文档库 最新最全的文档下载
当前位置:文档库 › 中考专题复习与圆有关的计算与证明

中考专题复习与圆有关的计算与证明

中考专题复习与圆有关的计算与证明
中考专题复习与圆有关的计算与证明

中考专题复习——与圆有关的计算与证明

【中考要求及命题趋势】

1、理解圆的基本概念与性质。

2、求线段与角和弧的度数。

3、圆与相似三角形、全等三角形、三角函数的综合题。

4、直线和圆的位置关系。

5、圆的切线的性质和判定。

6、三角形内切圆以及三角形内心的概念。

7、圆和圆的五种位置关系。 8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。

9、掌握弧长、扇形面积计算公式。 10、理解圆柱、圆锥的侧面展开图。

11、掌握圆柱、圆锥的侧面积和全面积计算。

2010年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。

【应试对策】

圆的综合题,除了考切线、弦切角必须的问题。一般圆主要和前面的相似三角形,和前面大的知识点接触。直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,考查对扇形面积公式、圆锥、圆柱的侧面积的公式记忆。圆这一章重要的概念、定理先掌握、后应用,掌握之后,再掌握一些解题思路和解题方法。

第一:有三条常用辅助线,一是圆心距,二是直径圆周角,第三条是切线径。第二:有几个分析思路:弧、常与圆周角互相转换;那么怎么去应用,就根据题目条件而定。

【复习要点】

1、圆的有关概念:

(1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧。

(2)______________________的线段叫做弦,经过圆心的弦叫做直径。

(3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角。

2、圆的对称性:

(1)圆是轴对称图形,其对称轴是_____ ____;(2)圆是中心对称图形,其对称中心是_________。3、垂径定理及推论

垂径定理:垂直于弦的直径_________弦,并且平分____________________。

推论:平分弦(不是直径)的直径_____这条弦,并且平分__________________

4、弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,它们所对应的其余各组量也相等。如图所示:

AB,CD是⊙O的两条弦,OE,OF为AB,CD的弦心距,根据圆心角,弧,弦和弦心距

C

之间的关系定理填空:

(1)如果AB=CD,那么___________, __________, ______________

(2)如果OE=OF,那么___________, ___________, ______________

(3)如果弧AB=弧CD,那么__________, ____________, ___________

(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的

________,如图,∠ACB=____________

(2)推论:在同圆或等圆中,同弧或等弧所对的圆周角________,直径所对的圆周角是_______,90°的圆周角所对的弦是________,所对的弧是__________.

6、确定圆的条件

三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的 .

7、点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,

判定切线的方法有三种:①利用切线的定义:即与圆有惟一公共点的直线是圆的切线。②到圆心的距离等于半径的直线是圆的切线。③经过半径的外端点

并且垂直于这条半径的直线是圆的切线。切线的五个性质:①切线与圆只有一个公共点;

②切线到圆心的距离等于圆的半径;③切线垂直于经过切点的半径;④经过圆心垂直于切

线的直线必过切点。⑤经过切点垂直于切线的直线必过圆心。

10、切线长定理

经过圆外一点作圆的切线,这点与切点之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引

圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 .

11、三角形内切圆

和三角形各边都相切的圆叫做三角形的内切圆,三角形内切圆的圆心叫三角形的内心.

12、圆和圆的位置关系:

位置 外离 外切 相交 内切 内含 公共点个数

_____

______ _____ _____ _____ d 与R 、r 数量关系 _____

_______ ______ ______ _____ 性质

连心线必过切点

连心线垂直平分公共弦

连心线必过切点

1、正多边形的定义: 、 的多边形叫做正多边形。

2、正n 边形:如果一个正多边形有n 条边,那么这个正多边形叫做 。

3、正多边形的中心: 是正多边形的中心。

4、正多边形的半径: 是正多边形的半径。

5、正多边形的中心角: 正多边形的每一条边所对的 叫做正多边形的中心角。

6、正多边形的边心距: 到 的距离叫做正多边形的边心距。

7、任何一个正多边形都有一个 和一个 ,这两个圆是 .

8、正多边形的边心距与 相等。 14、弧长和扇形面积

1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .

2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2

R π? = = .

3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)

4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)

5.弓形的面积

(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做 。 (2)弓形的周长= (3)弓形的面积

当弓形所含的弧是劣弧时,如图1所示,s 弓形= 当弓形所含的弧是优弧时,如图2所示,s 弓形 当弓形所含的弧是半圆时,如图3所示,s 弓形

【备考指导】

1、“垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,在一个圆中,若知圆的半径为R ,弦长为a ,圆心到此弦的距离为d ,?根据垂径定理,有R 2=d 2+(

2

a )2

,所以三个量知道两个,就可求出第三个.同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题.

2、证明一条直线是圆的切线的方法有两种:(1)当直线与圆有一个公共点时,把圆心和这个公共点连结起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;(2)当直线和圆的公共点没有明确时,可过圆心作直线的垂线,?再证圆心到直线的距离等于半径,简称“作垂线,证半径.”

3、面积的计算往往是不规则图形,不易直接求出,?所以要将其转化为与其面积相等的规则图形,等积转化的一般方法是:(1)利用平移、?旋转或轴对称等图形变换进行转化;(2)?根据同底(等底)同高(等高)的三角形的面积相等进行转化;(3)利用几个规则图形的面积和或差求不规则图形的面积. 【经典例析】

例1已知:如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D ,AE 是⊙O

的直径,若S △ABC =S ,⊙O 的半径为R . (1)求证:AB·AC=AD·AE ;(2)求证:AB·AC·BC=4RS . 【解析】(1)本题要证明的结论是“等积式”,?通常的思路是把等积式转化成比例式,再找相似三角形.

(2)利用(1)的结论和三角形的面积公式.

