文档库 最新最全的文档下载
当前位置:文档库 › 凝固点降低法测定相对分子质量

凝固点降低法测定相对分子质量

凝固点降低法测定相对分子质量
凝固点降低法测定相对分子质量

西安交通大学实验报告

课程:物理化学实验 系别:

专业班号: 组别:第二大组 实验日期:2015年4月3日 姓名: 学号: 交报告日期:2015年4月10日 同组者:

实验名称:凝固点降低法测定相对分子质量

一、实验目的

1.用凝固点降低法测定萘的相对分子量。

2.掌握步冷曲线法测定液体凝固点的方法。

3.掌握数字贝克曼温度计的使用方法。 二、实验原理

稀溶液中溶剂的蒸气压下降、凝固点降低(析出固态纯溶剂)、沸点升高(溶质不挥发)和渗透压的数值,仅与一定量溶液中溶质的质点数有关,而与溶质的本性无关,故称这些性质为稀溶液的依数性。

固体物质和它的液体成平衡时的温度称为凝固点。加一溶质于纯溶剂中,其溶液的凝固点必然较纯溶剂的凝固点低,其降低的数值与溶液中溶质的质量摩尔浓度成正比。 对于在溶液中不离解、不缔合的溶质的稀溶液有如下关系式:

0T T T kc ?=-= ① 式中:0T —纯溶剂的凝固点; T —浓度为C 的溶液的凝固点; k —比例常数。

如果C 以质量摩尔浓度(B m :每千克溶剂所含溶质的物质的量)来表示,k 则为溶剂的摩尔凝固点降低常数,今以f K 表示这个常数,于是①示可改写为: 0f B T T T K m ?=-= ②

若取一定量的溶质()B W 和溶剂()A W 配制成稀溶液,则此溶液的质量摩尔浓度B m 为: /1000B B

B A

W M m W =

? ③

式中:B m 为溶质的相对分子质量。

如果已知溶剂的f K 值,则测定此溶液的凝固点降低值即可按下式计算溶质的相对分子质量。

01000f

B

B A

K W M T T W =

?

- ④

纯溶剂的凝固点是它的液相和固相共存的平衡温度。若将纯溶剂逐步冷却,其冷却曲

线如图1中Ⅰ的曲线图形。但实际过程中往往发生过冷现象,即在过冷时开始析出固体后,温度才回升到稳定的平衡温度,当液体全部凝固后,温度再逐渐下降,其冷却曲线呈现如图1中Ⅱ的形状。

溶液的凝固点是该溶液的液相与溶剂的固相共存的平衡温度。若将溶液逐步冷却,其冷却曲线与纯溶剂不同,见图9中Ⅲ、Ⅳ。由于部分溶剂凝固而析出,使剩余溶液的浓度逐渐增大,因而剩余溶液与溶剂固相的平衡温度也逐渐下降。本实验所要测定的是浓度已知的溶液的凝固点。因此,所析出的溶剂固相的量不能太多,否则要影响原溶液的浓度。如稍有过冷现象如图9中Ⅳ所示,对相对分子质量的测定,无显著影响;如过冷严重,则冷却曲线如图9中Ⅴ所示,测得之凝固点将偏低,影响相对分子质量的测定结果。因此在测定过程中必须设法控制适当的过冷程度,一般可控制寒剂的温度、搅拌速度等方法来达到。

由于稀溶液的凝固点降低值不大,因此温度的测量需要用较精密的仪器,在本实验中采用精密温差测量仪。

做好本实验的关键:一个是控制搅拌速度,每次测量时的搅拌条件和速度尽量一致。二是寒剂的温度,过高则冷却太慢,过低则测不准凝固点,一般要求较溶剂的凝固点低3~4℃,因此本实验中采用冰—水混合物作冰浴。

图1冷却曲线

三、仪器和药品

凝固点测定仪、水银温度计、SWC-II 型数字贝克曼温度计、压片机、秒表、环己烷(1120.2,0.774f K K mol kg g mL ρ--=??=? )、萘(分析纯)。

四、实验步骤 1.调节寒剂的温度

调节冰的量使寒剂F 的温度处于3℃左右。在实验过程中用搅拌器D 经常搅拌并根据寒剂的温度要经常补充少量的冰,使寒剂保持此温度。 2.环己烷的凝固点测定

用移液管吸取30mL 环己烷,把它加入凝固点管A 。然后塞上橡皮塞,并调整贝克曼温度计的探头B 使其浸入环己烷的液面之下。

先将盛放环己烷液体的凝固点管A 直接插入寒剂F 中,当刚有固体析出时迅速将其外壁擦干,当其析出的固体完全融化后迅速将其插入空气套管E 中。打开秒表,每15秒记录一次待测系统的温度。

重复试验。取出凝固点管A ,用手温热之。待管中的固体刚完全熔化后,将它直接插入空气套管E 中冷却。后续的操作同上,重复测量两次。 3.溶液凝固点的测定

取出凝固点管A ,使管中的环己烷熔化。把压成片状并已精准测量的的萘加入到环己烷中。然后测定该溶液的凝固点,测定方法与上述相同。 五、数据记录与处理 1.数据记录

2.根据环己烷的密度计算实验中所用环己烷溶剂的质量A W 。 环己烷的体积30mL 环己烷的密度1

0.774g mL -? 环己烷的质量23.22g 萘片的质量 0.1166g 3.根据环己烷溶剂和溶液的步冷曲线,确定溶剂和溶液的凝固点。 由1中的数据可绘制如下步冷曲线:

溶剂第一次:

溶剂第二次:

溶液第一次:

溶液第二次:

溶液第三次:

由上面的步冷曲线可得:

4.用纯溶剂和溶液的凝固点*f T 、f T 计算萘的摩尔质量,并计算该结果的相对误差。

计算1120.20.11661000131.560.77123.22f B

B f A K W K mol g

M g mol T W K g

--???==?=???? ,

且经查得萘的相对分子质量1

128.18M g mol -=? , 故相对误差

131.56128.18

=

100% 2.64%128.18

σ

σ

?-?= 。

六、误差分析

1.实验过程中寒剂的温度不易控制,故可能造成过冷现象。

2.实验数据处理时,切线位置的确定并无法十分准确,可能造成部分误差。 七、思考题

1.若用凝固点降低法测定分子量,则选择溶剂时应考虑哪些问题?

答:首先要能很好的溶解溶质,且当溶质在溶液里有解离、缔合、溶剂化或形成配合物等情况时不适用。其次凝固点不应太高或太低应在常温下易达到。如水、苯、环己烷等。 2.为什么会产生过冷现象?如何控制过冷程度?

