文档库 最新最全的文档下载
当前位置:文档库 › 长短期记忆模型在小流域洪水预报上的应用研究

长短期记忆模型在小流域洪水预报上的应用研究

长短期记忆模型在小流域洪水预报上的应用研究
长短期记忆模型在小流域洪水预报上的应用研究

Journal of Water Resources Research 水资源研究, 2019, 8(1), 24-32

Published Online February 2019 in Hans. https://www.wendangku.net/doc/0715802804.html,/journal/jwrr

https://https://www.wendangku.net/doc/0715802804.html,/10.12677/jwrr.2019.81003

Application of the Long Short-Term Memory Networks for Flood Forecast

Jiong Guo1, Yanjun Zhang1*, Junbo Wang1, Zhengying Yuan2, Jinjin Wu1, Wenxun Dong1, Sumiao Wang1

1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan Hubei

2Hydrology Bureau of Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan Hubei

Received: Feb. 2nd, 2019; accepted: Feb. 17th, 2019; published: Feb. 25th, 2019

Abstract

Flood forecasting is difficult in mountain watershed because precipitation data is scarce and hard to reflect spatial heterogeneity. To improve the accuracy of flood forecasting in mountain watershed, long short-term memory model (LSTM) and Xin’anjiang model are used to simulate flood in Guanshan river watershed. The results show that the Nash efficiency coefficient of verification period in the tra-ditional hydrological model is 0.55, while that in the LSTM is 0.7 with daily data from 1975 to 1987. LSTM can greatly improve the hydrological simulation and forecast effect in the areas lacking precipi-tation data.

Keywords

Long Short-Term Memory (LSTM), Flood Forecast

长短期记忆模型在小流域洪水预报上的应用研究

郭炅1,张艳军1*,王俊勃1,袁正颖2,吴金津1,董文逊1,王素描1

1武汉大学水资源与水电工程科学国家重点实验室,湖北武汉

2长江水利委员会水文局,湖北武汉

收稿日期:2019年2月2日;录用日期:2019年2月17日;发布日期:2019年2月25日

摘要

在山区小流域,降水资料稀缺,且难以反应其降水的空间异质性,使得仅依靠降水资料进行洪水预报十分困难。作者简介:郭炅(1993-),男,湖北黄冈人,硕士研究生,主要从事水文水资源方面研究。

*通讯作者。

长短期记忆模型在小流域洪水预报上的应用研究

为了提高山区小流域洪水预报精度,本文以官山河流域为例,选择可同时输入降水和径流资料进行水文模拟和预报的长短期记忆模型(LSTM),对洪水过程进行模拟。同时构建了新安江模型模拟,进行对比研究。研究结果表明,若使用1975~1987年逐日数据对模型进行率定和检验,传统水文模型检验期的纳什效率系数为0.55,而对应的LSTM检验期的纳什效率系数为0.73,长短期记忆模型(LSTM)能够较大地提高降水资料缺少地区的水文模拟和预报效果。

关键词

长短期记忆,洪水预报

Copyright ? 2019 by authors and Wuhan University.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.wendangku.net/doc/0715802804.html,/licenses/by/4.0/

1. 引言

山洪是最常见的自然灾害之一,具有短历时,高强度的特点,威胁着社会与国民经济的发展[1]。洪水预报是为了预先获得洪水发生发展过程,根据洪水形成机理与运动规律,利用气象、水文等信息,预报预测洪水发生与变化过程的技术方法,并作为一项重要的防洪非工程措施,是减少洪水损失的最重要手段和方法之一。因此,建立有效的洪水预报模型,具有强烈的紧迫性和必要性。目前洪水预报方法可分为三类:经验预报、概念模型和系统或黑箱模型[2]。但是,对于我国广大山区,由于水文资料缺失,且降雨的空间异质性强,传统的概念模型在山洪模拟上精度较差[3]。近年来,人工神经网络等黑箱被广泛应用于水文预报的相关研究,并取得一定成果[4] [5] [6]。然而,传统的人工神经网络对样本的噪声、网络模式等因素比较敏感,而且存在过拟合以及结点记忆快速衰弱现象,其应用也是受到很大限制[7]。长短期记忆网络是一种改进的神经网络模型[8] [9],它通过修改神经网络结构中的隐藏层神经元,解决了上述问题。本文提出了一种基于长短期记忆网络的洪水预报模型,同时使用官山河流域的降水、径流资料,对其流域进行洪水预报,提高洪水预报精度。

2. 模型介绍

2.1. LSTM模型

神经网络是一种由处理单元相互关联,有自适应能力的,非线性系统。它可以通过神经元的有向连接,建立输入参数到输出参数的映射,这种学习能力可以省略系统建模的步骤,特别适用于规律未知的情况。而比较传统的BP神经网络也已经广泛应用于水文预报,但是容易出现梯度消失,结点记忆快速衰弱的缺点,而LSTM 长短期记忆网络模型可以改善这种情况。

长短期记忆(long-short term memory, LSTM)神经网络是一种改进的时间递归神经网络[10] [11]。LSTM网络模型引入了多个自相关的核心信元cell和3个新增单元[12],分别是:输入门(inputgate)、输出门(output gate)和遗忘门(forget gate)。核心信元即细胞状态,3个门结构则控制信息在细胞状态上的更新。这样便实现了信息在网络上的更新。LSTM神经元结构如图1所示。

由结构图可知,为了与时间建立联系,LSTM在递归循环过程中增加了一个记忆单元——细胞状态,然后通过输入门i t、输出门o t和遗忘门f t这三个结构来进行数据写入、读取和过去状态的重置工作。Sigmoid激活函数使遗忘门的输出值为[0, 1],当输出为0时,表示上一状态的信息全部被遗忘门舍弃;当输出为1时,表示上一状态的信息全部被保留。该结构的前向计算过程如下:

长短期记忆模型在小流域洪水预报上的应用研究

Figure 1. LSTM structure diagram 图1. LSTM 结构示意图

[]()1,t i t t i i W h x b σ?=

+? (1)

[]()1,t o t t o o W h x b σ?=+? (2) []()1,t f t t f

f W h x b σ?=+? (3)

()1tanh t C t C t C

C W h W x b ?=++ (4) 1t t t t t C f C i C ?=+ (5)

()tanh t t t h o C = (6)

式中:σ为Sigmoid 激活函数,f W 、i W 、C W 、o W 分别为对应的权重系数矩阵,1t h ?、t h 为上一时刻和这一时

刻的隐藏层输出量,1

t C ?、t

C 、t C

分别为上一时刻和当前时刻细胞状态以及输入的候选状态,t

x 为当前层输出,f b 、i b 、C b 、o b 分别为对应的偏置项。首先,利用上一时刻的隐藏层输出和当前层输出,通过(1)、(2)、(3)式

计算输入门、输出门、遗忘门的系数。然后,通过(4)式得到当前神经元的候选状态t

C

。再通过遗忘门和输入门确定t C 和1

t C ?在当前细胞状态中的比例关系,使用(5)式对其进行更新。最后,使用(6)式计算当前时刻的隐藏层输出量。

在本文的LSTM 网络训练中,采用时间反向传播算法,反向计算各神经元的输出值与真实值的误差,根据误差结果计算各权重。

同时,在LSTM 模型的输入层中,输入层变量包括三个特征值:时间、降水量、径流量。输出层变量只有一个特征值:径流量。这样,模型的预报结果不仅与降雨有关,也与前期的径流量有关。

2.2. 对比模型介绍

在本文中,选取水文上广泛应用的三水源新安江模型,使用该模型的洪水模拟结果与LSTM 模型的模拟结果进行对比分析。

新安江是一种适用于我国湿润半湿润地区的概念性流域水文模型[13] [14]。三水源新安江模型蒸散发采用三层模型计算;产流计算选择蓄满产流模型;总径流采用自由水库结构被划分为地表径流、壤中流和地下径流;汇流计算采用线性水库;河道汇流采用马斯京根演算。