例2如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠. (1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长. 【答案】(1)直线BD 和O ⊙相切. 证明:

∵AEC ODB ∠=∠,AEC ABC ∠=∠, ∴ABC ODB ∠=∠.∵OD ⊥BC ,

∴90DBC ODB ∠+∠=°.∴90DBC ABC ∠+∠=°. 即90DBO ∠=°.∴直线BD 和O ⊙相切.

(2)连接AC . ∵AB 是直径, ∴90ACB ∠=°.

在Rt ABC △中,108AB BC ==,, ∴226AC AB BC =

-=.

∵直径10AB =, ∴5OB =.

由(1),BD 和O ⊙相切,

∴90OBD ∠=°.∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△.∴

AC BC

OB BD

=

. ∴

685BD =

,解得20

3

BD =. 【点评】圆的切线有三种判定方法:①和圆只有一个公共点的直线是圆的切线;②到圆心的距离等于半径的直线是圆的切线;③过半径外端且和这条半径垂直的直线是圆的切线.在证明时一定要根据题目已知条件合理选择.

例3如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且AB=13,BC=5. (1)求sin ∠BAC 的值;

(2)如果OD ⊥AC ,垂足为点D ,求AD 的长;

(3)求图中阴影部分的面积.(精确到0.1) 【答案】解:(1)∵AB 是⊙O 的直径, ∴∠ACB=90°. ∴sin ∠BAC=

5

13

BC AB =. (2)在Rt △ABC 中,AC= 2222135AB BC -=- =12.

又∵OD ⊥AC 于点D , ∴AD=

1

2

AC=6. (3)∵S 半圆=

12π×(2AB )2=12π×1694=1698

π. S △ABC =

12AC ×BC=1

2

×12×5=30,

∴S 阴影=S 半圆-S △ABC =

169

8

π-30≈36.3 点评 “直径所对的圆周角为90°”以及“垂径定理”可以将圆的有关知识和三角形有关知识结合起来.因此对这部分知识应加以重视.

例4已知扇形的圆心角为120°,面积为300πcm 2. (1)求扇形的弧长;

(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?

解析:(1)由S 扇形=2360n R 求出R ,再代入L=180

n R

求得.(2)若将此

扇形卷成一个圆锥,?扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其

截面是一个以底是直径,?圆锥母线为腰的等腰三角形.解答如下:(1)如图所

示:∵300π=2120360R π; ∴R=30; ∴弧长L=12030180

π??=20π(cm )(2)

如右图所示:∵20π=20πr ; ∴r=10,R=30。 AD=900100-=202 ∴S 轴截面=

12×BC ×AD=1

2

×2×10×202=2002(cm 2);因此,扇形的弧长是20πcm 卷成圆锥的轴截面是2002cm 2.

反思:圆锥、扇形、圆之间的换算是中考中的热点、常考点,需同学们理清平面与立体之间的变换和实质,熟悉公式并能利用题目中的数据代替公式中的量来解题。

【迎考精炼】

一、选择题:

1.(2009年湖北孝感)如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠

CAO

的度数是( ) A .15° B .30°

C .45°

D .60°

2.(2010安徽省中中考) 如图,⊙O 过点B 、C 。圆心O 在等腰直角

ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为………………( )

A )10

B )32

C )23

D )13 3.(2010安徽蚌埠二中)以半圆的一条弦BC (非直径)为对称轴将

弧BC

折叠后与直径AB 交于点D ,若3

2

=DB AD ,且10=AB ,则CB 的

长为

A .54

B .34

C . 24

D .4

4.(2009年山东青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有

水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).

A .0.4米

B .0.5米

C .0.8米

D .1米

5.(2009年湖北襄樊)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切O 于C ,

若25A =∠.则D ∠等于( )

A .40?

B .50?

C .60?

D .70?

6.(2009年浙江台州)大圆半径为6,小圆半径为3,两圆圆心距为

10,则这两圆的位置关系为( )

A .外离

B .外切 C.相交 D .内含

7(2010 河北)如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是 A .点P B .点Q C .点R D .点M 8.(2010湖北武汉)如图,的直径AB 长为10,弦AC 长为

6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( ) A 、7 B 、72 C 、82 D 、9 9.(2010广西梧州)如图6,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD 。( )

A .4个

B .3个

C .2个

D .1个

10.(2010四川攀枝花)如图2,△ABC 内接于⊙O ,若∠O A B=28°,则∠C 的大小是( ) A .56° B .62° C .28° D .32°

二、填空题:

1.(2010山东青岛)如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.48

2.(2010杭州)如图, 已知△ABC ,6==BC AC ,?=∠90C .O 是AB 的中点, ⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G . 则

CG = . 332+

3.(株洲市2010)两圆的圆心距5d =,它们的半径分别是一元二次方程2

540x x -+=的两个根,这两

圆的位置关系是 .外切

4.(兰州市2010)如图,扇形OAB ,∠AOB=90?,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧AB 切于点

(第9题) B

C

D E O A

· M

R Q 第7A B C P B

C

A

O

第10题

C ,则扇形OAB 的面积与⊙P

的面积比是 .

5.(黄冈市2010)将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm. 10. 23

三、解答题

1.(2009年四川内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E 、F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC. 求证:(1)CD ⊥DF ; (2)BC =2CD

证明:(1)设∠DFC =θ,则∠BAD =2θ 在△ABD 中,∵AB =AD , ∴∠ABD =∠ADB ∠ABD =12(180°-∠BAD )=90°-θ 又∠FCD =∠ABD =90°-θ ∴∠FCD+∠DFC =90° ∴CD ⊥DF

(2)过F 作FG ⊥BC 于G

在△FGC 和△FDC 中 ,∠FCG =∠ADB =∠ABD =∠FCD ∠FGC =∠FDC =90°,FC =FC ∴△FGC ≌△FDC

∴GC =CD 且∠GFC =∠DFC 又∠BFC =2∠DFC ∴∠GFB =∠GFC ∴BC =2GC , ∴BC =2CD.