答:过冷现象是由于溶解在溶液中的溶质在温度降到凝固点以后,没有晶体析出而达到过饱和状态的现象。原因是刚刚析出的固体颗粒小,比表面积大,表面吉布斯函数高。为了控制过冷程度,因而寒剂的温度不能大大低于待测的凝固点,而且在凝固点附近时应该加速搅拌。当过冷后温度回升,立即改用原先较缓慢的搅拌方式。

3.根据什么原则考虑加入溶质的量?为什么溶液不能太浓也不能太稀?

答:根据实验原理稀溶液的依数性以及称量精密度等考虑加入溶剂的量。根据稀溶液依数性,溶质加入量要少,而对于称量相对精密度来说,溶质又不能太少。

凝固点降低法测定摩尔质量的思考题与答案

实验七十三凝固点降低法测定摩尔质量 1、简述凝固点降低法测定摩尔质量的基本原理 2、在凝固点降低法测定摩尔质量实验中,当溶质在溶液中有离解,缔合和生成络合物的情况下,对摩尔质量的测定值各有什么影响? 3、在凝固点降低法测定摩尔质量实验中,根据什么原则考虑加入溶质的量,太多太少影响如何? 4、凝固点降低的公式在什么条件下才适用?它能否用于电解质溶液? 5、在凝固点降低法测定摩尔质量实验中,为什么会产生过冷现象?过冷太甚对结果有何影响?如何控制过冷程度? 6、在凝固点降低法测定摩尔质量实验中,为了提高实验的准确度,是否可用增加溶液浓度的办法来增加ΔT值?为什么? 7、什么是稀溶液依数性质?稀溶液依数性质和哪些因素有关? 8、测定溶液凝固点时若过冷程度太大对结果有何影响?两相共存时溶液系统和纯溶剂系统的自由度各为多少? 9、什么叫凝固点?凝固点降低的公式在什么条件下才适用?它能否用于电解质溶液? 10、在凝固点降低法测定摩尔质量实验中,为什么要使用空气夹套?过冷太甚有何弊病? 11、在凝固点降低法测定摩尔质量实验中,实验测量成败的关键是什么? 12、在凝固点降低法测定摩尔质量实验中,加入萘的时候,不小心将萘附着在内管壁上,对实验结果有何影响? 13、在凝固点降低法测定摩尔质量实验中,为什么要先测近似凝固点? 14、当溶质在溶液中有解离、缔合、溶剂化和形成配合物时,测定的结果有何意义? 15、在凝固点降低法测定摩尔质量实验中,测定环已烷和萘丸质量时,精密度要求是否相同?为什么? 16、用凝固点降低法测定摩尔质量在选择溶剂时应考虑哪些因素? 17、为什么纯溶剂和稀溶液的的凝固曲线不同? 18、在凝固点降低法测定摩尔质量实验中,寒剂温度的温度应控制在什么范围?为什么? 19、在凝固点降低法测定摩尔质量实验中,为什么实验所用的内套管必须洁净、干燥? 20、在凝固点降低法测定摩尔质量实验中,搅拌速度的控制是做好本实验的关键,在实验过程中怎样控制搅拌速度?

CO2相对分子质量的测定

实验五二氧化碳相对分子质量得测定 一、实验目得 1。学习气体相对密度法测定分子量得原理与方法,加深理解理想气体状态方程式与阿佛加德罗定律; 2。学会大气压力计得使用; 3.巩固分析天平得使用; 4。了解启普发生器得构造与原理,掌握其使用方法,熟悉洗涤、干燥气体得装置。 二、实验原理 阿佛加德罗定律:同T、P,同V得气体物质得量相等 理想气体状态方程式:PV=nRT=mRT/M 对同T、P,同V得空气(air)与二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)得质量与相对分子质量 则, [教学重点] 分析天平得使用 启普发生器得使用 分子量得测定与计算 [教学难点] 分析天平得称量操作 启普发生器得使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计得使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中得水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片得反光,可以瞧到水银面与象牙针得间隙,再调节螺旋至间隙恰好消失为止; 3。调节游标。转动控制游标得螺旋,使游标得底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上得刻度单位为hPa.整数部分得读法:先瞧游标得零线在刻度标尺上得 位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数.例如,游标零线与标尺上1160相吻合,气压读数即为1161、0hPa,如果游标零线在1161与1162之间,则气压计读数得整数部分即为1161,再由游标确定小数部分.小数部分得读法:从游标上找出一根与标尺上某一刻度相吻合得刻度线,此游标读数即为小数部分,如1161、5 hPa; 5.读数后转动气压计底部得调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度与纬度等项校正. 二、电子天平得使用 1.电子天平得使用精确度0、1 mg (最大载荷200 g) (1)使用前观察天平仪就是否水平,如不水平,用水平脚调整水平; (2)接通电源,预热20~30 min以获得稳定得工作温度; (3)让秤盘空载并轻按“On”键,天平显示自检(所有字段闪现等),当天平回零时,就可以称量了;

九年级化学上册 有关相对分子质量的计算(教案)

第3课时有关相对分子质量的计算 【教学目标】 1.知识与技能 (1)了解相对分子质量的意义。会根据化学式计算物质的相对分子质量,各元素间的质量比、某元素的质量分数。 (2)能看懂商品标签或说明书上标示的物质成分和含量。 2.过程与方法 通过讨论交流、活动探究,培养学生利用知识解决实际问题的能力和基本计算能力。 3.情感、态度与价值观 通过活动探究,发展学生善于合作、勤于思考、勇于实践的精神。 【教学重点】 会利用化学式进行相关计算。 【教学难点】 物质质量与元素质量的互求。 一、导入新课 1.四氧化三铁的化学式为Fe 3O 4 ,据此你能知道关于Fe 3 O 4 的哪些信息?铁元 素的化合价是多少? 2.下列粒子各表示什么意义? (1)2H;(2)H 2O;(3)2CO 2 。 3.什么是相对原子质量? 二、推进新课 1.相对分子质量 [设问]分子是由原子构成的,原子具有相对原子质量,那么分子有相对分子质量吗? [讲解](1)相对分子质量是化学式中各原子的相对原子质量总和。它的