模型参数主要包括以下4类:1) 蒸散发计算参数;2) 产流模型计算参数;3) 水源划分参数;4) 汇流模型计算参数。

对于新安江模型而言,其模型的输入变量包括降水,蒸发。

从两个模型的输入变量来看,LSTM

模型可以同时输入降水和径流资料,而新安江模型只是降水资料。文

长短期记忆模型在小流域洪水预报上的应用研究

献[15]表明,水文序列具有较强的自相关性,同时长记忆性分解结果表明,随着时间的延长,序列的长记忆性逐渐减弱。由此分析,当流域的降水资料与实际降水偏差较大时,同时使用降水、径流作为输入变量的LSTM 的效果会更好。

3. 实例分析

3.1. 研究区概况

官山河位于汉江中上游,湖北省丹江口市西南部,丹江南岸[16]。其经纬度范围东经110?48'00''~111?34'59'',北纬32?13'16''~32?58'20''。该流域面积465 km 2,河长66.5千米,孤山水文站以上流域面积300多km 2 (孤山站集水面积322 km 2)。流域平均高程690米,河道平均坡降5.7‰,多年平均流量7.78 m 3/s 。官山河流域地形以山地和丘陵为主,地形起伏变化较大,海拔范围240到1606 m 。该流域属于局地性暴雨和连阴雨高发区,年降水量高达1100 mm 。官山河流域内有水文站1个(孤山站),自动雨量站4个,分布在吕家河村、官亭村、田贩村、铁炉村。

3.2. 数据处理及模型参数分析

本文构建的LSTM 洪水预报模型中,作为预报因子的输入层变量有两个,分别是径流量和降雨量。 对于官山河流域洪水模拟,径流量数据由孤山站直接测得,采用泰森多边形法对4个自动雨量站数据进行插值得到降水数据。本文选取该流域1975到1987年的相关数据资料。其中,共计9场洪水,预见期为24 h 来对模型进行训练和验证。其中,前7场为训练集,后2场为检验集。

对于模型本身参数的设定,通过试错法,确定LSTM 网络的中间层数为3层,优化方法采用RMSProp (root mean square prop)算法,节点数为30个,最大训练次数为1500次。 3.2.1. 数据归一化处理

由于输入的数据之间数量级有时候差别较大,使用LSTM 网络预测结果会存很大的误差。数据的归一化处理会有效的减少这个误差,归一化数据的取值范围为[0,1]。本文中归一化采用的是离差标准化方法(Min-Max Normalization),转换式为:

*min

max min

X X X X X ?=

? (7)

式中:max X 为数据序列的最大值,min X 为数据序列的最小值,X 为原始的实测数据,*X 为归一化数据。经过这种归一化方法处理的数据,不但会消除因数据之间数量级差异造成的影响,而且会保留原始数据中存在的关系,使得之后的模型运算结果符合实际的范围和意义。 3.2.2. 模型的参数设定

LSTM 模型的主要参数包括:输入层step 步数的选择以及LSTM 层记忆神经元的个数。

对于LSTM 网络模型,输入层加入了时序step 的概念,这样处理单元便从常规的向量变成了张量,不同的步数选择对模型的精度有着不同的影响。在训练中,LSTM 层记忆神经元的个数也会影响模型的精度。若节点个数设置较少,模型拟合效果会很差,同时会存在学习回归问题,最终模型结果精度较差。若节点个数设置过多,会增加训练过程的训练时间,还会带来过拟合问题,从而影响到模型性能。至于隐藏层节点个数的设置,本文采用经验公式确定,将此作为初值。最后,通过试错法确定隐藏层节点个数。根据前人的结果,隐藏层节点数N 的经验公式为:

N a =

+ (8)

长短期记忆模型在小流域洪水预报上的应用研究

式中:m 和n 为输入层和输出层的节点数,a 为常数,取值范围[0,10]。

最终,通过试错法,确定LSTM 网络的中间层数为3层,输入层步数为,优化方法采用RMSProp (root mean square prop)算法,误差控制率为0.001,节点数为30个,最大训练次数为1500次。

Figure 2. Study site

图2. 研究区域

3.2.3. 模型的评价指标

基于水文预报的规范以及从官山河的实际情况出发(见图2),本文洪峰流量相对误差和洪量相对误差对两个模型进行对比,同时采用纳什模型效率系数评价LSTM 模型的精度:

1) 洪峰流量相对误差

,,,100%p sim p obs

e

p obs

Q Q Q Q ?=× (9)

式中:Q sim 、Q obs 分别为场次洪峰流量的模拟值与实测值,m 3/s ;Q e 为场次洪峰流量相对误差,%,所有场次取其平均值即为流域洪峰流量平均相对误差。

2) 洪量相对误差

100%sim obs

e

obs

V V V V ?=× (10) 式中:V sim 、V obs 分别为场次洪水流量的模拟值与实测值,m 3/s ;V e 为场次洪水流量相对误差,%,所有场次取其平均值即为流域洪水流量平均相对误差。

3) 纳什效率系数

()()

2

1211n

ot

pt t n

ot o t Q Q NS Q Q ==?=

??∑∑ (11)

式中:n 是径流序列的长度,pt Q 和ot Q 分别表示t 时刻径流的预报值和实测值,

m 3/s ;o

Q 是实测径流均值,m 3/s 。

长短期记忆模型在小流域洪水预报上的应用研究

改系数越接近1,表示模型效果越好。

3.3. 结果与讨论

利用流域1975~1987年逐日水文资料对两个个模型参数进行率定,资料来源于《长江流域水文资料》。并选取场次洪水用已优选参数进行模拟,模拟结果以及部分场次洪水模拟结果见图3。

Figure 3. Results of flood simulation

图3. 洪水模拟结果

由图3可得,就洪峰流量看,两个模型模拟的结果均小于实测流量,但是LSTM网络模型的模拟结果更接近实际值;就峰现时间看,新安江模型模拟的洪水过程,峰现时间比实际情况晚,甚至会出现实际上不存在的洪水过程,而LSTM模型模拟的洪水峰现时间基本与实际洪水过程吻合,模拟精度较高。总体来看,LSTM网络模型的模拟效果比新安江模型的模拟效果好。

由部分场次洪水过程图来看,LSTM网络模型的洪水过程与实际洪水过程相似,而新安江模型模拟结果与实际情况有较大偏差,尤其是峰现时间。仔细分析可以发现,该流域的洪水过程与降水过程并不对应,就19760601次洪水数据来看,当降水事件发生时,并没有观测到洪水发生,而是在之后一天才观测到洪水。

本文作者认为,之所以会发生这样的事情,很重要的原因在于该流域的降雨具有极强的空间变异性,监测到的降水过程与流域整体的降水过程偏差较大。另外,官山河流域植被覆盖度高,下垫面情况复杂。综合以上原因,传统的有很强物理机制的水文模型在该流域并不适用。

而就LSTM模型而言,同时输入降水和径流资料,这样便可以解决降雨与径流过程不对应的情况。同时,LSTM模型并不具备较强的物理机制,是单纯从降雨、径流资料的统计学关系出发。这样,其模拟的洪水过程的效果反而较好,模拟的精度较高,见图4。

深入分析模型模拟结果,结果见表1。从模拟结果来看,对于洪峰误差,LSTM模型的模拟结果误差在40%

左右,而新安江模型的模拟结果误差在50%左右;对于洪量误差,LSTM模型的模拟结果误差在35%左右,而

长短期记忆模型在小流域洪水预报上的应用研究

Figure 4. Results of flood simulation 图4. 场次洪水模拟结果

新安江模型的模拟结果误差仍在50%左右。无论是洪峰还是洪量,LSTM 模型模拟结果均优于新安江模型。最后,分别计算率定期和检验期模型结果的纳什效率系数,结果分别为0.75和0.73,模拟结果精度较高。

Table 1. The results of error analysis 表1. 各模型模拟误差结果

序号 洪号 洪峰误差(%)

洪量误差(%)

LSTM 模型 新安江模型 LSTM 模型

新安江模型 1 19760601 36.08 12.12 0.44 10.13 2 19770718 40.39 27.45 9.59 91.36 3 19790913 36.86 5.17 28.66 14.68 4 19800624 45.47 59.37 32.99 15.97 5 19811006 40.37 13.19 36.45 69.74 6 19820824 46.67 42.86 39.18 22.76 7 19831005 45.35 81.6 36.63 65.19 8 19850621 44.71 79.47 65.29 79.8 9

