文档库 最新最全的文档下载
当前位置:文档库 › 2020年高考物理二轮专项训练卷 专题07 传送带问题中的动力学与能量综合

2020年高考物理二轮专项训练卷 专题07 传送带问题中的动力学与能量综合

2020年高考物理二轮专项训练卷 专题07 传送带问题中的动力学与能量综合
2020年高考物理二轮专项训练卷 专题07 传送带问题中的动力学与能量综合

专题07、传送带问题中的动力学与能量综合

1.(2018·江苏泰州市联考)如图所示,传送带AB 总长为l =10 m ,与一个半径为R =0.4 m 的光滑四分之一圆轨道BC 相切于B 点,传送带速度恒为v =6 m/s ,方向向右,现有一个滑块以一定初速度从A 点水平滑上传送带,滑块质量为m =10 kg ,滑块与传送带间的动摩擦因数为μ=0.1,已知滑块运动到B 端时,刚好与传送带同速,求:

(1)滑块的初速度; (2)滑块能上升的最大高度;

(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能。 【答案】: (1)214 m/s 或4 m/s (2)1.8 m (3)220 J

【解析】: (1)以滑块为研究对象,滑块在传送带上运动过程中,当滑块初速度大于传送带速度时,有-μmgl =12mv 2-12mv 20

,解得v 0=214 m/s ; 当滑块初速度小于传送带速度时,有μmgl =12mv 2-12mv 20,解得v 0=4 m/s 。

(2)由动能定理可得-mgh =0-1

2

mv 2,解得h =1.8 m 。

(3)以滑块为研究对象,由牛顿第二定律得μmg =ma ,滑块的加速度

a =1 m/s 2,滑块减速到零的位移

x 0=

v 22a

=18 m>10 m ,则滑块第二次在传送带上滑行时,速度没有减小到零就离开传送带,由匀变速运动的位移公式可得l =vt -1

2at 2,解得t =2 s(t =10 s 舍去),在此时间内传送带的位移x =vt =6×2 m =12 m ,滑块第二次

在传送带上滑行时,滑块和传送带系统产生的内能Q =μmg (l +x )=0.1×10×10×(10+12) J =220 J 。 2.如图所示,一平直的传送带以速度v =2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m ,从A 处把工件无初速地放到传送带上,经过时间t =6s ,能传送到B 处,求: (1)工件在传送带上加速运动过程中的加速度大小及加速运动的时间;

(2)欲用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大?

【答案】:(1)1m/s2 (2)52

【解析】:对工件受力分析:g a ma mg μμ==....

对工件进行运动分析:假设工件从静止释放到与传送带共速共需要经历的时间为t 速度关系:)1...(at v =代入得2=at t=2s

位移关系:

)

2)...(6(2

12

t v at l -+=

,代入相关参数得:a=1m/s 2 如果工件在传送带上一路匀加速刚好到达B 端时的速度为V ,且刚好与传送带共速,此时传送带的速度即为其临界的最小速度。

s m v v al /5220...............022==-=

3.如图所示,倾角为θ的斜面,传送带AB 之间的距离为L,传送带以速度v 匀速转动,物块与传送带之间的摩擦因素为u ,将物块从A 点由静止释放,求物体从A 传到B 的时间;

【答案】:θ

θμsin cos 2g g l

t -=

或)sin cos (2θθμg g v v l t -+=

【解析】:要想将物体传上去有一个要求:θθμsin cos mg mg > 对物块受力分析:ma mg mg =-θθμsin cos θθμsin cos g g a -=

运动分析:与水平类型完全一致;物体的运动有两种可能,先匀加速后匀速,或一直匀加速; 一直匀加速:a l t at l 2...212==

代入相关参数得:θ

θμsin cos 2g g l

t -= 先匀加速后匀速:参考上一例题可知:a

v

v l t t t 221+

=

+=代入相关参数得:)sin cos (2θθμg g v v l t -+= 4.如图所示,一皮带输送机的皮带以v =13.6 m/s 的速率做匀速运动,其有效输送距离AB =29.8 m ,与水平方向夹角为θ=37°.将一小物体轻放在A 点,物体与皮带间的动摩擦因数μ=0.1,求物体由A 到B 所需的时间.(g 取10 m/s)

【答案】:3s

【解析】:本题的关键要注意两点:

1、开始时传送带运动的速度大于物块的速度,所以物块受到传送带沿斜面向下的滑动摩擦力;

2、当物块与传送带共速后物块的运动不一定是匀速的,需要进行相应的判断; 到达共速前阶段一受力分析:1cos sin ma mg mg =+θμθ代入相关参数得a1=6.8m/s2