符号是Mr,单位是一,一般省略不写。 [模仿练习]计算下列物质的相对分子质量或相对分子质量总和,请三位同学板演。 (1)氢氧化钙[Ca(OH) 2];(2)CuSO 4 ·5H 2 O;(3)5P 2 O 5 。 [讨论交流]计算相对分子质量的要点:①“×”和“+”的应用。同种元素质量=相对原子质量×原子个数,不同元素之间应该用“+”相连接。②化学式中如果有括号(即含有多个原子团),不要忘记乘括号外的数字(即先算出一个原子团的相对原子质量的总和,再乘以原子团的个数)。 [设问]从化学式MnO 2 中你可获得哪些信息? [讨论得出](1)组成的元素;(2)原子间的个数比;(3)原子的总个数。 [设问]MnO 2 中锰元素与氧元素的质量比是多少? [指导自学]阅读教科书 2.计算物质组成元素的质量比,了解元素间质量比的表示方法。 [模仿练习]计算下列物质组成元素的质量比,请三位同学板演。 水(H 2O);硝酸铵(NH 4 NO 3 );碱式碳酸铜[ Cu 2 (OH) 2 CO 3 ]。 [讨论交流]计算物质组成各元素质量比:化合物中各元素的质量比等于各元素原子的相对原子质量总和之比。①元素只讲种类,不讲个数。如在计算硝酸铵(NH4NO3)中各元素的质量比时,不能写成2N∶4H∶3O或N2∶H4∶O3,要写成m(N)∶m(H)∶m(O)=(14×2)∶(4×1)∶(16×3)=7∶1∶12。②查对各元素的原子个数。如在计算Cu2(OH)2CO3中各元素的质量比时,不能写成m(Cu)∶m(O)∶m(H)∶m(C)∶m(O)=(64×2)∶(16×2)∶(1×2)∶(12×1)∶(16×3)=64∶16∶1∶6∶24(没把氧元素的原子个数合在一起)。正确计算方法为m(Cu)∶m(O)∶m(H)∶m(C)=(64×2)∶(16×5)∶(1×2)∶(12×1)=64∶40∶1∶6。 [设问]知道元素间的质量比的表示方法,我们还能知道某元素的质量分数吗? [模仿练习]已知铁锈的主要成分是氧化铁,其化学式为Fe 2O 3 ,试计算:(1) 氧化铁的相对分子质量;(2)氧化铁中铁、氧两元素的质量比;(3)氧化铁中铁

凝固点降低法测定相对分子质量

西安交通大学实验报告 课程:物理化学实验 系别: 专业班号: 组别:第二大组 实验日期:2015年4月3日 姓名: 学号: 交报告日期:2015年4月10日 同组者: 实验名称:凝固点降低法测定相对分子质量 一、实验目的 1.用凝固点降低法测定萘的相对分子量。 2.掌握步冷曲线法测定液体凝固点的方法。 3.掌握数字贝克曼温度计的使用方法。 二、实验原理 稀溶液中溶剂的蒸气压下降、凝固点降低(析出固态纯溶剂)、沸点升高(溶质不挥发)和渗透压的数值,仅与一定量溶液中溶质的质点数有关,而与溶质的本性无关,故称这些性质为稀溶液的依数性。 固体物质和它的液体成平衡时的温度称为凝固点。加一溶质于纯溶剂中,其溶液的凝固点必然较纯溶剂的凝固点低,其降低的数值与溶液中溶质的质量摩尔浓度成正比。 对于在溶液中不离解、不缔合的溶质的稀溶液有如下关系式: 0T T T kc ?=-= ① 式中:0T —纯溶剂的凝固点; T —浓度为C 的溶液的凝固点; k —比例常数。 如果C 以质量摩尔浓度(B m :每千克溶剂所含溶质的物质的量)来表示,k 则为溶剂的摩尔凝固点降低常数,今以f K 表示这个常数,于是①示可改写为: 0f B T T T K m ?=-= ② 若取一定量的溶质()B W 和溶剂()A W 配制成稀溶液,则此溶液的质量摩尔浓度B m 为: /1000B B B A W M m W = ? ③

式中:B m 为溶质的相对分子质量。 如果已知溶剂的f K 值,则测定此溶液的凝固点降低值即可按下式计算溶质的相对分子质量。 01000f B B A K W M T T W = ? - ④ 纯溶剂的凝固点是它的液相和固相共存的平衡温度。若将纯溶剂逐步冷却,其冷却曲 线如图1中Ⅰ的曲线图形。但实际过程中往往发生过冷现象,即在过冷时开始析出固体后,温度才回升到稳定的平衡温度,当液体全部凝固后,温度再逐渐下降,其冷却曲线呈现如图1中Ⅱ的形状。 溶液的凝固点是该溶液的液相与溶剂的固相共存的平衡温度。若将溶液逐步冷却,其冷却曲线与纯溶剂不同,见图9中Ⅲ、Ⅳ。由于部分溶剂凝固而析出,使剩余溶液的浓度逐渐增大,因而剩余溶液与溶剂固相的平衡温度也逐渐下降。本实验所要测定的是浓度已知的溶液的凝固点。因此,所析出的溶剂固相的量不能太多,否则要影响原溶液的浓度。如稍有过冷现象如图9中Ⅳ所示,对相对分子质量的测定,无显著影响;如过冷严重,则冷却曲线如图9中Ⅴ所示,测得之凝固点将偏低,影响相对分子质量的测定结果。因此在测定过程中必须设法控制适当的过冷程度,一般可控制寒剂的温度、搅拌速度等方法来达到。 由于稀溶液的凝固点降低值不大,因此温度的测量需要用较精密的仪器,在本实验中采用精密温差测量仪。 做好本实验的关键:一个是控制搅拌速度,每次测量时的搅拌条件和速度尽量一致。二是寒剂的温度,过高则冷却太慢,过低则测不准凝固点,一般要求较溶剂的凝固点低3~4℃,因此本实验中采用冰—水混合物作冰浴。 图1冷却曲线

相对原子质量计算题

1、下列氮肥中,氮元素的质量分数最大的是 A.CO(NH2)2 B.(NH4)2SO4 C.NH4NO3 D.KNO3 2、在氧化亚铁(),氧化铁()和四氧化三铁()这三种铁的氧化物中,铁的质量分数由大到小的顺序是() A.B. C.D. 3、X和Y两种元素组成的化合物甲和乙,甲的化学式为XY2,其中Y元素的质量分数为50%,乙中Y元素的质量分数为60%,则乙的化学式为 A. XY B. XY3 C. X2Y3 D. X3Y 4、下列反应前后元素的化合价有改变的是 ( ) A. CaO+H2O=Ca(OH)2 B. H2O+CO2=H2CO3 C. CaCO3CaO+CO2 D. 2CO+O22CO2 5、A、B两元素相对原子质量之比为7∶2,在化合物中两元素的质量比为 21∶8,则化合物的化学式为 A. A3B4 B. A2B3 C. A3B2 D. AB 6、世界卫生组织将某氧化物RO2列为A级高效安全灭菌消毒剂,它在食品保鲜、饮用水消毒等方面有着广泛应用。实验测得该氧化物中R与O的质量比为71:64,则RO2的化学式为 A、CO2 B、ClO2 C、SO2 D、NO2 7、常温下,某气体可能是由SO2、CO、N2中的一种或几种组成,测得气体中氧元素的质量分数为50%,则该气体可能为下列组成中的 ( ) ①SO2②SO2、CO ③SO2、N2④CO、N2⑤SO2、CO、N2 A.①②③ B.②③⑤ C.①②⑤ D.①④⑤ 8、某硝酸铵[NH4NO3]样品中含有一种杂质,经分析样品中的氮元素的质量分数为36%,该样品中所含杂质可能是()