O

A

B

C

第1题图

·

2. (2010年毕节地区)(本题12分)如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交

CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.

证明:(证法一)连接OE DE ,. 1分 ∵CD 是⊙O 的直径,

∴90AED CED ∠=∠=. 2分 ∵G 是AD 的中点,

∴1

2

EG AD DG =

=. 4分 ∴12∠=∠. 6分 ∵34OE OD =∴∠=∠,. 8分 ∴1324∠+∠=∠+∠.即90OEG ODG ∠=∠=. 10分 ∴GE 是⊙O 的切线. 12分

(证法二)连接OE OG ,. 1分 ∵AG GD CO OD ==,, ∴OG AC ∥.

2分 ∴1234∠=∠∠=∠,. 4分

∵OC=OE . ∴∠2=∠4. ∴∠1=∠3.

6分

又OE OD OG OG ==,,

∴OEG ODG △≌△. 8分 ∴90OEG ODG ∠=∠=. 10分

∴GE 是⊙O 的切线.

12分

3.(2009年湖北仙桃)如图,AB 为⊙O 的直径,D 是⊙O 上的一点,过O 点作AB 的垂线交AD 于点E ,交BD 的延长线于点C ,F 为CE 上一点,且FD =FE . (1)请探究FD 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,BD =3,求BC 的长. 解:(1)FD 与⊙O 相切,理由如下:

连接OD.∵OC ⊥AB ,∴∠AOC =90°,∴∠3+∠A =90°.∵FE =FD , ∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3,又∵OA =OD ,∴∠A =∠ 4.

∴∠1+∠4=90°,∴FD 与⊙O 相切.

(2)∵⊙O 的半径为2,∴OB =2,AB =4,又∵AB 是⊙O 的直径,

∴∠ADB =90°.∵OC ⊥AB ,∴∠ADB =∠BOC =90°,又∵∠B =∠B ,∴Rt △ABD ∽Rt △CBO

AB CB

BD BO =

2CB =

,∴3BC =. 4.(2010济宁市)(6分)

如图,AD 为ABC ?外接圆的直径,AD BC ⊥,垂足为点F ,

ABC ∠的平分线交AD 于点E ,连接BD ,CD .

(1) 求证:BD CD =;

(2) 请判断B ,E ,C 三点是否在以D 为圆心, 以DB 为半径的圆上?并说明理由.

(1)证明:∵AD 为直径,AD BC ⊥,

∴BD CD =.∴BD CD =. ·········································································· 3分

(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ································ 4分

理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.

∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =. ············································································ 6分 由(1)知:BD CD =.∴DB DE DC ==.

∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ···································· 7分

5.(宿迁市2010)(本题满分10分)如图,AB 是⊙O 的直径, P 为AB 延长线上任意一点,C 为半圆ACB

的中点,PD 切⊙O 于点D ,连结CD 交AB 于点E .

求证:(1)PD =PE ;

(2)PB PA PE ?=2

证明:(1)连接OC 、OD ………………1分

∴OD ⊥PD ,OC ⊥AB ∴∠PDE= 90—∠ODE ,

∠PED=∠CEO= 90—∠C 又∵∠C=∠ODE

∴∠PDE=∠PED …………………………………………4分 ∴PE=PD …………………………………………5分 (2) 连接AD 、BD ………………………………………6分

∴∠ADB=

90

∵∠BDP= 90—∠ODB ,∠A=

90—∠OBD 又∵∠OBD=∠ODB ∴∠BDP=∠A

∴?PDB ∽?PAD …………………………………………………8分

PD

PA PB PD =

∴PB PA PD ?=2

A

B

C

E

F

D

(第4题)

?

P

B

A E

O C

D

∴PB PA PE ?=2 …………………………………………………10分

6.(株洲市2010)(本题满分8分)如图,AB 是

O 的直径,C

为圆周上一点,30ABC ∠=?,O 过点B 的切线与CO 的延长线交于点D .

求证:(1)CAB BOD ∠=∠;

(2)ABC ?≌ODB ?. 证明:(1)∵AB 是

O 的直径,∴90ACB ∠=?,由

30ABC ∠=?,∴60CAB ∠=?

又OB OC =,∴30OCB OBC ∠=∠=?∴60BOD ∠=?,∴CAB BOD ∠=∠.…… 4分 (2)在Rt ABC ?中,30ABC ∠=?,得12AC AB =,又1

2

OB AB =,∴AC OB =. 由BD 切

O 于点B ,得90OBD ∠=?.

在ABC ?和ODB ?中,

CAB BOD

ACB OBD AC OB ∠=∠∠=∠?=?

???

∴ABC ?≌ ODB ? …… 8分

7.(黄冈市2010)(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2

=AB ·AE ,求证:DE 是⊙O 的切线.

证明:连结DC ,DO 并延长交⊙O 于F ,连结AF.∵AD 2=AB ·AE ,∠BAD =∠DAE ,∴△BAD ∽△DAE ,∴∠ADB =∠E. 又∵∠ADB =∠ACB ,∴∠ACB =∠E ,BC ∥DE ,∴∠CDE =∠BCD =∠BAD =∠DAC ,又∵∠CAF =∠CDF ,∴∠FDE =∠CDE+∠CDF =∠DAC+∠CDF =∠DAF =90°,故DE 是⊙O 的切线 8.(兰州市2010)(本题满分10分)如图,已知AB 是⊙O 的直径,点C

在⊙O

上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证:BC=

2

1

AB ; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值.

