目视解译的经验和知识指导遥感图

遥感图像特征和解译标志(优选.)

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感卫星影像解译方法、原则和程序

北京揽宇方圆信息技术有限公司 遥感卫星影像解译方法、原则和程序 遥感解译:即为从遥感图像中识别和提取某种影像,赋予特定的属性和内涵以及测量特征参数的专业化过程。 遥感地质解译:机助地质解译有两种方式,一是以数字遥感影像为信息源,以ERDAS、MAPGIS、PCI和PHOTOSHOP等软件为解译平台,根据地质体遥感解译标志,解译圈定岩性、构造、接触关系、地质灾害和土地荒漠化等地质现象;二是以遥感影像为背景,叠合专题地质图层,结合典型地质体影像特征,进行对比修正解译。 以遥感资料为信息源,以地质体、地质构造和地质现象对电磁波谱响应的特征影像为依据,通过图像解译提取地质信息,测量地质参数,填绘地质图件和研究地质问题的过程(行为)。遥感数据的收集,它包括遥感数据、地理数据和地质资料的收集,是遥感地质调查工作的基础。 以前通常是目视解译为主,现在一般是在计算机上以人机对话方式进行识别和解译工作,其基本方法有五点: 1.解译是认识实践的反复过程,首先要熟悉、吃透本工作区域的有关资料(即地质、地貌、水文、气象、植被、土壤、物探、化探资料及前人各类工作成果);分析研究前人对区域地质遥感解译成果的合理、可靠程度,弄清遥感资料能解决的地质问题和已解决及有待解决的地质问题。地质体的性质是多方面的,主要包括物理性质与化学性质两大类,遥感主要是反映地质体的光谱特征信息,对全面认识地质体而言,有其局限之处。 遥感影像记录的是地质体光谱反射(SAR为后向散射)和辐射特征,地质体性质和表面特征不同所反映出的光谱特征差异可通过色、形、纹、貌四种影像特征要素加以表征。 不言而喻,能通过地质、物探、化探多方信息去认识地质体,则是更为全面、可靠的。因此在遥感解译中,应充分收集利用已有地质、物探、化探等资料进行综合解译分析,有助于提高成果质量。地、物、化、遥多元信息的综合研究,在区域上常采用计算机多元信息迭加处理的方式来实现。通过空中、地面、地下三维空间信息的综合研究,将对地质体的空间展布和时间演化取得更好效果。

遥感图像解译

遥感图像解译 作业一 1、横量遥感图像解译质量的指标有哪几个?每个指标的含义是什么? (1)解译的完整性 解译的完整性标志着所得出的结果与给定任务的符合程度 (2)解译可靠性 解译可靠性指出解译结果与实际的符合程度 (3)解译的及时性 解译的及时性包括图像资料的及时使用 (4)解译结果的明显性 解译结果的明显性是指解译出来的成果。 2、地物的特征有哪些,他们在遥感图像解译中的作用是什么? 地物特征:空间分布、波谱反射和辐射特征、时相变化 空间分布作用: (1)分析探测对象的空间分布特征以选择具有适当的空间分辨率的遥感图像; (2)特测对象的空间分布特征又是在遥感图像上识别目标的参考数据。波谱反射和辐射特征作用: 可根据遥感仪器所接收到的电磁波谱特征的差异来识别不同的物体。 时相变化作用: 通过动态监测了解地物的变化过程和变化范围,并按照地物的时间变化特征以及光谱特征的时间效应来确定识别目标。 作业二 1、分析主动、被动微波,近红外和热红外遥感的异同? 不同: 主动微波遥感: 用人工向目标物发射某一波长的微波讯号,用仪器接收目标物反射的回波,然后根据它们发射回来的微波特征识别物体; 被动微波遥感: 用仪器接收自然物体和人工物体自身所发射的微波;

近红外遥感: 红外线照相机拍摄的侦测图像; 热红外遥感: 指传感器工作波段限于红外波段范围之内的遥感。 相同: 都具有一定的波长范围。 2、叙述5类地物的辐射特征(水体、植被、岩石、土壤和人工地物)? 水体辐射特征:辐射通量与绝对温度的四次方成正比(M=εσT4),因此水体周围地物之间微小的温度差异影响着辐射通量的变化。 植被辐射特征:各类植物间的辐射差异是由植物株体从地面和太阳辐射获得并储藏热量多少而定的。 岩石辐射特征:岩矿物的辐射与其表面特征—粗糙度、色调有关。粗糙表面比平滑表面辐射强,暗色地物比浅色地物辐射强。 土壤辐射特征:土壤的辐射是由于土壤温度状况决定的,土壤温度与水分的蒸腾散失、风化和化学溶解、微生物活性及有机质的分解速度有关,与种子萌发和植物生长有关。 人工地物的辐射特征:当物体接受太阳、天空辐射或地下热流补给时温度上升,温度上升的速度与物体的热惯性有关,因此辐射特征取决于建筑材料的热特性。 3、提高遥感图像解译质量的途径有哪些? (1)提高图像的分解力 (2)提高图像反差 (3)建立良好的感受图像的条件(即减少地物形状识别系数值) 作业三 1.详细描述地物在遥感图像上的特征? (1)色调与色彩 (2)形状(轮廓):同一地物由于图像获取方式的不同,其形状可能不完全相同; (3)大小(尺寸):地物图像的大小不仅影响面积的计算,其与构象比例尺的关系,常常形成所谓的混合像元;