A.(NH4)2SO4 B.CO(NH2)2 C.NH4HCO3 D.NaCl 9、某元素R的氧化物的化学式为,其式量为M,R的相对原子质量是()。 A.B.C.D. 10、某不纯的二氧化锰粉末中只含有一种杂质,经测定该不纯的二氧化锰中含氧元素质量分数为35.8%,则其中的杂质可能是下列物质中的( ) A.Al2O3 B.MgO C.SiO2 D.CuO 11、根据高锰酸钾的化学式KMnO4计算: ⑴组成各元素的质量比 ⑵高锰酸钾中氧元素的质量分数 ⑶多少克高锰酸钾与71g硫酸钠(Na2SO4)所含的氧元素质量相等?(3分) 1、A 2、B 3、B 4、D 5、A 6、B 7、D 8、B 9、C

凝固点降低法测定物质的相对分子质量_纯萘、环己烷

华南师范大学实验报告 【实验目的】 ①测定环己烷的凝固点降低值,计算萘的分子量。 ②掌握溶液凝固点的测定技术。 ③技能要求:掌握冰点降低测定管、数字温差仪的使 用方法,实验数据的作图处理方法。 【实验原理】 1、凝固点降低法测分子量的原理 化合物的分子量是一个重要的物理化学参数。用凝固点降低法测定物质的分子量是一种简单而又比较准确的方法。稀溶液有依数性,凝固点降低是依数性的一种表现。稀溶液的凝固点降低(对析出物是纯溶剂的体系)与溶液中物质的摩尔分数的关系式为: ΔT f = T f * - T f = K f m B (1) *式中,T f * 为纯溶剂的凝固点,T f 为溶液的凝固点,m B 为溶液中溶质B 的质量摩尔浓度,K f 为溶剂的质量摩尔凝固点降低常数,它的数值仅与溶剂的性质有关。 已知某溶剂的凝固点降低常数K f,并测得溶液的凝固点降低值ΔT ,若称取一定量的溶质W B (g)和溶剂 W A (g),配成稀溶液,则此溶液的质量摩尔浓度m B 为: 3A B B B 10W M W m ?= mol/kg (2) 将(2)式代入(1)式,则: 3A f B f B 10W T W K M ??= g/mol (3) 表1 几种溶剂的凝固点降低常数值 因此,只要称得一定量的溶质(WB )和溶剂(WA )配成一稀溶液,分别测纯溶剂和稀溶液的凝固点,求得ΔT f ,再查得溶剂的凝固点降低常数,代入(3)式即可求得溶质的摩尔质量。 * 当溶质在溶液里有解离、缔合、溶剂化或形成配合物等情况时,不适用上式计算,一般只适用于强电解质稀溶液。 2、凝固点测量原理 纯溶剂的凝固点是它的液相和固相共存时的平衡温度。若将纯溶剂缓慢冷却,理论上得到它的步冷曲线如图中的 A , 但但实际的过程往往会发生过冷现象,液体的温度会下降到凝固点以下,待固体析出后

相对分子质量计算 教学案

S %= 第四单元课题4有关相对分子质量的计算 主备人 陈玉玺 审核人 使用人 备课时间 2009.10.29 上课时间 一、预习导学 1、 化学式H 2O 表示的意义:表示一个水分子中含有 那么H 的相对原子质量是1,O 的相对原子质量是16,化学式中各原子的相对原子质量之和就是相对分子质量。例如H 2O 的相对分子质量=1×2+16=18 练习:计算下列物质的相对分子质量 SO 2 Fe 2O 3 CO 2 P 2O 5 KClO 3 CaCO 3 2、化学式H 2O 表示的意义:表示水是由 两种元素组成的,那么水中H ,O 两种元素的质量比如何计算? 化学式中各元素的质量比=相对原子质量乘以个数之比。例如H 2O 中H :O=1×2:16×1 =1:8 计算下列各元素质量比 SO 2 Fe 2O 3 CO 2 P 2O 5 SO 3 MgO 3、SO 2是由 组成的,在SO 2中S 的质量分数是多少? × 元素的质量分数=该元素的相对原子质量×个数比上相对分子质量, 即元素的质量分数= 相对原子质量×该原子个数 ×100% 相对分子质量 例如SO 2中, S SO 2 =32 练习计算下列物质氧元素的质量分数 Fe 2O 3 SO 3 CaCO 3 MgO 二、预习检测

1、抗震救灾,众志成城。用于汶川震后防疫的众多消毒剂中,有一种高效消毒剂的主要成分为三氯异氰尿酸(C3O3N3Cl3),又称高氯精。下列有关高氯精的说法不正确的是 ( ) A.高氯精由4种元素组成 B.高氯精中 C.O、N、Cl的原子个数比为1∶1∶1∶1 C.高氯精中C.N两种元索的质量比为12∶14 D.高氯精中氯元素的质量分数为25% 2、珍爱生命,拒绝毒品”是每个公民的责任,但是在某些娱乐场所,还有人服用俗称摇头丸的毒品。该毒品能使人手舞足蹈,呈癫狂状态,严重危害人的身心健康和社会稳定,有一种“摇头丸”的化学式为C12H x O2N,相对分子质量为209。 试回答下列问题: (1)该物质由种元素组成,它属于(填“纯净物”、或“混合物”)。(2)该物质的一个分子中,含氢原子个,氮元素所占的质量分数为。 (3)该物质中碳元素与氧元素的质量比为。(最简整数比) 三、学习探究 1、计算CuSO4·5H2O的相对分子质量 2、计算NH4NO3中氮元素与氧元素的质量比 3、计算18克水中含氧元素的质量 4、根据高锰酸钾的化学式KMnO4计算:多少克高锰酸钾与71 g硫酸钠(Na2SO4)所含的氧元素质量相等? 5、相同质量的SO2和SO3中,所含氧元素的质量之比为,分子个数相同的H2O与H2SO4之间氧元素的质量比是。