解:(1)∵OA=OC,∴∠A=∠ACO

∵∠COB=2∠A ,∠COB=2∠PCB

∴∠A=∠ACO=∠PCB ……………………………………………………1分

∵AB 是⊙O 的直径

∴∠ACO+∠OCB=90° …………………………………………………2分

∴∠PCB+∠OCB=90°,即OC ⊥CP …………………………………………3分

∵OC 是⊙O 的半径

∴PC 是⊙O 的切线 …………………………………………………4分

(2)∵PC=AC ∴∠A=∠P

D

C

B

O

A

∴∠A=∠ACO=∠PCB=∠P

∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB

∴∠CBO=∠COB ……………………………………………5分

∴BC=OC

∴BC=

2

1

AB ………………………………………………………6分 (3)连接MA,MB ∵点M 是弧AB 的中点

∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ∵∠ACM=∠ABM ∴∠BCM=∠ABM

∵∠BMC=∠BMN

∴△MBN ∽△MCB

∴BM MN

MC

BM

∴BM 2

=MC ·MN ……………………8分

∵AB 是⊙O 的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM

∵AB=4 ∴BM=22 ………………………………………………………9分

∴MC ·MN=BM 2

=8 ……………………………………………………10分

参考答案

1.B

2.D

3.A

4.D

5.A

6.A 6.

7.B

8.B

9.A 10.B

【链接中考】

1.(2010广东广州,24,14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .

(1)求弦AB 的长;

(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由;

(3)记△ABC 的面积为S ,若2

S

DE =3ABC 的周长.

【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =1

2

,借助勾

股定理可求得AF 的长;

(2)要判断∠ACB 是否为定值,只需判

C

P D O

B

A E F C

P D O B A E

H

G

定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半;

(3)由题可知ABD ACD BCD S S S S ???=++=12

DE (AB +AC +BC ),又因

为2

S

DE =,所

以2

1

()2DE AB AC BC DE

++=,所以AB +AC +BC

=,由于DH =DG =DE ,所以在Rt △CDH 中,CH

,同理可得CG

,又由于AG =AE ,BE =BH ,所以AB +AC +BC =CG +CH +AG +

AB +BH

+DE =1

3

,代入AB +AC +BC

=,

【答案】解:(1)连接OA ,取OP 与AB 的交点为F ,则有OA =1.

∵弦AB 垂直平分线段OP ,∴OF =12OP =1

2

,AF =BF .

在Rt △OAF 中,∵AF

,∴AB =2AF

(2)∠ACB 是定值.

理由:由(1)易知,∠AOB =120°,

因为点D 为△ABC 的内心,所以,连结AD 、BD ,则∠CAB =2∠DAE ,∠CBA =2∠DBA ,

因为∠DAE +∠DBA =

1

2

∠AOB =60°,所以∠CAB +∠CBA =120°,所以∠ACB =60°; (3)记△ABC 的周长为l ,取AC ,BC 与⊙D 的切点分别为G ,H ,连接DG ,DC ,DH ,则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC .

∴ABD ACD BCD S S S S ???=++ =

12AB ?DE +12BC ?DH +12AC ?DG =12(AB +BC +AC ) ?DE =1

2

l ?DE . ∵2

S DE

∴21

2l DE

DE =

∴l =

∵CG ,CH 是⊙D 的切线,∴∠GCD =1

2∠ACB =30°,

∴在Rt △CGD 中,CG =tan 30DG

,∴CH =CG

又由切线长定理可知AG =AE ,BH =BE ,

∴l =AB +BC +AC =

,解得DE =1

3

∴△ABC

【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积

【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题 2. (楚雄州 本小题13分)已知:如图,⊙A 与y 轴交于C 、D 两点,圆心A 的坐标为(1,0),⊙A 的

半径为5,过点C 作⊙A 的切线交x 轴于点B (-4,0).

(1)求切线BC 的解析式;

(2)若点P 是第一象限内⊙A 上的一点,过点P 作⊙A 的切线与直线BC 相交于点G ,且∠CGP=120°,求点G 的坐标;

(3)向左移动⊙A (圆心A 始终保持在x 轴上),与直线BC 交于E 、F ,在移动过程中是否存在点A ,使△AEF 是直角三角形?若存在,求出点A 的坐标;若不存在,请说明理由. 解:(1)如图1所示,连接AC ,则AC=5

在Rt △AOC 中,AC=5 ,OA=1 ,则OC=2

∴点C 的坐标为(0,2)

设切线BC 的解析式为b kx y +=,它过点C (0,2),B (?4,0),则有

???=+-=042b k b 解之得?????

==

2

21b k

∴22

1

+=x y ………………………………………………4分

(2)如图1所示,设点G 的坐标为(a ,c ),过点G 作GH ⊥x 轴,垂足为H 点,

则OH=a , GH=c =2

1

a + 2 ……………………………………………………5分

连接AP , AG

因为AC=AP , AG=AG , 所以Rt △ACG ≌Rt △

所以∠AGC=2

1

×1200=600

在Rt △ACG 中 ,∠AGC= 600,AC=5

∴Sin600=AG

AC

∴AG =3152在Rt △AGH 中, AH=OH -OA=a -1 ,GH=

2

1

a + 2 2AH +2GH =2AG

∴2

)1(-a +2)221(+a =2

)3

152(

解之得:1a =

332 ,2a = ?3

3

2(舍去) …………………………………………7分

点G 的坐标为(

3

32,33

+ 2 ) …………………………………………………8分 (3) 如图2所示,在移动过程中,存在点A ,使△AEF 为直角三角形. ………………9分

1

要使△AEF 为直角三角形

AE=AF

∴∠AEF=∠AFE 900 ∴只能是∠EAF=900

当圆心A 在点B 的右侧时,过点A 作 AM ⊥BC,垂足为点M. 在Rt △AEF 中 ,AE=AF=5, 则EF=10, AM=

21EF=2

110

在Rt △OBC 中,OC=2 , OB=4,则BC=25

∠BOC= ∠BMA=900 ,∠OBC= ∠OBM

∴△BOC ∽△BMA ∴

AM OC =AB BC

∴AB=

22

5 ∴OA=OB -AB=4-

22

5 ∴点A 的坐标为(-4+

22

5

,0) ………………………………………………11分 当圆心A 在点B 的左侧时,设圆心为A ′,过点A ′作A ′M ′⊥BC 于点M ′,可得 △A ′M ′B ≌△AMB A ′B =AB =

22

5 ∴O A ′=OB+ A ′B =4 +

22

5 ∴点A ′的坐标为(-4-

22

5

,0) 综上所述,点A 的坐标为(-4+

225,0)或(-4-22

5,0) ……………13分 3. (2010年山东省日照市) (本题满分10分)

如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D . 求证:

(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE .

【解答】

(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90° ,

即AD 是底边BC 上的高. ………………………………………1分

又∵AB =AC ,∴△ABC 是等腰三角形,

∴D 是BC 的中点;………… ……………………………………………3分 (2) 证明:∵∠CBE 与∠CAD 是同弧所对的圆周角,

∴ ∠CBE =∠CAD .…………………………………………………5分 又∵ ∠BCE =∠ACD ,

∴△BEC ∽△ADC ;…………………………………………………6分 (3)证明:由△BEC ∽△ADC ,知

BC

CE

AC CD =

, 即CD ·BC =AC ·CE . …………………………………………………8分 ∵D 是BC 的中点,∴CD=

2

1

BC . 又 ∵AB =AC ,∴CD ·BC =AC ·CE =

2

1

BC ·BC=AB ·CE 即BC 2

=2AB ·CE .……………………………………………………10分 【涉及知识点】圆周角定理:直径所对的圆周角为90°;同弧所对的圆周角相等两个定理的应用。相似三角形的判定和性质定理。

【点评】此题是应用与圆有关的角相等,证明相似从而证明比例式、乘积式的成立。 4. (2010年四川省成都市)(本题满分10分)已知:如图,ABC ?内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .

(1)求证:P 是ACQ ?的外心;

(2)若3

tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2

()FP PQ FP FG +=.

【解答】

(1)证明:∵C 是AD 的中点,∴AC CD =, ∴∠CAD=∠ABC

∵AB 是⊙O 的直径,∴∠ACB=90°。∴∠CAD+∠AQC=90° 又CE ⊥AB ,∴∠ABC+∠PCQ=90°,∴∠AQC=∠PCQ ,∴在△PCQ 中,

PC=PQ ,

∵CE ⊥直径AB ,∴AC AE =,∴AE CD =,∴∠CAD=∠ACE 。 ∴在△APC 中,有PA=PC ,∴PA=PC=PQ ,∴P 是△ACQ 的外心。 (2)解:∵CE ⊥直径AB 于F ,

∴在Rt △BCF 中,由tan ∠ABC=

34CF BF =,CF=8,得432

33

BF CF ==。 ∴由勾股定理,得2240

3

BC CF BF =+=,∵AB 是⊙O 的直径,

∴在Rt △ACB 中,由tan ∠ABC=34

AC BC =,403BC =

,得3

104AC BC ==。 易知Rt △ACB ∽Rt △QCA ,∴2

AC CQ BC =?,∴2152

AC CQ BC ==。 (3)证明:∵AB 是⊙O 的直径,∴∠ACB=90°

∴∠DAB+∠ABD=90°

又CF ⊥AB ,∴∠ABG+∠G=90°,∴∠DAB=∠G ;∴Rt △AFP ∽Rt △GFB ,

AF FP

FG BF

=

,即AF BF FP FG ?=? 易知Rt △ACF ∽Rt △CBF ,∴2FG AF BF =?(或由摄影定理得) ∴2FC PF FG =?,由(1),知PC=PQ ,∴FP+PQ=FP+PC=FC

∴2

()FP PQ FP FG +=。

【涉及知识点】垂径定理、外心的定义,勾股定理

【点评】本题巧妙将垂径定理及其推论有机的结合起来运用。

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

圆中的证明与计算

圆中的证明与计算及圆与三角形、四边形 知识点圆中的重要知识点 【知识梳理】 1、圆中的重要概念 2、圆中的重要定理 3、易与圆结合的其他知识 【例题精讲一】垂径定理 例1.1、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°。(1)求证:弧CF=弧BC;(2)若CD=6,分别求BE、GF的长。

(1)求证:AD=AN;(2)若AB=2 4,ON=1,求⊙O的半径。 3、如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5。 (1)如图(1),若点P是弧AB的中点,求PA的长;(2)如图(2),若点P是弧BC的中点,求PA的长。

【课堂练习】 1、如图,AB为⊙O的直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于F,连接BF。 (1)求证:BF平分∠DFE;(2)若EF=DF,BE=5,CH=3,求⊙O半径。 2、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF。 (1)求证:∠BAD=∠F;(2)若EF=25,AC=4,求⊙O的半径。

【例题精讲二】圆周角定理 例2.1、如图,CD为⊙O的直径,AB、AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E。 (1)求证:AB=AC;(2)若DE=2,CE=10,求AC的长。 2、在△ABC中,以AC边为直径的⊙O交BC于点D,在AD上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H。 (1)求证:AC⊥BH;(2)若∠ABC=45°,AC=10,BD=8,求CE的长。

中考《圆》有关的证明和计算

半径,证垂直”,难点在于如何证明两线垂直 例1 如图,在△ ABC中,AB=AC,以AB为直径的O O交BC于D,交AC于E, B为切点的切线交OD延长线于F. 求证:EF与O O相切. 例2 如图,AD是/ BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与O O相切. 证明一:作直径AE,连结EC. ?/ AD是/ BAC的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2=Z 1+ / DAC. ???/ 2=Z B+ / DAB , ???/ 仁/ B. 又???/ B= / E, ???/ 仁/ E ?/ AE是O O的直径, ?AC 丄EC,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA丄PA. ? PA与O O相切. 证明二:延长AD交O O于E,连结OA , OE. ?/ AD是/ BAC的平分线, ?BE=C1E, c ? OE 丄BC. ?/ E+/ BDE=900. ?/ OA=OE , ? / E=/ 1.