19860616 49.98 49.42 81.02 3.08 平均误差

42.58

50.22

36.1

50.55

4. 结论

本文以官山河流域1975到1986年的降水量、径流量资料为依据,采用归一化法对数据进行预处理,选用LSTM 网络模型以及水文上广泛应用的三水源新安江模型作为预测模型,对该流域进行洪水模拟及预测。经过两者结果的对比分析,可以得到以下几条结论:

1) LSTM 模型进行洪水预报时,同时使用降雨与径流数据,可以一定程度上提高洪水预报精度。

长短期记忆模型在小流域洪水预报上的应用研究

2) LSTM模型更适用于降雨资料缺少或者降雨的监测资料误差较大的山区小流域的洪水预报。在这些缺资料或无资料地区,传统的水文模型难以应用或应用结果较差,LSTM模型具有很强的参考价值。

3) 由于LSTM模型基于神经网络系统改进得来,在实际的洪水预报过程中有时会存在一定的过拟合现象,因此对于模拟结果应该辩证看待。

基金项目

本文由国家重点研发计划(No. 2017YFC1502503)和国家自然科学基金重大项目(No. 41790431)资助。

参考文献

[1]包红军, 王莉莉, 沈学顺, 等. 气象水文耦合的洪水预报研究进展[J]. 气象, 2016, 42(9): 1045-1057.

BAO Hongjun, WANG Lili, SHEN Xueshun, et al. Advances of flood forecasting of hydro-meteorological forecast technology.

Meteorological Monthly, 2016, 42(9): 1045-1057. (in Chinese)

[2]吴超羽, 张文. 水文预报的人工神经网络方法[J]. 中山大学学报(自然科学版), 1994(1): 79-90.

WU Chaoyu, ZHANG Wen. Application of artificial neural net: A new approach for hydrological forecasting. Acta Scientia-rum Naturalium Universitatis Sunyatseni, 1994(1): 79-90. (in Chinese)

[3]包红军, 赵琳娜. 基于集合预报的淮河流域洪水预报研究[J]. 水利学报, 2012, 43(2): 216-224.

BAO Hongjun, ZHAO Linna. Flood forecast of Huaihe River based on TIGGE ensemble predictions. Journal of Hydraulic En-gineering, 2012, 43(2): 216-224. (in Chinese)

[4]俞亭超, 张土乔, 毛根海, 等. 预测城市用水量的人工神经网络模型研究[J]. 浙江大学学报(工学版), 2004, 38(9):

1156-1161.

YU Tingchao, ZHANG Tuqiao, MAO Genhai, et al. Study of artificial neural network model for forecasting urban water de-mand. Journal of Zhejiang University (Engineering Science), 2004, 38(9): 1156-1161. (in Chinese)

[5]CHIANG, Y. M., CHANG, L. C. and CHANG, F. Comparison of static-feed forward and dynamic-feedback neural networks

for rainfall-runoff modeling. Journal of Hydrology, 2004, 290(3-4): 297-311. https://https://www.wendangku.net/doc/0715802804.html,/10.1016/j.jhydrol.2003.12.033 [6]TAKUMI, A., SATOSHI, Y. and KOHEI, S. Distributed CFG-based symbolic execution for assembly programs: Consumer

electronics. IEEE Consumer Electronics, Osaka, 2015: 76-80.

[7]江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.

CHIANG Yenming, ZHANG Jianquan and MING Yan. Flood forecasting by ensemble neural networks. Journal of Zhejiang University (Engineering Science), 2016, 50(8): 1471-1478. (in Chinese)

[8]于家斌, 尚方方, 王小艺, 等. 基于遗传算法改进的一阶滞后滤波和长短期记忆网络的蓝藻水华预测方法[J]. 计算机应

用, 2018, 38(7): 2119-2123, 2135.

YU Jiabin, SHANG Fangfang, WANG Xiaoyi, et al. Cyanobacterial bloom forecast method based on genetic algorithm-first order lag filter and long short-term memory network. Journal of Computer Applications, 2018, 38(7): 2119-2123, 2135. (in Chinese)

[9]冯钧, 潘飞. 一种LSTM-BP多模型组合水文预报方法[J]. 计算机与现代化, 2018, 275(7): 82-85.

FENG Jun, PAN Fei. A hydrologic forecast method based on LSTM-BP. Computer and Modernization, 2018, 275(7): 82-85.

(in Chinese)

[10]王旭东, 严珂, 陆慧娟, 等. LSTM的单变量短期家庭电力需求预测[J]. 中国计量大学学报, 2018, 29(2): 142-148.

WANG Xudong, YAN Ke, LU Huijuan, et al. Short-term household electricity demand forecast based on LSTM single varia-ble. Journal of China University of Metrology, 2018, 29(2): 142-148. (in Chinese)

[11]JAVIER, O. F., DANIEL, R. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity rec-

ognition. Sensors, 2016, 16(1): 115. https://https://www.wendangku.net/doc/0715802804.html,/10.3390/s1*******

[12]权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131.

QUAN Bo, YANG Bochen, HU Keqi, et al. Prediction model of ship trajectory based on LSTM. Computer Science, 2018, 45(S2): 126-131. (in Chinese)

[13]杨凯, 阮晓波, 游圆. 新安江模型在马尪溪流域径流模拟的应用[J]. 浙江水利水电学院学报, 2017, 29(5): 10-13.

YANG Kai, RUAN Xiaobo and YOU Yuan. Application of Xin’anjiang model in Mawang River Basin runoff simulation.

Journal of Zhejiang University of Water Resources and Electric Power, 2017, 29(5): 10-13. (in Chinese)

[14]刘佩瑶, 郝振纯, 王国庆, 等. 新安江模型和改进BP神经网络模型在闽江水文预报中的应用[J]. 水资源与水工程学报,

2017, 28(1): 40-44.

长短期记忆模型在小流域洪水预报上的应用研究

LIU Peiyao, HAO Zhenchun, WANG Guoqing, et al. Application of Xin’anjiang model and the improved BP neural network model in hydrological forecasting of the Min River. Journal of Water Resources and Water Engineering, 2017, 28(1): 40-44. (in Chinese)

[15]劳应文, 吴志斌. U形板桩在官山河道治理中的应用[J]. 价值工程, 2015, 34(16): 139-140.

LAO Yingwen, WU Zhibin. Application of U-shaped plate piles in Guanshan River regulation. Value Engineering, 2015, 34(16): 139-140. (in Chinese)

[16]谢俊. 径流时间序列的长记忆特性分析[D]. 武汉: 华中科技大学, 2012.

XIE Jun. Research on long memory characteristic of runoff time series. Wuhan: Huazhong University of Science and Technol-ogy, 2012. (in Chinese)

洪水预报系统——金水

4.7洪水预报系统 综合考虑招标书中的需求,我们推荐使用“中国洪水预报系统”作为本项目中的洪水预报软件。“中国洪水预报系统”是在财政部和国家防办的支持下,由水利部水利信息中心联合国内其他单位研制开发的洪水预报软件。系统结合我国的实际情况,基于统一的实时水情数据库、预报专用数据库和客户/服务器环境,采用规范、标准、先进的软硬件环境及模块化、开放性结构,建立常用预报模型和方法库,能方便地加入新的预报模型,快速地构造多种类的预报方案,具有人工试错和自动优选相耦合的模型率定系统,可用图形和表格方式干预任何过程的实时交互预报系统,提供通用的数据预处理模块和常用的实用模块,以及完整的预报系统管理功能。系统具有通用性强、功能全面、操作简便等特点,完全可以满足招标书中关于洪水预报软件的要求。 4.7.1洪水预报关键技术 要建设方便实用,预报精度满足要求的洪水预报系统,我们认为需要解决以下关键技术: 1)预报模型库的建立 预报模型是预报系统的核心,预报系统各模块均是围绕预报模型而开发,通用的洪水预报系统必具有通用的预报模型库,目前在实时洪水预报方面,比较实用的是确定性概念模型,按照模拟的对象不同可分为河道汇流模型、流域产流模型、流域汇流模型、经验模型等。 预报模型库要解决以下问题:一是通用的预报模型库标准数据接口。模型所需数据包括输入数据、输出数据、模型参数、模型状态等,不同种类模型需要不同种类数据,能否设计提出一通用的标准数据接口是建立预报模型库的关键;二是预报模型库的管理,主要是预报模型的调用、运行,以及修改和删除等功能;三是用户可任意在预报模型库中增加所开发的模型,即预报模型库具有很强的扩展性。 2)预报方案的构建