实验八凝固点降低法测定摩尔质量

实验八凝固点降低法测定摩尔质量 一、实验目的 1. 用凝固点降低法测定萘的摩尔质量。 2. 掌握溶液凝固点的测量技术,加深对稀溶液依数性质的理解。 二、实验原理 当稀溶液凝固析出纯固体溶剂时,则溶液的凝固点低于纯溶剂的凝固点,其降低值与溶液的质量摩尔浓度成正比。即 ΔT=T f* -T f = K f m B(1) 式中,M B为溶质的分子量。将该式代入(1)式,整理得: (2) 若已知某溶剂的凝固点降低常数K f值,通过实验测定此溶液的凝固点降低值ΔT,即可计算溶质的分子量M B。通常测凝固点的方法是将溶液逐渐冷却,但冷却到凝固点,并不析出晶体,往往成为过冷溶液。然后由于搅拌或加入晶种促使溶剂结晶,由结晶放出的凝固热,使体系温度回升,当放热与散热达到平衡时,温度不再改变。此固液两相共存的平衡温度即为溶液的凝固点。 图1. 溶剂(1)与溶液(2)的冷却曲线 三、仪器药品 1. 仪器 凝固点测定仪1套;烧杯2个;精密温差测量仪1台;放大镜1个;普通温度计(0℃~

50℃)1支;压片机1台;移液管(25mL)1支。 2. 药品 环已烷(或苯),萘,粗盐,冰。 四、实验步骤 1.按图2所示安装凝固点测定仪,注意 测定管、搅拌棒都须清洁、干燥,温差测量 仪的探头,温度计都须与搅拌棒有一定空 隙。防止搅拌时发生摩擦。 2. 调节寒剂的温度,使其低于溶剂凝固 点温度2~3℃,并应经常搅拌,不断加入碎 冰,使冰浴温度保持基本不变。 3. 调节温差测量仪,使探头在测量管中 时,数字显示为“0”左右。 4. 准确移取2 5.00mL溶剂,小心加入测定管中,塞紧软木塞,防止溶剂挥发,记下溶剂的温度值。取出测定管,直接放入冰浴中,不断移动搅拌棒,使溶剂逐步冷却。当刚有固体析出时,迅速取出测定管,擦干管外冰水,插入空气套管中,缓慢均匀搅拌,观察精密温差测量仪的数显值,直至温度稳定,即为苯的凝固点参考温度。取出测定管,用手温热,同时搅拌,使管中固体完全熔化,再将测定管直接插入冰浴中,缓慢搅拌,使溶剂迅速冷却,当温度降至高于凝固点参考温度0.5℃时,迅速取出测定管,擦干,放入空气套管中,每秒搅拌一次,使溶剂温度均匀下降,当温度低于凝固点参考温度时,应迅速搅拌(防止过冷超过0.5℃),促使固体析出,温度开始上升,搅拌减慢,注意观察温差测量仪的数字变化,直至稳定,此即为溶剂的凝固点。重复测量三次。要求溶剂凝固点的绝对平均误差小于±0.003℃。 5. 溶液凝固点的测定,取出测定管,使管中的溶剂熔化,从测定管的支管中加入事先压成片状的0.2~0.3g的萘,待溶解后,用上述方法测定溶液的凝固点。先测凝固点的参考温度,再精确测之。溶液凝固点是取过冷后温度回升所达到的最高温度,重复三次,要求凝固点的绝对平均误差小于±0.003℃。 五、注意事项 1. 搅拌速度的控制是做好本实验的关键,每次测定应按要求的速度搅拌,并且测溶剂与溶液凝固点时搅拌条件要完全一致。

高分子相对分子量的测定

高分子分子量的主要测定方法 用途 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。 表征方法及原理 1.粘度法测相对分子量(粘均分子量Mη) 用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。 2.小角激光光散射法测重均分子量(Mw) 当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。 3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC)) 当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。配合不同组分高分子的质谱分析,可得到不同组分高分子的绝对分子量。用已知分子量的高分子对上述分子量分布曲线进行分子量标定,可得到各组分的相对分子量。由于不同高分子在溶剂中的溶解温度不同,有时需在较高温度下才能制成高分子溶液,这时GPC柱子需在较高温度下工作。 4.质谱法 质谱法是精确测定物质分子量的一种方法,质谱测定的分子量给出的是分子质量m对电荷数Z之比,即质荷比(m/Z)过去的质谱难于测定高分子的分子量,但近20余年由于我的离子化技术的发展,使得质谱可用于测定分子量高达百万的高分子化合物。这些新的离子化技术包括场解吸技术(FD),快离子或原子轰击技术(FIB或FAB),基质辅助激光解吸技术(MALDI-TOF MS)和电喷雾离子化技术(ESI-MS)。由激光解吸电离技术和离子化飞行时间质谱相结合而构成的仪器称为“基质辅助激光解吸-离子化飞行时间质谱”(MALDI-TOF MS 激光质谱)可测量分子量分布比较窄的高分子的重均分子量(Mw)。由电喷雾电离技术和离子阱质谱相结合而构成的仪器称为“电喷雾离子阱质谱”(ESI- ITMS 电喷雾质谱)。可测量高分子的重均分子量(Mw)。

初中常用相对分子质量及计算公式

氢 气 H 2 2 五氧化二磷 P 2O 5 142 氧 气 O 2 32 氢氧化钙(熟石灰) Ca(OH)2 74 氯 气 Cl 2 71 氢氧化铜 Cu(OH)2 98 氨 气 NH 3 17 氢氧化钠 NaOH 40 氮 气 N 2 28 过氧化氢(双氧水) H 2O 2 34 一氧化碳 CO 28 碱式碳酸铜(绿) Cu 2(OH)2CO 3 222 二氧化碳 CO 2 44 盐酸(氯化氢) HCl 36.5 一氧化硫 SO 48 氯化钙 CaCl 2 111 二氧化硫 SO 2 64 氯化钾 KCl 74.5 三氧化硫 SO 3 80 氯化铁(淡黄溶) FeCl 3 162.5 二氧化锰 MnO 2 87 氯酸钾 KClO 3 122.5 碳 酸 H 2CO 3 62 高锰酸钾(灰锰氧) KMnO 4 158 碳酸钙 CaCO 3 100 硫酸铜(白固 蓝溶) CuSO 4 160 碳酸氢铵 NH 4HCO 3 79 硫酸钠 Na 2SO 4 142 硝 酸 HNO 3 63 硝酸铵 NH 4NO 3 80 硫 酸 H 2SO 4 98 甲 烷 CH 4 16 亚硫酸 H 2SO 3 82 尿 素 CO(NH 2)2 60 磷 酸 H 3PO 4 98 甲 醇 CH 3OH 32 水 H 2O 18 乙醇(酒精) C 2H 5OH 46

氧化铜(黑)CuO 80 乙炔C H226 2 氧化镁(白)MgO 40 乙酸(醋酸)CH COOH 60 3 氧化钙(白)CaO 56 四氧化三铁(黑)Fe O4232 3 氧化铁(红)Fe O3160 2 氧化亚铁(黑)FeO 72 硫酸亚铁(淡绿)FeSO 152 4 硫酸锌(白/无)ZnSO 161 4 初中化学常用计算公式 一. 常用计算公式: (1)相对原子质量= 某元素一个原子的质量/ 一个 碳原子质量的1/12 (2)设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相 对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m: B的相对原子质量×n