设经过时间t1物块与传送带共速:s t a v 211==,物体产生的位移为:m a

v x 6.1321

21==

当物体与传送带达到共速后的阶段二对物体进行受力分析:需要先判断比较θμθcos sin mg mg 与的大小关系,从而确定物体在第二阶段的运动情况;

对物体受力分析得:2cos sin ma mg mg =-θμθ代入相关参数得a2=5.2m/s2 对第二阶段的物体进行运动分析得:2

22122

1t a vt x l x +=-=;代入相关参数得:t2=1s 总时间t=t 1+t 2=3S;

对本题说明:在第二阶段中比较θμθcos sin mg mg 与的关系是非常重要的;当θμθcos sin mg mg ≤时, 物体将匀速走完剩余的全程;当θμθcos sin mg mg >时,物体将以加速度a2继续前行;

5.车站、码头、机场等使用的货物安检装置的示意图如图所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运行,AB 为水平传送带部分且足够长,现有一质量为m =5 kg 的行李包(可视为质点)无初速度地放在水平传送带的A 端,传送到B 端时没有被及时取下,行李包从B 端沿倾角为37°的斜面滑入储物槽,已知行李包与传送带间的动摩擦因数为0.5,行李包与斜面间的动摩擦因数为0.8, g 取10 m/s 2,不计空气阻力(sin 37°=0.6,cos 37°=0.8)。

(1)求行李包相对于传送带滑动的距离;

(2)若B 轮的半径为R =0.2 m ,求行李包在B 点对传送带的压力; (3)若行李包滑到储物槽时的速度刚好为零,求斜面的长度。 【答案】:(1)0.1 m (2)25 N ,方向竖直向下 (3)1.25 m

【解析】:(1)行李包在水平传送带上加速时μ1mg =ma 1若行李包达到水平传送带的速度所用时间为t ,则v =a 1t 行李包前进距离x 1=12

a 1t 2

传送带前进距离x 2=vt ; 行李包相对传送带滑动的距离Δx =x 2-x 1=0.1 m (2)行李包在B 点,根据牛顿第二定律,有:mg -F N =mv 2

R

解得:F N =25 N

根据牛顿第三定律可得:行李包在B 点对传送带的压力为25 N ,方向竖直向下。 (3)行李包在斜面上时,根据牛顿第二定律:mg sin 37°-μ2mg cos 37°=ma 2 行李包从斜面滑下过程:0-v 2=2a 2x :解得:x =1.25 m 。

6.(2018·江西联考)如图所示,P 为弹射器,P A 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2 m ,传送带AB 长为L =6 m ,并以v 0=2 m/s 的速度逆时针匀速转动。现有一质量m =1 kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为0.2。若物体经过BC 段的速度为v ,物体到达圆弧面最高点D 时对轨道的压力为F ,(g =10 m/s 2)

(1)写出F 与v 的函数表达式;

(2)要使物体经过D 点时对轨道压力最小,求此次弹射器初始时具有的弹性势能为多少;

(3)若某次弹射器的弹性势能为8 J ,则物体弹出后第一次滑向传送带和离开传送带由于摩擦产生的热量为多少?

【答案】: (1)F =12v 2-50 (2)62 J (3)18 J

【解析】: (1)对于D 点分析可得:F +mg =m v 2D

R

12mv 2=12

mv 2

D +2mgR 联立可得:F =m v 2R -5mg =1

2v 2-50

(2)当F =0时,v =10 m/s , 根据能量守恒定律得: E p =1

2mv 2+μmgL =62 J

(3)当E p =8 J 时,v A =4 m/s 设物体向右匀减速运动历时t 1,

t 1=v A

a

=2 s

此时物体向右的位移 x 1=12at 21

=4 m

带向左的位移x 2=v 0t 1=4 m 两者相对位移Δx 1=x 1+x 2=8 m

当物体向右匀减速到0时又向左匀加速运动直到与传送带速度相等,两者相对静止,设此过程历时t 2, t 2=v 0

a

=1 s

物体向左的位移x 3=1

2at 22=1 m

皮带向左的位移x 4=v 0t 2=2 m 两者的相对位移Δx 2=x 4-x 3=1 m 所以Δx =Δx 1+Δx 2=9 m 故Q =μmg ·Δx =18 J

7.如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )

A.电动机多做的功为2

2

1mv B.摩擦力对物体做的功为mv 2 C.传送带克服摩擦力做的功为221mv D. 系统产生的内能为 2

2

1mv

【答案】:D

【解析】:电动机多做的功转化为物体的动能以及系统的内能;在该过程物体获得的动能为

2

2

1mv ; 系统产生的内能大小为:相x f Q .=;物传相x x x -=;设经过时间t 物块与传送带共速;结合牛二定律物块

的加速度大小为g a μ=;故g

v

t μ=;g v x μ22=物;g v t v x μ2.==传;故22212..mv g v mg x mg Q ===μμμ相;

故A 电动机多做的功为:mv 2

所以,A 错,D 对;摩擦力对物体做的功为物体动能的增加量

2

2

1mv ;故B 错;传送带克服摩擦力做的功即摩擦力对物体做的负功大小为2

.mv x mg =传μ;故C 错误;

8.如图所示,在游乐节目中,选手需要借助悬挂在高处的绳飞越到对面的高台上。一质量m =60 kg 的选手脚穿轮滑鞋以v0=7 m/s 的水平速度抓住竖直的绳开始摆动,选手可看作质点,绳子的悬挂点到选手的距离L =6 m 。当绳摆到与竖直方向夹角θ=37°时,选手放开绳子,不考虑空气阻力和绳的质量。取重力加速度g =10 m/s2,sin 37°=0.6,cos 37°=0.8。求:

(1)选手放开绳子时的速度大小;

(2)选手放开绳子后继续运动到最高点时,刚好可以站到水平传送带A 点,传送带始终以v1=3 m/s 的速度匀速向左运动,传送带的另一端B 点就是终点,且sAB =3.75 m 。若选手在传送带上自由滑行,受到的摩擦阻力为自重的0.2倍,通过计算说明该选手是否能顺利冲过终点B ,并求出选手在传送带上滑行过程中因摩擦而产生的热量Q 。

【答案】:(1)5m/s (2)990J

【解析】:(1)对选手从抓住绳子到放开绳子的整个过程,由机械能守恒得 12mv20=mgL(1-cos 37°)+12mv2 解得v =5 m/s

(2)设选手在放开绳子时,水平速度为vx ,则 vx =vcos 37°=4 m/s

选手在最高点站到传送带上时有4 m/s 的向右的速度,在传送带上做匀减速直线运动 选手的加速度:a =kmg

m =2 m/s2

以地面为参考系,设选手在传送带上向右运动了x 后速度减为零,由运动学公式得-v2x =-2ax ,解得x =4 m>3.75 m ,所以选手可以顺利冲过终点

设选手从A 到B 运动的时间为t ,则s AB =v x t -12at 2 得t 1=1.5 s ,t 2=2.5 s(舍去)

在这段时间内传送带通过的位移为x 1=v 1t 1=4.5 m 摩擦力做的功W f =Q =kmg(s AB +x 1)=990 J 。

9.(15分)如图甲所示,一倾角为θ=37°的传送带以恒定速度运行。现将一质量m =1 kg 的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g =10 m/s 2,sin37°=0.6,cos37°=0.8。求:

(1)0~8 s 内物体位移的大小; (2)物体与传送带间的动摩擦因数;

(3)0~8 s 内物体机械能增量及因与传送带摩擦产生的热量Q 。 【答案】(1)14 m (2)0.875 (3)90 J 126 J

【解析】(1)从图乙中求出图线与t 轴围成的面积,即物体位移:x =-2×2×12 m +4×4×12 m +2×4 m =14 m 。

(2)由图象知,图线的斜率表示加速度,即物体相对传送带滑动时的加速度:a =1 m/s 2, 对此过程中物体受力分析得 μmg cos θ-mg sin θ=ma , 得μ=0.875。

(3)物体被送上的高度h =x sin θ=8.4 m , 重力势能增量ΔE p =mgh =84 J , 动能增量ΔE k =12mv 22-12mv 2

1=6 J , 机械能增加ΔE =ΔE p +ΔE k =90 J , 0~8 s 内只有前6 s 发生相对滑动。 0~6 s 内传送带运动距离x 1=4×6 m =24 m , 0~6 s 内物体位移x 2=6 m ,

产生的热量Q =μmg cos θ·Δx =μmg cos θ(x 1-x 2)=126 J 。

10.电动机带动水平传送带以速度v 匀速传动,一质量为m 的小木块由静止轻放在传送带上,如图所示.若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求: (1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的动能; (4)摩擦过程产生的摩擦热;

(5)电动机带动传送带匀速传动输出的总能量. 【答案】(1)v 22μg (2)v 2μg (3)12mv 2(4)12

mv 2

(5)mv 2

【解析】小木块刚放上传送带时速度为0,必然受到传送带的滑动摩擦力作用,做匀加速直线运动,达到与传送带相同速度后不再相对滑动,整个过程中小木块获得一定的能量,系统要产生摩擦热.对小木块,相对滑动时由μmg =ma 得加速度a =μg .由v =at 得,达到相对静止所用时间t =v

μg .