例5 如图,AB 是O O 的直径,CD 丄AB ,且 OA 2=OD ? OP. 求证:PC 是O O 的切线. 说明: 求证: ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, ???/ 1 + Z PAD=90 0 即OA 丄PA. ? PA 与O O 相切 此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用 如图,AB=AC , AB 是O O 的直径,O O 交BC 于D , DM 与O O 相切. 例4 如图,已知:AB 是O O 的直径,点 C 在O O 上,且/ CAB=30°, BD=OB , D 在AB 的延长线上 求证:DC 是O O 的切线

中考专题复习与圆有关的计算与证明

中考专题复习——与圆有关的计算与证明 【中考要求及命题趋势】 1、理解圆的基本概念与性质。 2、求线段与角和弧的度数。 3、圆与相似三角形、全等三角形、三角函数的综合题。 4、直线和圆的位置关系。 5、圆的切线的性质和判定。 6、三角形内切圆以及三角形内心的概念。 7、圆和圆的五种位置关系。 8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。 9、掌握弧长、扇形面积计算公式。 10、理解圆柱、圆锥的侧面展开图。 11、掌握圆柱、圆锥的侧面积和全面积计算。 2010年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。 【应试对策】 圆的综合题,除了考切线、弦切角必须的问题。一般圆主要和前面的相似三角形,和前面大的知识点接触。直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,考查对扇形面积公式、圆锥、圆柱的侧面积的公式记忆。圆这一章重要的概念、定理先掌握、后应用,掌握之后,再掌握一些解题思路和解题方法。 第一:有三条常用辅助线,一是圆心距,二是直径圆周角,第三条是切线径。第二:有几个分析思路:弧、常与圆周角互相转换;那么怎么去应用,就根据题目条件而定。 【复习要点】 1、圆的有关概念: (1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧。 (2)______________________的线段叫做弦,经过圆心的弦叫做直径。 (3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角。 2、圆的对称性: (1)圆是轴对称图形,其对称轴是_____ ____;(2)圆是中心对称图形,其对称中心是_________。3、垂径定理及推论 垂径定理:垂直于弦的直径_________弦,并且平分____________________。 推论:平分弦(不是直径)的直径_____这条弦,并且平分__________________ 4、弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,它们所对应的其余各组量也相等。如图所示: AB,CD是⊙O的两条弦,OE,OF为AB,CD的弦心距,根据圆心角,弧,弦和弦心距 C

圆的有关证明与计算题专题

A B 《圆的证明与计算》专题研究 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线; (2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O 的切线. (3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线. (4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB 的延长线于点C,求证:CD是⊙O的切线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:

圆的证明与计算

以圆为背景的证明、动态探究题 1. 如图,在Rt△ABC中,ZABC=90 °,点M是AC的中点,以AB为直径作O O 分别交AC, BM于点D , E. (1) 求证:MD=ME (2) _______________________________________________ 填空:①若 AB=6,当AD=2DM 时,DE= __________________________ ; ②连接0D,OE,当/A的度数为_____________ 时,四边形ODME是菱形. 2. 如图,CD是GO的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作GO的切线PA,PB,切点分别为点A,B. (1)连接AC,若GAPO=30。,试证明CACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP= _______ cm时,四边形AOBP是正方形.

3?如图,AB是半圆0的直径,点P是半圆上不与点A, B重合的一个动点,延长BP到点C,使PC= PB, D是AC的中点,连接PD, P0. (1)求证:△CDP^△OB; (2)填空: ①若AB = 4,则四边形AOPD的最大面积为__________________ ; ②连接0D,当Z PBA的度数为_______ 时,四边形BPDO是菱形. 4. 如图,在。0中,AB是。0的直径,AC是。0的弦,过点C作。0的切线

交BA 的延长线于点P ,连接BC. (1)求证:/ PCA= ZB; (2)已知Z P=40 °,AB=12cm,点Q 在优弧AC 上,从点A 开始以n cm/s 的速度 逆时针运动到点C 停止(点Q 与点A 、C 不重合),设运动时间为ts. 5. 如图,在 Rt △ABC 中,Z ACB=90 °以AC 为直径的。O 与AB 边交于点D,过 点D 作。O 的切线交BC 于点E 连接OE,。O 的半径为 3 。 (1)求证:OE//AB; ① 当t= ② 当t= 时,以点A 、Q 、B 、C 为顶点的四边形面积最大 时,△ABQ 与A ABC 全等。 (2)①当BC= ________ 时, ②当BC= _______ 时, 四边形ODEC 是正方形 AD=3DE.

与圆有关的证明与计算

与圆有关的证明与计算 1.如图,在Rt △ABC 中,∠C =90°,点D 、E 、F 分别在AC 、BC 、AB 的边上,以AF 为直径的⊙O 恰好经过点D 、E ,且DE =EF . (1)求证:BC 是⊙O 的切线; (2)若∠B =30°,求CE CD 的值. 第1题图 (1)证明:如解图,连接OD ,OE ,DF , ∵AF 是⊙O 的直径, ∴∠ADF =90°, ∵∠C =90°, ∴DF ∥BC , ∵DE =EF , ∴DE ︵=EF ︵, ∴OE ⊥DF , ∴OE ⊥BC , ∵OE 是⊙O 的半径, ∴BC 是⊙O 的切线; 第1题解图 (2)解:∵∠B =30°,且OE ⊥BC , ∴∠BOE =60°, ∵OE =OF , ∴△OEF 是等边三角形, ∴∠OEF =60°, 又∵DE =EF ,OE ⊥DF , ∴∠OED =∠OEF =60°, ∴∠CED =30°, ∴∠CDE =60°, 在Rt △CDE 中, ∵tan ∠CDE =tan60°=CE CD =3,