凝固点降低法测定分子量

凝固点降低法测定分子量 一、实验目的及要求 1)用凝固点降低法测定物质的摩尔质量。 2) 掌握自冷式凝固点测定仪的使用方法。 二、实验原理 非挥发性溶质二组分溶液,其稀溶液具有依数性,凝固点降低就是依数性的一种表现。根据凝固点降低的数值,可以求溶质的摩尔质量。对于稀溶液,如果溶质和溶剂不生成固溶体,固态是纯的溶剂,在一定压力下,固体溶剂与溶液成平衡的温度叫做溶液的凝固点。溶剂中加入溶质时,溶液的凝固点比纯溶剂的凝固点低。那么其凝固点降低值ΔT f 与溶质的质量摩尔浓度b 成正比。 ?T f = T f 0-T f =K f b 式中:T f 0纯溶剂的凝固点、T f 浓度为b 的溶液的凝固、K f 溶剂的凝固点降低常数。 若已知某种溶剂的凝固点降低常数K f ,并测得溶剂和溶质的质量分别为m A , m B 的稀溶液 的凝固点降低值?T f ,则可通过下式计算溶质的摩尔质量M B 。 A f B f B m T m K M ?= 式中K f 的单位为K · kg ·mol -1 纯溶剂的凝固点为其液相和固相共存的平衡温度。若将液态的纯溶剂逐步冷却,在未凝固前温度将随时间均匀下降,开始凝固后因放出凝固热而补偿了热损失,体系将保持液一固两相共存的平衡温度而不变,直至全部凝固,温度再继续下降。其冷却曲线如图1中1所示。但实际过程中,当液体温度达到或稍低于其凝固点时,晶体并不析出,这就是所谓的过冷现象。此时若加以搅拌或加入晶种,促使晶核产生,则大量晶体会迅速形成,并放出凝固热,使体或加入晶种,促使晶核产生,则大量晶体会迅速形成,并放出凝固热,使体系温度迅速回升到稳定的平衡温度;待液体全部凝固后温度再逐渐下降。冷却曲线如图1中2。

相对分子质量计算

化学式计算的典型题(2010年中考题精选) 1、求下列物质的相对分子质量 (1)KHCO3;(2)Cu2(OH)2CO3; (3)CuSO4·5H2O;(4)KAl(SO4)2·12H2O (5)2H2O;(6)4CO(NH2)2;(7)3Mg2+(8)5SO42-。 2、求下列物质的各元素质量比 (1)CuSO4;(2)C2H5OH;(3)Fe2(SO4)3; 3、三硝基甲苯是TNT黄色炸药的主要成分,它的化学式为C6H5CH3(NO2)3,求三硝基甲苯中碳元素和氢元素的质量比是_____________。 4、求下列常见氮肥中的氮元素质量分数。 (1)尿素[CO(NH2)2];(2)硝酸铵[NH4NO3];(3)碳酸氢铵[NH4HCO3]; (4)硫酸铵[(NH4)2SO4];(5)氯化铵[NH4Cl] 5、3.6g水中含有的氢元素质量是多少g? 6、25g碳酸钙[CaCO3]含有的钙元素是多少g? 7、6kg尿素[CO(NH2)2]所含的氮元素是多少kg? 8、多少g水中含有的氢元素质量是1g? 9、人们常采用吃含碳酸钙药物的方法补钙,若要补钙4mg,需要食用多少mg的碳酸钙? 10、多少g水所含氢元素的质量与1.7g氨气[NH3]所含氢元素的质量相等? 11、多少g硝酸铵所含氮元素与12g尿素所含氮元素质量相当? 12、多少g四氧化三铁所含铁元素质量是16g三氧化二铁质量的两倍? 13、农民用尿素给耕地的玉米施加氮肥,刚好需要120kg尿素,若改施用碳酸氢铵[NH4HCO3]达到相同的肥效,则需要碳酸氢铵的质量是多少?

14、醋酸的化学式为CH3COOH,则碳、氢、氧原子个数比是__________; 15、尿素[CO(NH2)2]中碳、氢、氧、氮四种原子个数比是__________; 16、相同分子数的水分子和二氧化碳分子中,两者氧原子个数比是__________; 17、3个氧气分子和2个臭氧分子中,两者氧原子个数比是__________; 18、各取n个二氧化硫分子和m个三氧化硫分子,两者的氧原子个数比是____________。 19、如果水和二氧化碳所含的氧原子个数相同,则水分子和二氧化碳的分子个数比是__________; 20、二氧化硫和三氧化硫所含氧原子个数相同,则二氧化硫分子和三氧化硫分子个数比是__________; 21、氧气和臭氧所含的氧原子个数比是4:3,则氧气和臭氧的分子个数比是___________。 22、等质量的二氧化碳和一氧化碳,则两者所含氧元素的质量比是_____________; 23、取相同质量的二氧化硫和三氧化硫,则二氧化硫分子和三氧化硫所含的氧元素质量比是______; 24、当二氧化硫和三氧化硫的质量比是8:5时,二氧化硫和三氧化硫所含氧元素的质量比是_____。 25、二氧化碳和一氧化碳的氧元素的质量相等,则两种化合物的质量比是_________; 26、若要使二氧化硫和三氧化硫中含有相同质量的氧元素,则二氧化硫和三氧化硫的质量比是______; 27、二氧化硫和三氧化硫的硫元素的质量比是2:1,则二氧化硫和三氧化硫的质量比________。 28、将氯化钠粉末放在水中完全溶解,测定得知氯化钠的质量分数为25%,则钠元素在盐水中的质量分数是多少? 29、某地赤铁矿中氧化铁[Fe2O3]的质量分数是50%,杂质不含铁元素,则赤铁矿中铁元素质量分数是多少? 30、某不纯的硝酸铵[NH4NO3]化肥样品中硝酸铵的质量分数是90%,杂质不含氮元素,则