长短期记忆模型在小流域洪水预报上的应用研究

Journal of Water Resources Research 水资源研究, 2019, 8(1), 24-32 Published Online February 2019 in Hans. https://www.wendangku.net/doc/0715802804.html,/journal/jwrr https://https://www.wendangku.net/doc/0715802804.html,/10.12677/jwrr.2019.81003 Application of the Long Short-Term Memory Networks for Flood Forecast Jiong Guo1, Yanjun Zhang1*, Junbo Wang1, Zhengying Yuan2, Jinjin Wu1, Wenxun Dong1, Sumiao Wang1 1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan Hubei 2Hydrology Bureau of Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan Hubei Received: Feb. 2nd, 2019; accepted: Feb. 17th, 2019; published: Feb. 25th, 2019 Abstract Flood forecasting is difficult in mountain watershed because precipitation data is scarce and hard to reflect spatial heterogeneity. To improve the accuracy of flood forecasting in mountain watershed, long short-term memory model (LSTM) and Xin’anjiang model are used to simulate flood in Guanshan river watershed. The results show that the Nash efficiency coefficient of verification period in the tra-ditional hydrological model is 0.55, while that in the LSTM is 0.7 with daily data from 1975 to 1987. LSTM can greatly improve the hydrological simulation and forecast effect in the areas lacking precipi-tation data. Keywords Long Short-Term Memory (LSTM), Flood Forecast 长短期记忆模型在小流域洪水预报上的应用研究 郭炅1,张艳军1*,王俊勃1,袁正颖2,吴金津1,董文逊1,王素描1 1武汉大学水资源与水电工程科学国家重点实验室,湖北武汉 2长江水利委员会水文局,湖北武汉 收稿日期:2019年2月2日;录用日期:2019年2月17日;发布日期:2019年2月25日 摘要 在山区小流域,降水资料稀缺,且难以反应其降水的空间异质性,使得仅依靠降水资料进行洪水预报十分困难。作者简介:郭炅(1993-),男,湖北黄冈人,硕士研究生,主要从事水文水资源方面研究。 *通讯作者。

面积比法计算设计断面洪水中面积指数的确定

面积比法计算设计断面洪水中面积指数的确定 刘连梅,信增标,王保东,田燕琴(水利部河北水利水电勘测设计研究院,天津300250)【摘要】:南水北调中线工程河北段460多km,共与大小河沟200多条相交,有不少河沟交叉断面设计洪水需要采用面积比法计算。为此,对海河流域部分河流实测降雨洪水资料作了分析,得出了不同时段洪量的面积指数范围,为南水北调中线工程设计提供了依据。 【关键词】: 南水北调中线工程;设计洪水;面积比法;面积指数 1 问题的提出 在设计洪水计算时,当设计断面无实测资料,但其上游或下游建有水文站实测资料,且与设计断面控制流域面积相差不超过3%,区间无人为或天然的 分洪、滞洪设施时,可将水文站实测资料或设计洪水成果直接移用于设计断面;若区间面积超过3%,但小于20%,且全流域暴雨分布较均匀时,常用面积 比法将水文站设计成果进行推算。该方法的关键是面积指数的选取。在海滦河流域以往一般根据经验取值,在只对计算洪峰流量时,面积指数一般选用0.5 ~ 0.7;计算时段洪量时面积指数没有选定范围。南水北调中线工程河北省段460多km,共与大小河沟200多条相交,有不少河沟交叉断面设计洪水需要采用面积比法计算,为此对海河流域部分河流实测降雨洪水资料作了分析,得出了不同时段洪量的面积指数范围,为中线工程设计提供了依据。 2 河流、水文站及洪水资料的选取2.1 河流及水文站的选取原则 一般讲,一条河的上下游两站流域面积小于20%时,可作为分析对象。但海滦河流域实际上水文站网稀少,因此选取时将区间面积放宽到30%,个别站放宽到35%。基本满足此条件的河流及水文站见表1所列。 2.2洪水资料的选取 洪水资料的选取应符合以下3条原则:(1)尽量选取较大的洪水资料;(2)选取流域内降雨分布比较均匀的场次洪水;(3)对上游修建大中型水库的河流,应选取建库前的资料。 由于滦河和桑干河流域面积过大,包含了迎风山区、背风山区和高原区,难以出现全流域均匀降雨,未选用洪水资料。其他4条河8个代表站流域面积

岸堤水库洪水预报及调洪演算软件使用说明书_图文(精)

岸堤水库雨洪资源解析 使 用 说 明 书 二〇一五年六月一日 作者:文华 :******** :fblwh150@163. 目录 第一章概述 (3 第二章功能简介 (5 第一节功能特点 (5 第二节软件画面 (6 第三节运算功能 (7 第四节气象云图及气象雷达 (13 第三章数学模型 (14 第一节洪水模型 (14

1、瞬时单位线 (14 2、CAMMADIST函数语法 (15 3、CAMMADIST函数应用 (16 4、流域洪水错时叠加 (17 第二节洪水传播 (18 第三节泄量模型 (19 1、闸门出流 (19 2、推求水面线 (21 3、闸门泄量 (22 第四节调洪演算 (22 第五节控运案 (23 第四章扩展性设计 (23 第五章调洪实例 (29 第六章课目攻关概况 (30 第七章使用说明书 (31 第一节洪水预报 (31 第二节调洪演算 (33 第三节其他计算 (33

附件课题研发小组成员....................................................................... 错误!未定义书签。 第一章概述 控制和预见洪水,让洪水变为一种资源,实现科学预见、动态管理、合理利用,是本课题的研究对象。 科学控制洪水,真正能够对洪水运用自如,其首要问题是准确解析、及时预报,掌握洪水动态。但目前实际应用中,对水库防洪兴利控制运用,还仅限于依靠库水位的变化,结合下游河道的承受能力,试探性的调节洪水,这种洪水调整模式,具有较大的盲目性,理论面的支撑相对不足。 当前,各水库防汛主体单位,均制定了相应的《水库控制运用案》。如岸堤水库防洪调度图(图1,但这些案的编制和批复仅表现为粗线条和原则性的界定,是在进行大量假定的基础上进行编制的,应用中的可操作性相对欠缺,在实践中仅具有指导意义。 (图1 洪水调度控制案的编制,偏离实际应用,存在的突出问题,主要表现在以下几个面: 1、假定了降雨的空间分配是均匀的,即整个流域降雨分布是均等的。但实际降雨,特别是流域面积稍大的水库,降雨的空间分布几乎不可能是均等。 2、事先拟定了24小时降雨在1日各时段上的雨量分配。但实际降雨在时段上的分配,是个随机的不确定因素。 3、控制运用案的编制,起调水位为汛中限制水位,但实际降雨前的库水位,却几乎不可能恰巧是汛中限制水位。 4、所有闸门同开度启用,与实际控制运用也不相符。