∴ CE CD = 3. 2.如图,在Rt △BGF 中,∠F =90°,AB 是⊙O 的直径,⊙O 交BF 于点E ,交GF 于点D ,AE ⊥OD 于点C ,连接BD . (1)求证:GF 是⊙O 的切线; (2)若OC =2,AE =43,求∠DBF 的度数. 第2题图 (1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, 又∵∠F =90°, ∴∠AEB =∠F ,∴AE ∥GF , ∵AE ⊥OD ,∴OD ⊥GF , ∵OD 是⊙O 的半径, ∴GF 是⊙O 的切线; (2)解:∵OD ⊥AE , ∴AC =CE =1 2AE =23, ∵OA =OB , ∴OC 是△ABE 的中位线, ∴BE =2OC =4, ∴在Rt △AOC 中,OA =OC 2+AC 2=22+(23)2=4, ∵∠CEF =∠DCE =∠F =90°, ∴四边形CDFE 是矩形, ∴DF =CE =23,EF =CD =OD -OC =4-2=2, ∴BF =BE +EF =4+2=6, ∴tan ∠DBF =DF BF =236=3 3, ∴∠DBF =30°. 3.如图,点C 是⊙O 的直径AB 的延长线上一点,点D 在⊙O 上,且∠DAC =30°,∠BDC =1 2∠ABD . (1)求证:CD 是⊙O 的切线; (2)若OF ∥AD 分别交BD 、CD 于点E 、F ,BD =2,求OE 、CF 的长.

九年级数学圆中的证明与计算(二)

1、如图,AB是⊙O的直径,D为弧AC的中点,DE⊥AB于E,交AC于F,AC、BD交于点G。 (1)求证:①AC=2DE;②OF∥BD;(2)若AB=10,AC=8,求AF的长。 【例题精讲一】切线的性质 例1.1、如图,AB为⊙O的直径,CD为⊙O的弦,且AB⊥CD于E,F为弧AD上一点,BF交CD于G,FH切⊙O于点F,交CD的延长线于H。 (1)求证:FH=GH;(2)若AB=2FH,GF=3 2,求AG的长。

2、如图,已知直线AB 与⊙O 相切于点A ,弦CD ∥AB 。 (1)如图1,求证:AC =AD ; (2)如图2,E 、F 为⊙O 上两点,且∠CDE =∠ADF 。若⊙O 的半径为 2 5 ,CD =4,求EF 的长。 3、如图,正方形ABCD ,以BC 为直径在正方形内作半圆O ,过D 作DE 与半圆O 相切于点E ,连OE 交AB 于F 。 (1)如图1,连OD 、DF ,求证:∠ODF =45°; (2)如图2,过B 作BM ∥DF 交OF 于G ,交⊙O 于点M 。若AD =6,求BM 的长。

【课堂练习】 1、如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC、AB分别相交于点E、F。 (1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,∠B=2∠AFH,⊙O的半径为5,求FH的长。 2、如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于E,点O在AB上,以OA为半径的圆,交AB于D,交AC于G,且点E在⊙O上,连接DE,BF切⊙O于点F。 (1)求证:BE=BF;(2)若⊙O的半径为R,AG=R+1,CE=R-1,求弦AG的长。

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

中考几何证明题集锦(主要是与圆有关的)

中考几何证明题 1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3 1 ,扇形的圆心角应为多少度?说明你的结论。 4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4 时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B D E 第3 题图 第2题 ⌒

5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F 6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF . (2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母; ②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. 7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。 设EF 交AD 于G ,连结DF 。 (1) 求证:EF ∥BC ; (2) 已知:DF =2 ,AG =3 ,求 EB AE 的值。 8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。 求证:q p h ?=2 ,c p a ?=2 8 题 · B D C F E A G O 图(a) B O A F D C G E l · B O A 图(b) 第6题·

圆的证明与计算 专 题

2012中考数学复习《圆的证明与计算》专题 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

圆的证明与计算

以圆为背景的证明、动态探究题 1.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E. (1)求证:MD=ME (2)填空:①若AB=6,当AD=2DM时,DE=___________; ②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形. 2.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B. (1)连接AC,若⊙APO=30°,试证明⊙ACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP=________cm时,四边形AOBP是正方形.

3.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO. (1)求证:△CDP≌△POB; (2)填空: ①若AB=4,则四边形AOPD的最大面积为_________________; ②连接OD,当∠PBA的度数为________时,四边形BPDO是菱形. 4.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线

交BA的延长线于点P,连接BC. (1)求证:∠PCA=∠B; (2)已知∠P=40°,AB=12cm,点Q在优弧AC上,从点A开始以πcm/s的速度逆时针运动到点C停止(点Q与点A、C不重合),设运动时间为ts. ①当t=________时,以点A、Q、B、C为顶点的四边形面积最大。 ②当t=________时,△ABQ与△ABC全等。 5.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线交BC于点E,连接OE,⊙O的半径为3。 (1)求证:OE∥AB; (2)①当BC=_________时,四边形ODEC是正方形。 ②当BC=_________时,AD=3DE.