凝固点降低法测相对分子质量

凝固点降低法测相对分子质量;实验注意事项;1、将已调好并擦干的贝克曼温度计插入冷冻管时;再;晶全部溶化时;把萘加入体系并使其溶解时;请注意:;2、每组(三次)数据测定时过冷程度要一致;3、使用贝克曼温度计时请先阅读教材P44的注意事;4、量取苯时应先读室温;思考题;1、凝固点降低法测相对分子质量的公式,在什么条件;2、在冷却过程中,冷冻管内固液相之间和寒剂之 凝固点降低法测相对分子质量 实验注意事项 1、将已调好并擦干的贝克曼温度计插入冷冻管时;再次测量之前将体系温热、搅拌而使苯结 晶全部溶化时;把萘加入体系并使其溶解时;请注意:绝不能让温度计中的水银柱与贮槽中的水银相接! 2、每组(三次)数据测定时过冷程度要一致。搅拌应无摩擦。 3、使用贝克曼温度计时请先阅读教材P44的注意事项,一定要小心! 4、量取苯时应先读室温。 思考题 1、凝固点降低法测相对分子质量的公式,在什么条件下才能适用?答:非挥发性溶质的稀溶液,适用于稳定的大分子化合物,浓度不能太大也不能太小。 2、在冷却过程中,冷冻管内固液相之间和寒剂之间有哪些热交换?它们对凝固点的测定有何影响? 答:凝固点测定管内液体与空气套管、测定管的管壁、搅拌棒以及温差测量仪的传感器等存在热交换。因此,如果搅拌棒与温度传感器摩擦会导致测定的凝固点偏高。测定管的外壁上粘有水会导致凝固点的测定偏低。 3、当溶质在溶液中有离解,缔合和生成络合物的情况时,对相对分子质量测定值的影响如何?答:溶质在溶液中有解离、缔合、溶剂化和形成配合物时,凝固点降低法测定的相对分子质量为溶质的解离、缔合、溶剂化或者形成的配合物相对分子质量,因此凝固点降低法测定出的结果反应了物质在溶剂中的实际存在形式。 4、影响凝固点精确测量的因素有哪些? 答:影响测定结果的主要因素有控制过冷的程度和搅拌速度、寒剂的温度等。本实验测定凝固点需要过冷出现,过冷太甚会造成凝固点测定结果偏低,因此需要控制过冷程度,只有固液两相的接触面相当大时,固液才能达到平衡。实验过程中就是采取突然搅拌的方式和改变搅拌速度来达到控制过冷程度的目的;寒剂的温度,寒剂温度过高过低都不利于实验的完成。 5、.根据什么原则考虑加入溶质的量?太多或太少影响如何? 答:溶质的加入量应该根据它在溶剂中的溶解度来确定,因为凝固点降低是稀溶液的依数性,所以应当保证溶质的量既能使溶液的凝固点降低值不是太小,容易测定,又要保证是稀溶液这个前提。如果加入量过多,一方面会导致凝固点下降过多,不利于溶液凝固点的测定,另一方面有可能超出了稀溶液的范围而不具有依数性。过少则会使凝固点下降不明显,也不易测定并且实验误差增大。 6.空气套筒的作用是什么?本实验应注意哪些问题?答:使降温速度缓慢,有利于相平衡 7.为什么要先测近似凝固点? 答:为了控制过冷深度。过冷太小,温度回升不明显,不易测量。过冷太大,测量值偏低。

二氧化碳相对分子质量的测定

实验4 二氧化碳相对分子质量的测定 1.实验目的 (1)了解气体密度法测定气体相对分子质量的原理的方法; (2)了解气体的净化和干燥的原理和方法; (3)熟练掌握启普发生器的使用; (4)进一步掌握天平的使用。 2.实验原理 根据阿伏伽德罗定律,同温同压下,同体积的任何气体含有相同数目的分子。因此,在同温同压下,同体积的两种气体的质量之比等于它们的相对分子质量之比,即 M1/M2=W1/W2=d 其中:M1和W1代表第一种气体的相对分子质量和质量;M2和W2代表第二种气体的相对分子质量和质量;d(=W1/W2) 叫做第一种气体对第二种的相对密度。 本实验是把同体积的二氧化碳气体与空气(其平均相对分子质量为29.0)相比。这样二氧化碳的相对分子质量可按下式计算: M co2=Wco2×M空气/W空气=d空气×29.0 式中一定体积(V)的二氧化碳气体质量Wco2可直接从天平上称出。根据实验时的大气压(p)和温度(t),利用理想气体状态方程式,可计算出同体积的空气的质量: W空气=pV×29.0/RT 这样就求得了二氧化碳气体对空气的相对密度,从而测定二氧化碳气体的相对分子质量。 3.实验仪器与试剂 启普发生器,洗气瓶(2只),250mL锥形瓶,台秤,天平,温度计,气压计,橡皮管,橡皮塞等。 HCl (工业用,6mol·L-1),H2SO4 (工业用),饱和NaHCO3溶液,无水CaCl2,大理石等。 4.实验步骤 按图连接好二氧化碳气体的发生和净化装置。

图6.3.1 二氧化碳的发生和净化装置 1—大理石+稀盐酸;2—饱和NaHCO3;3—浓H2SO4; 4—无水CaCl2;5—收集器 取一个洁净而干燥的锥形瓶,选一个合适的橡皮塞塞入瓶口,在塞子上作一个记号,以固定塞子塞入瓶口的位置。在天平上称出(空气+瓶+塞子)的质量。 从启普发生器产生的二氧化碳气体,通过饱和NaHCO3溶液、浓硫酸、无水氯化钙,经过净化和干燥后,导入锥形瓶内。因为二氧化碳气体的相对密度大于空气,所以必须把导气管插入瓶底,才能把瓶内的空气赶尽。2~3分钟后,用燃着的火柴在瓶口检查CO2已充满后,再慢慢取出导气管用塞子塞住瓶口(应注意塞子是否在原来塞入瓶口的位置上)。在天平上称出(二氧化碳气体+瓶+塞子)的质量,重复通入二氧化碳气体和称量的操作,直到前后两次(二氧化碳气体+瓶+塞子)的质量相符为止(两次质量相差不超过1~2mg)。这样做是为了保证瓶内的空气已完全被排出并充满了二氧化碳气体。 最后在瓶内装满水,塞好塞子(注意塞子的位置),在台秤上称重,精确至0.1g。记下室温和大气压。 5.数据记录和结果处理 室温t(℃)____,T(K) ____ 气压p(Pa) ____ (空气+瓶+塞子)的质量A ____ g (二氧化碳气体+瓶+塞子)的质量B____g (水+瓶+塞子)的质量C____g 瓶的容积V=(C-A)/1.00____ ml ____ g 瓶内空气的质量W 空气 ____ g 瓶和塞子的质量D=A-W 空气