第五章 河道洪水演算及实时洪水预报

第五章 河道洪水演算及实时洪水预报 河道洪水演算,是以河槽洪水波运动理论为基础,由河段上游断面的水位、流量过程预报下游断面的水位、流量过程。本文着重介绍马斯京根洪水演算方法以及简化的水力学方法。 5.1 马斯京根演算法 马斯京根演算法是美国麦卡锡(G . T. McCarthy)于1938年在美国马斯京根河上使用的流量演算方法。经过几十年的应用和发展,已形成了许多不同的应用形式。下面介绍主要的演算形式。 该法将河段水流圣维南方程组中的连续方程简化为水量平衡方程,把动力方程简化为马斯京根法的河槽蓄泄方程,对简化的方程组联解,得到演算方程。 5.1.1 基本原理 该法的基本原理,就是根据入流和起始条件,通过逐时段求解河段的水量平衡方程和槽泄方程,计算出流过程。 在无区间入流情况下,河段某一时段的水量平衡方程为 122121)(21 )(21W W t O O t I I -=?+-?+ (5-1) 式中:1I 、2I 分别为时段初、末的河段入流量;1O 、2O 分别为时段初、末的河段出流量;1W 、2W 分别为时段初、末的河段蓄量。 河段蓄水量与泄流量关系的蓄泄方程,一般可概括为 )(O f W = (5-2) 式中:O 为河段任一流量O 对应的槽蓄量。 根据建立蓄泄方程的方法不同,流量演算法可分为马斯京根法、特征河长发等。马斯京根法就是按照马斯京根蓄泄方程建立的流量演算方法。 5.1.2 马斯京根流量演算方程 马斯京根蓄泄方程可写为 Q K O x xI K W '=-+=])1([ (5-3) 式中:K 为蓄量参数,也是稳定流情况下的河段传播时间;x 称为流量比重因子; Q '为示储流量。 联立求解式(5-2)和(5-3),得到马斯京根流量演算公式为

用中国洪水预报系统率定丰良河洪水参数

用中国洪水预报系统率定丰良河洪水参数 摘要:利用水利部“948”项目“交互式洪水预报系统”(也称“中国洪水预报系统”)平台,使用三水源新安江模型,对丰良河的棠荆水文站小流域洪水进行参数率定,并对率定结果进行分析,确定适合该小流域洪水特征的参数,增加模型洪水计算的拟合度。得到较好的洪水预报方案。 关键词:小流域,中国洪水预报系统,丰良河,棠荆,参数 引言 应用新安江三水源模型对洪水预报方案进行参数率定,是目前使用较多的一种洪水预报方案制作方法。但对小流域的洪水预报方案往往结果不太理想。主要原因是小流域洪水特征是陡涨陡落,汇流时间快,预见期短,而且一般小流域水文站点稀少,雨量站点也相对不足,从而导致小流域的洪水预报能力相对薄弱。笔者使用“948”项目的“中国洪水预报系统”软件,率定丰良河棠荆站的洪水预报方案,并对率定的参数进行分析、修改和评价。 丰良河是韩江一级支流,发源于兴宁市铁牛牯,于青溪流入丰顺境内,于黄金望楼汇白溪,于高园汇龙溪,流经广洋,在站口汇入韩江。流域集水面积899km2,河长75km,平均坡降0.286%。流域内的白溪和龙溪两条支流的集水面积超过100km2,流域内水力资源丰富,理论蕴藏量4.96万kw。在下游广洋、站口河段两岸,土地低洼、加上受韩江顶托影响,常遭洪涝灾害威胁。建国后经裁弯取顺,在黄金万亩洪泛区兴建了防洪治涝工程,大大改善了农业生产和人们生活条件。 棠荆站地处丰良河中段,位于丰顺县丰良镇,东经116°12′48″,北纬23°58′18″(该站位置见图1)。集水面积267km2,河流全长75km,源头至棠荆站测验断面长33km。是韩江中下游产汇流分析研究的代表站,用于研究粤东莲花山以南高山降水和丰良河各水文要素的特征关系,为二类精度水文站。 图1 棠荆站在流域中的位置示意图 丰良河源头至棠荆站测验断面的汇流时间约4小时,棠荆站至丰良河出口传播时间约6

我国中小河流洪水预报的难点与解决方案探讨_欧阳如琳

我国中小河流洪水预报的难点与解决方案探讨 欧阳如琳 (北京金水信息技术发展有限公司,北京,100053) 摘要: 从时空分布、成因、过程、后果等方面分析了我国中小河流洪水的特点,归纳了我国中小河流洪水预报有别于大江大河的洪水预报的难点,提出了基于分布式水文模型解决我国中小河流洪水预报问题的方案,探讨了在中小河流建立分布式水文模型的过程、建模方式以及模型的结构和参数,重点讨论了基于模块化的分布式水文模型在中小河流洪水预报系统开发中的可行性与必要性。 关键词: 中小河流洪水预报分布式水文模型模块化 1引言 我国幅员辽阔,各地地形、水文、气象条件差异较大,关于大、中、小河流的定义,至今尚没有明确的规定。考虑到国务院批复的《全国山洪灾害防治规划》中山洪治理主要针对200km2以下的小流域,而《江河流域规划编制规范》(SL201-97)使用范围为流域面积大于3000 km2的河流,从这一意义上讲,可以认为流域面积小于3000 km2的河流为中小河流。我国中小河流众多,流域面积为100~1000 km2的河流有5万多条,覆盖了85%的城镇及广大农村地区。由于我国中小河流防洪标准普遍偏低,洪灾损失极为严重。据统计,一般年份中

小河流的水灾损失占全国水灾总损失的70%~80%,近十年水灾造成的人员死亡中有2/3以上发生在中小河流[1]。 长期以来,中小流域洪水预报一直是我国防洪减灾工作中的难点。相比我国大江大河的防洪体系,当前我国中小河流的防洪建设仍然是一个薄弱环节,许多中小河流防洪标准仅3~5年一遇,有的甚至没有设防,多数中小河流仍处于“大雨大灾、小雨小灾”的局面。特别是近年来全球气候变暖,极端天气事件增多,局地强降水造成中小流域突发性洪水频繁发生,加之人类活动对中小流域的开发进一步助长了山洪灾害的威胁。因此,开展我国中小河流洪水分布特征、形成机理、演进规律及预报调控研究,建立我国中小河流洪水预报体系,是确保我国社会经济可持续发展、保障国家公共安全和人民生命安全的重大需求,同时也是我国水文情报事业科技现化代发展的迫切要求。2011年,全国中小河流水文监测系统建设项目全面实施,计划到2013年,实现有防洪任务的5186条重点中小河流发生洪水时能及时预警[2],因此,我国中小河流的洪水预报工作任务艰巨,面临巨大的挑战。 2中小河流洪水特点及预报难点 2.1中小河流洪水的特点 与大江大河的洪水相比,我国中小河流的洪水在时空分布、成因、形成过程等方面有着显著的不同,归纳起来具有以下几个方面的特

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

1水雨情信息采集系统建设-舟山

招标需求 一、采购项目:舟山小流域洪水预报系统采购项目 1.本项目建设内容为舟山小流域洪水预报系统采购项目。 2.中标人应与采购方就此项目签订合同。 3.采购方有权在签订合同时对产品数量和工程量作适当增加或减少,相应总费用随单价调整。 二、技术要求: 1 建设范围 “十三五”时期是舟山高水平全面建成小康社会、实现新区跨越式发展的决胜阶段,也是水利稳步迈向现代化进程的攻坚期。市域内绝大部分城镇、人口、产业等要素集聚在沿海平原、地势低平区域,背山面海,上承山洪倾泄、下受潮汐顶托,排涝条件先天不足,易受台风暴雨侵袭,“台风涝水”灾害较为突出。 为提前掌握实时水雨情信息和未来洪水情况,本次对白泉流域、临城流域、勾山河流域、石牛江河流域共4条流域补充建设水雨情采集系统和洪水预报预警系统,实现上述4条流域水雨情动态监测和重要断面水位自动预报,为洪水分析提供重要的技术支持,从而减少山洪灾害损失,尽可能最大限度保障人民生命财产安全。 2 建设依据 1《关于全面推进水利工程标准化管理的意见》 2《浙江省水利工程标准化管理信息化建设总体建设方案》 3《浙江省水利信息化建设“十三五”规划》 4 《水文情报预报规范》(SL250-2000) 5 《水文自动测报系统技术规范》(SL61-2003) 3 建设内容 本次建设主要内容分为水雨情信息采集系统、视频监控系统、洪水预报预警系统建设三大部分。 3.1 水雨情信息采集系统建设 1 站点布设 本次在白泉流域、临城流域、勾山河流域和石牛江流域4个流域内各建设1处自动水位雨量采集站。具体位置如下表1。 表1 水位雨量采集站