遥感影像的目视解译

遥感影像的目视解译 一、实验目的 从不同地物的影像特征理解色调、形态、水系、影纹图案、植被等特征,了解遥感图像目视解译原则和方法,熟悉遥感图像的解译标志,掌握利用RS软件进行遥感制图的方法和步骤。 二、实验内容 1、遥感图像解译标志。 2、遥感图像解译分析。 三、实验条件 电脑、ENVI4.5软件。嘉应学院遥感影像。 四、实验要求 1、对嘉应学院遥感影像截取岛内区域进行遥感解译分析,根据色调、形态、纹理、水系等认识图像上不同地物,并在ENVI中分别提取水体、居民区、植被信息,并保存为shp格式文件 2、简述遥感图像的解译标志有哪些?植被、居民地(点)、河流水系的解译标志分别是什么? 五、实验步骤 1、启动ENVI软件,从文件菜单打开影像。 2、观察影像上不同地物的图像特征,根据色调、形态、影纹图案、水系等特征,对图像进行遥感解译分析,建立不同地物的解译标志。 3、利用ENVI软件的矢量层编辑功能进行遥感制图,具体步骤: (1)从主图像窗口的文件菜单中创建矢量文件。 从File > Create New Vector File ,打开 New Voctor Lsyer Paramters 对话框,输入矢量层文件名,保存路径。

(2)在打开的矢量参数对话框中,从“Mode ”选择“Add New Vector”,设置“Current Layer”颜色,在主图像窗口中点击右键,打开快捷菜单,从矢量类型中选择点、线或面。

(3)在主图像窗口中用鼠标勾绘感兴趣区地物的边界,在结束点击鼠标右键。击右键选“Accept New polygon(polyline或point),如图5。重复以上步骤,绘制需要制图的地物。 (4)保存制图矢量文件。 在“Voctor Paramters”窗口文件菜单中选 Exprot Active Layer to ROIs 或 Exprot Active Layer to Shapfiles 保存为感兴趣区文件,或ArcGis 的 shp 格式文件。截图

遥感影像解译不确定性的评估与表达

遥感影像解译不确定性的评估与表达 摘自《遥感数据的不确定性问题》 承继成郭华东史文中等编著 遥感数据的精度评估研究是从 1975 年开始的 (1973 年发射第一个遥感卫星 )。最早 Hord 和Brooner(1976),Van Genderen 和Lock(1977)及Ginevan(1979) 曾提出了建立测试评估地图的标准和技术的建议。Roslnfield(1982),Congalton(1983),Aronoff(1985)对遥感数据精度的评估标准和技术进行了较深入的研究,以后又有更多的人参与了该项研究工作。误差矩阵是主要的方法,它能很好地表达专题图的精度,已经成为普遍采用的方法。 一、遥感影像解译不确定性评估综述 遥感解译有人工目视判读和计算机自动分类处理。在本章中我们主要指计算机自动分类。造成遥感影像解译不确定性的原因有遥感数据固有的不确定性和遥感数据获取、处理、传输、分类过程造成的误差。因此遥感数据解译过程中的不确定性是客观存在、不可避免的。任何解译的成果图件在不同程度上都存在着一定的不确定性,符合“任何人工模拟产品与客观真实世界之间总是存在一定差异”的原理。 遥感影像数据的不确定性是普遍存在的。一些遥感影像的分辨率很低,经过各种处理影像分类的可信度尽管有所

提高但仍然存在不确定性( 表1),一些地物的可信度仍很低。 表 1 遥感影像分类的可信度 (%)( 据吴连喜 ,20XX) 地类城镇建筑农村居民点裸地大棚耕地园地林地水体道路 TM影像 Marr融合影像 Brovey融合影像 HIS融合影像7510 PCA融合影像 5839 5487 遥感数据分类的不确定性度量方法通常用误差矩阵来度量。从误差矩阵中可 以计算出分类精度的指标,如“正确分类比”。另一种指标是Cohen 提出来的Kappa系数,后来经Foody(1992) 修正后称为 Tau 系数。 遥感数据分类的专题不确定性是指专题值与其真值的接近程度,其度量随专题 数据类型的不同而不同。专题数据的类型有两种:分类专题数据 (categorical thematic data) 和连续专题数据(continuous thematic data), 也有将其分为定性数据(qualitative data) 和定量数据的 (quantitative data)。连续数据的不确定性度量指标与位置不确定性的度量指标相类似,如方差等(Lanter and Veregin,1992;Heuvelink,1993;Goodchild et al,1992)。 遥感数据不确定性的度量一般采用基于像元的分类结果评估,其不确定性度量评估流程如图1。

相关文档