有关相对相对分子质量的计算

有关相对相对分子质量的计算 陈永禄 教学目标: 1.知识目标:(1)了解相对分子质量的概念 (2)掌握相对分子质量的有关计算 2.能力目标:通过学习,学生要学会有关相对分子质量的有关计算 3.情感目标:通过学习,学生可以将这部分知识运用于实际生活中去 重点:相对分子质量的有关计算 难点:相对分子质量的有关计算 教学过程: 引言:前面我们学习了相对原子质量,这一节课我们将学习相对分子质量 相对分子质量:化学式中各原子的相对原子质量的总和.下面我们主要学习相对分子质量的有关计算 1.相对分子质量的计算 例:计算二氧化碳CO2的相对相对分子质量. 解:CO2的相对相对分子质量=12ⅹ1+16ⅹ2 =44 练习:计算下列物质的相对分子质量. 四氧化三铁[Fe3O4] 五氧化二磷[P2O5] 碳酸钠[Na2CO3] 碳酸氢钠[NaHCO3] 尿素[CO(NH2)2] 硫酸铵[(NH4)2SO4] 例:计算胆矾[CuSO4?5H2O]的相对分子质量 解:[CuSO4?5H2O]的相对分子质量=64ⅹ1+32ⅹ1+16ⅹ4+5ⅹ(1ⅹ2+16ⅹ1) =160+90 =250 练习:计算下列物质的相对分子质量 明矾[KAlSO412H2O] 绿矾[ZnSO47H2O] 2.计算物质中各元素的质量比。 例:计算水中元素的质量比 解:[H2O]中H:O的质量比=1ⅹ2:16 =1:8 练习:计算下列物质中各元素的质量比. 二氧化碳四氧化三铁 硝酸铵[NH4NO3] 碳酸氢铵[NH4HCO3] 胆矾[CuSO4?5H2O] 3.计算物质中某元素的质量分数. 例:计算硝酸铵[NH4NO3]中N的质量分数

实验 凝固点降低法测定分子量

1 实验9 凝固点降低法测分子量 一、实验目的及要求 1、用凝固点降低法测定环己烷的摩尔质量。 2、正确使用数字贝克曼(Beckmann )温度计,掌握溶液凝固点的测量技术。 3、通过本实验加深对稀溶液依数性的理解。 二、实验原理 化合物的分子量是一个重要的物理化学参数。用凝固点降低法测定物质的分子量是一种简单又比较准确的方法。 固体溶剂与溶液成平衡的温度称为溶液的凝固点。含非挥发性溶质的双组分稀溶液的凝固点低于纯溶剂的凝固点。凝固点降低是稀溶液依数性质的一种表现。当确定了溶剂的种类和数量后,溶剂凝固点降低值仅取决于所含溶质分子数目。对于理想溶液,根据相平衡条件,稀溶液的凝固点降低与溶液成分关系由范霍夫(van’t Hoff )凝固点降低公式给出 B A A m f f f n n n A H T R T +? = ) ()(2 *?? (2.1) 式中,△T f 为凝固点降低值;T f *为纯溶剂的凝固点;△f H m (A )为摩尔凝固点热;n A 和n B 分别为溶剂和溶质的物质的量。当溶液浓度很稀时,n B ≤n A ,则 B f B A m f f A B m f f f m K m M A H T R n n A H T R T ≡?=?=) ()()()(2*2 *??? (2.2) 式中,M A 为溶剂的摩尔质量;m B 为溶质的质量摩尔浓度;K f 即称为质量摩尔凝固点降低常数。 如果已知溶剂的凝固点降低常数K f ,并测得此溶液的凝固点降低值△T f ,以及溶剂和溶质的质量W A 、W B ,则溶质的摩尔质量由下式求得 f B K m =A f B W T W ? (2.3) 应该注意,如溶质在溶液中有解离、缔合、溶剂化和配合物形成等情况时,不能简单地运用公式(2.3)计算溶质的摩尔质量。显然,溶液凝固点降低法可用于溶液热力学性质的研究,例如电解质的电离度、溶质的缔合度、溶剂的渗透系数和活度系数等。 凝固点测定方法是将已知浓度的溶液逐步冷却成过冷溶液,然后促使溶液结晶;当晶体生成时,放出的凝固热使体系温度回升,当放热与散热达成平衡时,温度不再改变,此固液两相达成平衡的温度,即为溶液的凝固点。本实验测定纯溶剂和溶液的凝固点之差。 纯溶剂的凝固点是它的液相和固相共存的平衡温度。若将纯溶剂逐步冷却,理论上其冷却曲线(或称步冷曲线)应如图2—1(Ⅰ)所示。但是实际过程中往往发生过冷现象,即在过冷而开始析出固体时,放出的凝固热才使体系的温度回升到平衡温度,待液体全部凝固后,温度再逐步下降,其步冷曲线呈图2—1(Ⅱ)形状。过冷太甚,会出现如图2—1(Ⅲ)的形状。 溶液凝固点的精确测量,难度较大。当将溶液逐步冷却时,其步冷曲线与纯溶剂不同,见图2—1(Ⅳ)、(Ⅴ)、(Ⅵ)。由于溶液冷却时有部分溶剂凝固而析出,使剩余溶液的浓度逐渐增大,因而剩余溶液与溶剂固相的平衡温度也在逐渐下降,出现如图2—1(Ⅳ)的形状。通常发生稍有过冷现象,则出现如图2—1(Ⅴ)的形状,此时可将温度 回升的最高值 t 图2—1 步冷曲线示意图

高聚物相对分子量测定方法

高聚物相对分子量测定方法 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。科标分析实验室科研团队集成多名资深行业专家,拥有博士、硕士等高学历人才数名,提供专业分子量测定服务,为客户提供检测数据,检测方法,检测图谱等论文需要的资料。 (1)端基分析法(end-group analysis,简称EA) 如果线形高分子的化学结构明确而且链端带有可以用化学方法(如滴定)或物理方法(如放射性同位素测定)分析的基团,那么测定一定重量高聚物中端基的数目,即可用下式求得试样的数均相对分子质量。 式中:m-试样质量;Z-每条链上待测端基的数目;n-被测端基的摩尔数。 如果用其他方法测得,反过来可求出Z,对于支化高分子,支链数目应为Z-1。 (2)沸点升高和冰点降低法(boiling-point elevation,freezing-point depression) 利用稀溶液的依数性测定溶质相对分子质量的方法是经典的物理化学方法。对于高分子稀溶液,只有在无限稀的情况下才符合理想溶液的规律,因而必须在多个浓度下测ΔT b(沸点升高值)或ΔT f(冰点下降值),然后以ΔT/C对C作图,外推到c->0时的值来计算相对分子质量。 式中:A2称第二维里系数。 (3)膜渗透压法(osmometry,简称OS)

当高分子溶液与纯溶剂倍半透膜隔开时,由于膜两边的化学位不等,发生了纯溶剂向高分子溶液的渗透。当渗透达到平衡时,纯溶剂的化学位应与溶液中溶剂的化学位相等,即 或 由Floy-Huggins理论,从Δμ1的表达式可以得到 由于C2项很小,可忽略, 式中:χ) A2表征了高分子与溶剂相互作用程度的大小。 对于良溶剂,χ1; 对于θ溶剂,χ1; 对于非溶剂,χ1

相关文档
相关文档 最新文档