2 功能与实现 水雨情采集系统主要用来采集水位、雨量数据,通过终端机处理后经GPRS网络将实时水位数据发送至调度指挥中心,保存到调度中心数据库中,供应用软件系统调用。 系统主要功能有: 1)自动监测:定时自动采集传感器实时数据(采集周期可调); 2)定时发送:每小时向上级发送一次数据(发送周期可调); 3)远程下载:在通信故障恢复,可根据中心要求,远程下载;补发信息。 3 系统组成 水雨情采集系统由水位传感器、雨量传感器、终端机、通讯设备、供电设备组成。 水位自动监测站以遥测终端为核心,配置水位传感器、通信终端、电源系统,通信数据传输采用GPRS为主和GSM两种方式,实现水位信息的自动采集和自动传输。水位自动监测站采用太阳能浮充蓄电池方式供电,太阳能板的功率根据测站的供电要求进行确定。 自动监测站采用自报式、查询—应答式相结合的遥测方式和定时自报、事件加报和召测兼容的工作体制。自动监测站发送水雨情信息到调度中心云平台实现水雨情信息互联互通,水位信息采集应在1分钟内完成。 (1)雷达水位计 雷达水位计是一种采用微波技术的物位探测仪器,主要适用于探测江河、湖泊、潮汐等自然水域的水位,也可以用于大中小型水库、蓄水池、污水池(渠)等露天水渠的水位探测,该产品作为一种探测终端,可有效的辅助监控水位的变化状态,为监控单位提供准确的水位信息。 产品采用脉冲雷达探测方式,可全天候稳定工作,探测结果准确可靠,非接触式的探测方式使之应用领域更为广泛,甚至可用于有污染物或沉淀物的复杂水环境。 (2)雨量传感器 本项目采用的雨量传感器型号为翻斗式雨量计。此仪器为降水量测量一次仪表,其性能应符合国家标准GB/T11832-2002《翻斗式雨量计》要求。雨量传感器由承雨器部件和计量部件等组成,采用0.5mm翻斗式。 (3)终端机 遥测终端机是遥测站的核心设备,终端机使用GPRS信道作为主信道,同时支持有线

说明书-中小河流洪水预报系统使用说明书

中小河流洪水预报系统使用说明书 四川晨光信息自动化工程有限公司 版权所有不得翻印 二零一一年四月

目录 1. 概述 (4) 1.1. 硬件环境 (4) 1.1.1. 服务器 (4) 1.1.2. 工作站 (4) 1.1.3. 通信设备 (5) 1.2. 软件环境 (5) 1.2.1. 服务器 (5) 1.2.2. 工作站 (5) 2. 安装说明 (5) 2.1. 中小河流洪水预报系统安装 (5) 3. 使用说明 (7) 3.1. 运行本软件 (7) 3.2. 主窗口 (9) 3.3. 用户管理 (11) 3.4. 用户登录 (12) 3.5. 退出登录 (13) 3.6. 原始信息 (14) 3.7. 日志查询 (14) 3.8. 数据召测 (14) 3.9. RTU参数操作 (16) 3.10. 系统设置管理 (18) 3.10.1. 本地设置 (20) 3.10.2. 测站基本信息管理 (20) 3.10.3. RTU参数管理 (22) 3.10.4. 报警参数设置 (23) 3.10.5. 水位流量关系 (24) 3.11. 洪水预报参数管理 (27)

3.11.1. 洪水传播时间管理 (27) 3.11.2. 水文预报发布单位编码 (28) 3.12. 洪水预报 (30) 3.12.1. 降水量预报 (30) 3.12.2. 河道水情预报 (31) 3.13. 信息检索查询 (32) 3.13.1. 河道水情信息查询 (32) 3.13.2. 其它要素信息查询 (35) 3.13.3. 畅通率统计 (35) 3.13.4. 人工置数处理 (35) 3.14. 软件信息查询 (35) 3.15. 权限管理 (36) 3.16. 退出系统 (36)

中小流域洪水预报预警体系分析

中小流域洪水预报预警体系分析 发表时间:2016-03-25T10:25:24.277Z 来源:《基层建设》2015年20期供稿作者:黎光明 [导读] 四川省内江水文水资源勘测局四川省内江市 641000 旨在利用先进的科学技术手段,加强洪水的预防,从而最大限度减少自然灾害所造成的损失,有利于当地的可持续发展。 黎光明 四川省内江水文水资源勘测局四川省内江市 641000 摘要:洪涝灾害一直是困扰中小河流域地区居民的自然灾害,一旦洪涝灾害发生,会造成当地经济的大量损失,制约当地的可持续发展,对人们的生产和生活也带来极为不利影响。中小流域洪水本身具有历时较短、难预防、难控制等特点,因此,加强洪水的预报预警就显得尤为重要。中小流域洪水预报预警体系能够为洪水预警提供有力的技术支持,从而减少洪水带来的灾害,有利于当地的可持续发展。本文对中小流域洪水预报预警体系进行浅要的分析,希望能为同行提供一点参考。 关键词:中小流域;洪水;预报预警;体系;分析 近年来,随着我国经济的发展,生态环境破坏现象越来越严重。中小流域地区本身受当地气候条件的影响降水频繁,加上人为因素对环境产生的破坏,使当地强降雨现象频频发生,为切实做好中小河流突发性洪水的预报预警工作,加快建设中小河流预报预警体系十分必要。本文以此为目的,对中小流域洪水预报预警体系进行了分析,旨在利用先进的科学技术手段,加强洪水的预防,从而最大限度减少自然灾害所造成的损失,有利于当地的可持续发展。 一、中小流域洪水预报预警模型研究 1.中小流域防洪概述 我国是洪涝灾害发生较为频繁的国家,因而加强水利工程建设、防洪抗灾一一直是国家的重中之重[1]。近年来,对于大江大河治理方面我国已经有了显著成效,然而,中小流域洪水的治理一直没有受到足够的重视,给中小流域防洪带来十分不利影响。概括来说,中小流域地区防洪建设方面主要存在以下几个方面的问题:第一,防洪工程设施建设不足,防洪能力较差。与大流域洪水不同,中小流域地区洪水具有一定的突发性,洪水周期也较短,因而更难预测和控制。第二,居民防洪意识不强,生产建设活动随意侵占河道行洪空间,使河道行洪能力降低。第三,在中小流域整治方面财政资金投入不足,治理水平较低。 2.中小流域洪水预报模型研究 中小流域洪水预报是一项较为复杂的过程,受当地降雨、蒸发量、植被覆盖率等诸多因素的影响,涉及到较多的参数,因而在实际进行洪水预报时,应采用科学的方式方法,以减少数据误差[2]。中小流域洪水本身受重视程度不高,因而很多中小流域缺乏具有代表性的长系列水文数据,针对上述情况,采用区域化方法能够有效进行中小流域水文预报。区域化方法主要是指,利用与目标流域流域特性相似的参考流域水文资料,进行有关的流域洪水产汇流参数计算,并将这些参数移植到目标流域,结合目标流域的降雨等水情监测资料进行洪水的预测预报。降雨量作为水文模型的重要输入值,是洪水预报过程中需要掌握的重要信息。通常来说,应用算数平均法、泰森多边形法及等雨量线法等方法能够对平均降雨量进行测算,从而为洪水预报提供数据依据。 3.中小流域洪水预警模型研究 中小流域预警模型主要包括预警指标、预警淹没范围及预警发布方式。通过加强对预警模型的研究,能够对中小流域洪水信息有效掌握,从而及时进行预警,保障洪灾防治工作顺利开展进行。洪水预警指标主要包括水位、降水量及洪水流量等,通过对上述指标的观测,将实测数据和预警指标相比较,这样就能大体判断出洪水是否将要发生。临界雨量值法是洪水预警中常用的方法,通常来说,降雨量小于临界值我们就可以判断不会产生洪灾,而降雨量大于临界值我们就认为洪水即将来临,应做好相应防范措施。除预警指标外,预警模型还能包括预警淹没范围和预警发布方式。通常来说,可以应用水力学、水文学等方法对洪水淹没范围进行判断。预警信息一旦确定,还应采取科学的方式方法进行发布,从而让当地群众引起注意,发挥洪水预警应有的作用。预警内容应该要力求全面化和具体化,包括洪水预报信息、实时监测信息、水位、降雨量等指标。一旦确定洪水即将来临,应通过电视、广播、电话、网络等途径进行发布,如果遇到紧急情况还可以通过警报器及信号弹的方法进行预警。只有预警系统保持稳定运行,才能使预警信息能够顺利发布,有利于洪灾的防治顺利进行。 二、中小流域洪水预报预警系统设计 1.系统设计总目标 中小流域洪水预报预警系统主要是指利用GIS技术进行可视化开发的系统,该系统基于具有高分辨率的人口分布图、遥感影像及村镇、工厂等各种区位分布图,通过获取降雨等水情相关的数据,实现对洪水的预报预警,中小流域洪水预报预警的技术路线图如下图1所示。