中考数学压轴题专项练习:圆的证明与计算题及答案

题库:圆的证明与计算题 1.如图,AB是⊙O的直径,点D是?AE上的一点,且∠BDE=∠CBE,BD与AE 交于点F. (1)求证:BC是⊙O的切线; (2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长. 第1题图 (1)证明:∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠EAB+∠EBA=90°, ∵∠BDE=∠EAB,∠BDE=∠CBE, ∴∠EAB=∠CBE, ∴∠ABE+∠CBE=90°, ∴CB⊥AB, ∵AB是⊙O的直径, ∴BC是⊙O的切线; (2)解:∵BD平分∠ABE, ∴∠ABD=∠DBE, 如解图,连接DO,

第1题解图∵OD=OB, ∴∠ODB=∠OBD, ∵∠EBD=∠OBD, ∴∠EBD=∠ODB, ∴OD∥BE, ∴PD PE =PO PB , ∵P A=AO, ∴P A=AO=OB, ∴PO PB =2 3 , ∴PD PE =2 3 , ∴ PD PD+DE =2 3 , ∵DE=2, ∴PD=4. 2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线; (2)若AE=4,cos A =2 5 ,求DF的长. 第2题图 (1)证明:如解图,连接OD, 第2题解图∵OB=OD, ∴∠ODB=∠B, 又∵AB=AC, ∴∠C=∠B, ∴∠ODB=∠C, ∴OD∥AC, ∵DF⊥AC, ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∵OD是⊙O的半径, G

∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G , ∴AG =1 2AE =2. ∵cos A =AG OA =2OA =2 5, ∴OA =5, ∴OG =OA 2-AG 2=21, ∵∠ODF =∠DFG =∠OGF =90°, ∴四边形OGFD 为矩形, ∴DF =OG =21. 3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ; (2)若AB =42,ON =1,求⊙O 的半径. 第3题图 (1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD , ∵AE ⊥CD ,AM ⊥BC ,

人教版九年级上册《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:

方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B 为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E,

与圆的切线有关的计算与证明(2)

与圆的切线有关的计算与证明(1) 类型之一与切线的性质有关的计算或证明 【经典母题】 如图Z12- 1,0 O的切线PC交直径AB的延长线于点P, C为切点,若/ P =30°,0 O的半径为1,贝U PB的长为1 . 图Z12- 1 经典母题答图 【解析】如答图,连结0C. ??PC 为O O 的切线,.?./PC0 = 90 在RtSCP 中,??OC= 1,/P = 30°, ??0P= 20C= 2, ??PB= OP- 0B= 2- 1= 1. 【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;⑵已知圆的切线,常作过切点的半径,得到切线与半径垂直. 【中考变形】 [2017天津]已知AB是O 0的直径,AT是O 0的切线,/ ABT= 50°, BT交O0于点C, E是AB上一点,延长CE交O 0于点D. (1) 如图Z12-2①,求/ T和/CDB的大小; (2) 如图②,当BE= BC时,求/ CD0的大小.

解:⑴如答图①,连结AC , ??AT 是。O 的切线,AB 是。O 的直径, ??AT 丄 AB ,即/ TAB = 90°, ? 50°,?d 90°-/ ABT = 40 由AB 是O O 的直径,得/ ACB = 90° ? Q AB = 90°』ABC = 40°,/-CDB =/CAB = 40°; ⑵如答图②,连结AD , 在厶 BCE 中,BE = BC ,/ EBC = 50 ? / BCE =/BEC = 65°, ?/ BAD = /BCD = 65 ? OA = OD ,?/ ODA =/ OAD = 65 ? / ADC =/ ABC = 50°, ? / CDO =/ ODA -/ADC = 65°- 50°= 15 【中考预测】 [2017宿迁]如图Z12-3, AB 与。O 相切于点B , BC 为。O 的弦,OC 丄OA , OA 与BC 相交于点 P. 图 Z12- 2 中考变形答图① 中考变形答图②

浙江省中考数学总复习 专题提升五 与圆有关的证明与计算

专题提升五 与圆有关的证明与计算 一、选择题 1.(2016·邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连结BD ,AD ,若∠ACD =30°,则∠DBA 的大小是( D ) A .15° B .30° C .60° D .75° ,第1题图) ,第2题图) 2.(2016·潍坊)如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M 到坐标原点O 的距离是( D ) A .10 B .8 2 C .413 D .241 3.(2016·昆明)如图,AB 为⊙O 的直径,AB =6,AB ⊥弦CD ,垂足为G ,EF 切⊙O 于点B ,∠A =30°,连结AD ,OC ,BC ,下列结论不正确的是( D ) A .EF ∥CD B .△COB 是等边三角形 C .CG =DG D.BC ︵的长为3 2 π ,第3题图) ,第4题图) 4.(2016·枣庄)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( D ) A .2π B .π C.π3 D.2 3 π 二、填空题 6.(2016·黔西南州)如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,若CD =6,BE =1,则⊙O 的直径为__10__. ,第6题图) ,第7题图) 7.(2016·青岛)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =__62°__. 8.(2016·成都)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的 半径OC =13,则AB =__39 2 __.

《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延

圆的计算与证明

圆的计算与证明 1.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC (1)求证:PC是⊙O的切线; (2)若∠BPC=60°,PB=3,求阴影部分面积. 2.如图,已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.(1)求证:∠ACD=∠ACF; (2)当AD⊥CD,BE=2cm,CF=8cm,求AD的长. 3.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D. (1)求证:AB为⊙O的切线; (2)若BC=6,tan∠ABC=,求AD的长.

4.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D 作DE⊥MN于点E. (1)求证:DE是⊙O的切线; (2)若DE=6cm,AE=3cm,求⊙O的半径. 5.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DP A=45°. (1)求⊙O的半径; (2)求图中阴影部分及△PBF的面积. 6.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC. (1)求证:AC=CG; (2)若CD=8,OG=10,求⊙O的半径.

7.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE. (1)求证:AP=AO; (2)若弦AB=24,求OP的长. 8.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC 于D、E、F、G. (1)求证:CD=EF; (2)若⊙O的半径为4,AE=2,求AB的长. 9.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E. (1)求线段DE的长; (2)点O到AB的距离为3,求圆O的半径.

相关文档
相关文档 最新文档