设计洪水计算书

设计洪水推求 (一)工程概况 甘溪又称古城溪,发源于浙江省江山市大桥镇青源尾。甘溪自源头开始以东西向流入玉山县境内,经白云镇鹁鸪嘴、大园地、平阳村、岩瑞镇水门村后,在岩瑞镇山头淤北和金沙溪汇合。甘溪流域面积206Km 2,主河道长44.2Km ,河道加权平均坡降0.824‰(其中玉山境内流域面积102.6Km 2,河长24Km )。甘溪河道弯曲,河床较浅,中下游两岸地形开阔,耕地集中,属平原丘陵地带,是主要产粮区之一。 1,工程地点流域特征值,主河道比降0.000824. 已知流域总面积206Km 2,加权平均坡降0.824‰,计算河段下游断面集雨面积145.3 Km 2,加权平均坡降1.32‰,主河道长44.2 Km 。 2,设计暴雨查算 (1) 求十年一遇24小时点暴雨量 根据工程地理位置,查《江西省暴雨洪水查算手册》(下同)附图2—4,得流域中心最大24小时点暴雨量H 24=115mm ;查附图2—5,得Cv 24=0.45。由设计频率P=10%和Cs=3.5Cv 查附表5—2,得Kp 24=1.60。 则十年一遇24小时点暴雨量H 24(10%)=115?1.60=184.0mm 。 (2) 求十年一遇24小时面暴雨量 根据计算段流域面积F=145.3 Km 2和暴雨历时t=24小时,查附图5—1,得点面系数24α=0.983 则十年一遇面暴雨量为 24%)10(24%)10(24α?=H H =184?0.983=180.9mm 。 (3)求设计暴雨24小时的时程分配 ○1 设计24小时暴雨雨型 以控制时程t ?=3小时为例,查附表2—1,得雨型分配表,如下表1:

基于Web的水库洪水预报调度系统的关键技术_程春田

基于Web 的水库洪水预报调度系统的关键技术 程春田,廖胜利,李 刚,李向阳 (大连理工大学水电与水信息研究所,辽宁省大连市116024) 摘要:在重大洪水预报、洪水调度决策过程中,如何有效地获取分布的遥远水库、水文站点的动态 水雨情信息,让相关利益部门和防洪专家积极主动地参与决策过程中的模型分析计算和重要决策过程讨论,迅速形成正确结论,实现科学、高效的防洪调度决策,是Web 环境下水库洪水预报调度系统需要解决的重大关键技术问题。文中简要介绍了Web 应用环境下该系统的体系结构,重点阐述了支持多用户多方案的洪水预报模型、洪水调度模型抽象设计技术及数据库表设计方法,给出了多库联调交互方案生成设计的解决方案。上述思想已经体现在所开发的基于Web 的洪水预报调度系统中,在实际应用中取得了很好的效果。 关键词:水库;洪水预报;洪水控制;洪水预报调度系统;Web 中图分类号:TV122;TV697.1 收稿日期:2006212208;修回日期:2007201225。 辽宁省自然科学基金资助项目(20032114)。 0 引言 近10多年来,随着以互联网为主的通信技术在水库防洪调度系统工程中广泛深入的应用,以互联网为主的通信方式已经和正在深刻改变传统的防汛调度方式,给流域防洪调度带来前所未有的挑战。面对全新的以宽带网络数字技术为特征的防汛系统工程网络,如何有效地组织和利用分散在各个防汛部门的计算和信息资源,支持跨流域、多部门、异地防汛会商与决策,建立科学、高效、智能化的流域洪水调度系统,是我国各级防汛部门和水库调度管理人员非常关心的问题。需要解决的突出问题是,在重大洪水预报、洪水调度决策过程中如何有效地获取分布在遥远地区的水库、水文站点的动态水雨情信息,让相关利益部门和防洪专家积极主动地参与决策过程中的模型分析计算和重要决策过程讨论,迅速形成正确的结论,实现科学、高效的防洪调度决策[122]。 传统的客户/服务器(C/S )或者C/S +浏览器/服务器(B/S )的洪水预报系统,不支持分布式洪水调度计算,计算过程在洪水发生地局域网完成,计算结果通过网上发布供上级主管和相关部门查询[223]。采用上述方法,上级主管和其他部门不能主动进行洪水过程分析的详细计算,信息只能单向、被动地接受,缺乏主动分析,不能充分利用更多专家的经验、知识,难以做到有效的防汛会商决策。因此,研究和 开发能更多地利用和反映新技术特点的洪水预报调度系统,是非常有意义的[4]。 本文重点介绍分布式洪水预报调度系统的体系结构、支持多用户多方案的洪水预报模型的抽象设计、调度模型设计、库群洪水联合调度方案设计等关键技术,目的在于建立高效、可靠的群决策信息支持平台,为防汛系统会商提供重要的技术支持。 1 分布式洪水预报调度系统结构 基于Web 的洪水预报系统主要包括遥测数据提取、水文模型参数率定、洪水预报、洪水调度、信息查询、数据维护等几大模块,其总体结构见图1 。 图1 基于Web 的洪水预报调度系统总体结构 该系统在实时库、预报库、历史库、系统库的支持下工作,Web 服务器由J SP ,Servlet 等生成动态交互式Web 页面,普通用户、授权用户、水文专家、管理员等通过交互式Web 页面向Web 服务器提交相关请求,Web 服务器接受浏览器端发送的请求,并将复杂的业务计算或数据库操作提交给业务逻辑层处理,最后将处理结果以图表或者文字的形式返 5 1第31卷 第2期 2007年4月20日 Vol.31 No.2 Apr.20,2007

洪水预报系统

一、洪水预报系统边界 防汛抗旱综合数据库 实时雨水情信息历史特征值信息水利工程特征参数 防洪调度系统水利工程调度成果主要河段调度成果 洪水预报系统软件平台洪水预报成果 数据汇集平台 预报成果共享 洪水预报系统边界 预报方案建设 模型方法库建设 天气雷达应用系统区域定量降水估算产品 二、洪水预报系统流程分析 不同工程运用方式模拟 不同调度方案对比 不同降雨模式预报模拟 预报效益评估 历史暴雨过程预报模拟 数值降雨风险评估 历史洪水对比分析 多成果优选 专家交互修正 抗暴雨能力预测 水资源预测 水位、流量关系转换 实时作业洪水预报 计算土湿等状态变量 整理提取历史数据 等时段化、归档 纠错、缺测插补 预报数据处理综合计算分析 洪水模拟 预测预报计算 防洪调度、会商、决策 要素计算 洪水预报业务流程图 三、预报方案编制业务流程 预报方案编制从业务内容上分为预报模型选择、预报方案编制和方案参数率定三个阶段,这三个阶段涵盖了预报方案的全部业务工作内容。预报方案构建子系统业务流程:

否是 否是 模型选择参数率定 方案定制 基础资料整理 暴 雨 洪 水 特 点 分 析 预 报 模 型 选 择 是 否 适 用 ? 模 型 软 件 开 发 预 报 方 案 定 义 预 报 方 案 属 性 设 置 历 史 资 料 收 集 入 库 历 史 资 料 分 析 处 理 预 报 模 型 选 择 是 否 最 优 ? 保 存 最 优 参 数 预报方案编制业务流程图 预报模型选择阶段的工作内容主要包括基础资料收集整理、暴雨洪水特点分 析、预报模型选择(模型适应性分析)、模型软件开发和预报方案定制等。 预报方案编制阶段的工作内容主要包括方案定义(预报方案的类型、输入、所使用的模型、预报方案的输出等)和方案属性设置(预报站码、时间步长、预热期、预见期等)。 方案参数率定阶段的工作内容主要包括历史资料收集入库、历史资料分析处理、模型参数率定等。模型参数率定的方法分为人工试算和自动优选两种。在实际操作过程中两者需结合使用。 四、预报模型和方法选择 短期洪水预报有三种基本类型,一是河段洪水预报,二是流域降雨径流预报,三是以上两者的集合。 河段洪水预报:根据河段上断面的水位或流量,推求下断面的水位或流量。 降雨径流预报:根据流域上一场降雨,推求流域出口断面流量过程线,称为流域降水径流预报。

智慧水利方案

“智慧水利”建设方案介绍 1.智慧水利内涵 “智慧水利”建设是重要的民生工程,也是“智慧城市”的重要组成部分,贯穿于防洪减灾、水资源配置、水环境保护与水管理服务等体系,可概括为“物联感知、互联互通、科学决策、智能管理”。 智慧水利的核心是更透彻的感知、更全面的互联互通、更深入的智能化,具体表现在: ●更全面灵活的水利行业内物与物、物与人、人与人之间的互联互通和相互 感知能力。 ●更高效安全的水利信息处理和资源整合能力。 ●更科学的水利监测、预警、分析、预测和决策能力。 ●更高水平的水利设施远距离控制和智能化执行能力。 ●更协调的水利业务跨部门、多层级、异地点合作能力。 2.总体目标 “智慧水利”的总体建设目标是:依托现代化技术手段,全面建成水利信息基础感知体系,健全保障支撑环境,推动水利综合业务精细化管理,提升科学化决策调度管理水平,最终形成“更透彻的感知、更全面的互联互通、更科学的决策、更高效智能的管理”的智慧水利管理体系,推动“智慧城市”的发展。 .

3.总体框架 4.建设内容 4.1.水利物联感知体系建设 水利物联感知体系是水利综合业务应用的基石,“智慧水利”建设需要在现有信息采集设施基础上,针对采集站点种类,空间密度、时间频度,数据精度等方面进行全面的提升,为水利智慧应用提供基本支撑。同时全面建设闸泵等工程的

远程控制系统,提高工程调度执行的效率,实现工程智能化、精细化调度。 主要监测内容如下: 4.1.1.水文监测体系 包括降雨信息监测、水位信息监测、潮位信息监测、流量信息监测、蒸发监测、土壤墒情监测、地下水监测等 4.1.2.水环境监测体系 主要包括水质信息监测、水土保持监测、排污口监测等 4.1.3.工程运行监控体系 主要包括水库、闸门、泵站远程测控,大坝、堤防、海塘安全监测、取水口监测、视频监控系统等 4.2.基础运行环境建设 4.2.1.云数据中心 云数据中心是智慧水利综合业务信息汇集、存储与管理、交换和服务的中心。数据中心通过有序汇集基础感知信息,形成有用和可用的信息资源,通过提供各类信息服务,深化信息资源的开发利用,实现信息共享、改进工作模式、降低业务成本和提高工作效率的目的。 (1)机房及软硬件设备 建设功能完备、设施先进、符合国家有关标准及规范的现代化中心机房,并配套建设服务器等软硬件设施,保障数据库及应用系统的稳定运行。 (2)水利综合数据库 依托水利行业数据库标准,同时结合区域水利业务特征,构建水利综合业务数据库,实现业务数据的统一存储和管理。 (3)水利信息服务总线 以水利综合数据库为依托,构建水利综合信息服务总线,实现多层次、多方面水利信息的深度交换、汇聚和挖掘,形成水利行业信息枢纽,为智慧化应用提供统一、高效、标准化的数据交换和服务发布平台。 4.2.2.指挥调度中心 指挥调度中心是“智慧水利”综合信息展示、决策指挥调度、视频会商以及日常会议的主要场所。因此需要保证其布局合理、功能健全、配套设施完善,主

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

模糊系统和人工神经网络在洪水预报中的应用

模糊系统和人工神经网络在洪水预报中的应用 摘要 这篇研究呈现了人工神经网络(人工神经网络)和模糊逻辑(FL)模型对于日常水库入库径流预测的发展。此外,线性回归(LR)模型也被开发为一个传统的洪水预报方法。为了证明人工神经网络和FL模型的适用性和能力,位于伊朗西南部的Dezreservoir水库被作为一个案例研究。结果证明ANNs模型能够提前一天预测水库入库径流,尤其是这种预测模式要比FL模型和LR模型要准确。研究发现人工神经网络模型预测洪水预报提前1天以上精度降低,同等条件下FL模型和LR模型提前4天而得到的结果与从佛罗里达州得到的相应测量值要比较精确。这项研究的一个主要发现是:模糊逻辑模型通常低估了洪水,而其他两种模型预测洪水流量比较好。水位曲线的峰值,对于洪水防害是非常重要的,ANNs模型和LR模型对于短周期(为期一天前)的预测要比较好,对于长时间(如为期3天的洪水流量之前)的预测ANNs模型,LR 模型和FL模型的误差分别在3%、4.5%和26%,事实证明LR和FL模型略优于人工神经网络模型。 关键词:洪水预报;水库流入;模糊逻辑;人工神经网络;洪水;

1 引言 洪水预报是是水库管理系统最重要的任务之一。经济损失的大小取决于对洪水管理认识的重要性,一个高效的洪水警报系统不仅可以减轻洪水泛滥对于经济造成的损害,同时可以大大提高公共安全,。洪水预报无疑是一个具有挑战性的领域,是一个推动时代产生巨大文学性发展的领域((Xiong et al,2001;Gopalcuinar and James, 2002; Chau , 2005; Tayfur and Singh, 2006);特别是降雨径流关系已被公认为是非线性的。虽然概念模型允许深刻理解其水文过程,但是在分水岭的研究中它的校准需要收集大量的物理属性 (例如,地形特征和河流网络、降雨和径流),可能是昂贵的和非常耗时。由于先进的物理模型需求庞大的数据和相关模型的校准很长的计算时间,所以先进的物理模型进行实时预测可能不是很理想。由于洪水预警系统的目的不是提供一个明确认识的降雨径流过程中,主要关注的是在适当的地点做出准确和及时的预测,一个简单的黑盒模型,然后识别输入和输出之间的直接映射的首选(Corani 和Guariso,2004年)。此外,固有的输入和输出变量之间的非线性关系复杂流预测事件的尝试。因此,有必要改进预报技术。 近年来,许多非线性的分析方法,如人工神经网络,模糊逻辑,遗传算法的方法已被用于在解决洪水预报问题。在过去的几十年里,人工神经网络(ANN)已越来越多地应用于水文预报(迈尔和Dandy,2000年),此外,他们的计算仿真和预测的速度非常适用在系统实时操作.Dawson和Wilby(1998)讨论应用人工神经网络在洪水易发小流域在英国,使用每小时水文数据流预测。 Liong(2000)在孟加拉国的河流水位预测的人工神经网络实现,以获得较高的准确度。Ni and Xue(2003)建立了一个人工神经网络模型基于径向基函数(RBF)在安全圩田,中国长江洪水风险等级。Bhattacharya和Solomatine(2005年)建人工神经网络的和MS模型树与水位 - 流量关系模型在印度河上的巴吉拉蒂。艾哈迈德·西蒙诺维奇(2005年)在休闲气象参数的基础上,在加拿大马尼托巴省应用人工神经网络预测人流高峰,红河径流历的时间和形状。Canada. Chau(2006)采用了粒子群优化模型训练的人工神经网络模型来预测在香港城门河的上游水文站的水位。Tareghian和Kashefipour(2006)开发了一个人工神经网络模型预测Karoon河在伊朗、Dawson等的日径流。 Dawson (2006)利用人工神经网络预测T-年一遇洪水事件和索引洪水在英国各地的850集水区。Wu and Chau(2006)采用一种基于遗传算

相关文档
相关文档 最新文档