(1)小木块的位移l 1=v 2t =v 2

2μg

.

(2)传送带始终匀速传动,路程l 2=vt =v 2

μg .

(3)小木块获得的动能E k =1

2

mv 2

也可用动能定理μmgl 1=E k ,故E k =1

2

mv 2.

(4)产生的摩擦热:Q =μmg (l 2-l 1)=1

2mv 2.(注意:Q =E k 是一种巧合,不是所有的问题都这样)

(5)由能量守恒定律得,电动机输出的总能量转化为小木块的动能与摩擦热,所以E 总=E k +Q =mv 2. 11. 如图所示,水平传送带两端点A 、B 间的距离为l ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是( )

A.W 1=W 2,P 1<P 2,Q 1=Q 2

B. W 1=W 2,P 1<P 2,Q 1>Q 2

C. W 1>W 2,P 1=P 2,Q 1>Q 2

D. W 1>W 2,P 1=P 2,Q 1=Q 2 【答案】B

【解析】:因为两次的拉力和拉力方向的位移不变,由功的概念可知,两次拉力做功相等,所以W 1=W 2,当传送带不动时,物体运动的时间为t 1=l v 1;当传送带以v 2的速度匀速运动时,物体运动的时间为t 2=l v 1+v 2,

所以第二次用的时间短,功率大,即P 1<P 2;一对滑动摩擦力做功的绝对值等于滑动摩擦力与相对路程的乘积,也等于转化的内能,第二次的相对路程小,所以Q 1>Q 2,选项B 正确.

12.(2018·永州期末)如图所示,固定的粗糙弧形轨道下端B 点的切线水平,上端A 与B 点的高度差为h 1=1.0

m ,一质量为m =2.5 kg 的滑块(可视为质点)从轨道的A 点由静止下滑,滑到轨道下端B 点时的速度大小为v B =4 m/s ,然后从B 点水平抛出,落到传送带上端的C 点时速度方向恰好与传送带平行.倾斜传送带与水平方向的夹角为θ=37°,传送带逆时针匀速转动,速度大小为v =2.6 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,传送带足够长,不计空气阻力,不考虑滑块与传送带碰撞时的能量损失,sin 37°=0.6,cos 37°=0.8,求:

(1)滑块从A 点滑到B 点的过程中克服摩擦阻力做的功W f ; (2)B 点与传送带上端C 点的高度差h 2;

(3)滑块在传送带上运动时与传送带因摩擦产生的热量Q . 【答案】:(1)5 J(2)0.45 m(3)115.2 J

【解析】(1)滑块从A 点滑到B 点的过程中,根据动能定理得:mgh 1-W f =12mv 2B -0

代入数据解得W f =5 J.

(2)从B 到C 滑块做平抛运动,到达C 点时速度与水平方向的夹角为37°,则滑块到达C 点的速度为 v 0=v B

cos 37°

=5 m/s 根据机械能守恒定律得:mgh 2+12mv 2B =12mv 2

0 解得 h 2=0.45 m.

(3)滑块在传送带上运动时,由于v 0>v ,所以滑块所受的滑动摩擦力方向沿传送带向上. 根据牛顿第二定律得 μmg cos θ-mg sin θ=ma

解得 a =0.4 m/s 2,方向沿传送带向上,滑块做匀减速运动 速度减至v =2.6 m/s 的时间 t =v 0-v a =5-2.60.4 s =6 s

减速过程滑块的位移 x 1=v 0+v 2t =5+2.6

2×6 m =22.8 m

传送带的位移 x 2=vt =2.6×6 m =15.6 m 此过程中摩擦生热 Q ′=μmg cos θ(x 1-x 2) 解得 Q ′=115.2 J

由于μmg cos θ>mg sin θ,所以滑块与传送带共速后相对静止,不再产生热量所以摩擦产生的热量Q=Q′=115.2 J.

高考物理热力学综合题

1.根据热力学定律,下列说法正确的是() A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量 C.科技的进步可以使内燃机成为单一的热源热机 D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机” 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 2.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。 3.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍(B)8.5倍(C)3.1倍(D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。 4. 图6为某同学设计的喷水装置,内部装有2L水,上部密封1atm的空气0.5L,保持阀门关闭,再充入1atm的空气0.1L,设在所有过程中空可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 5.A.[选修3-3](12分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。

高中物理公式大全.doc

高中物理公式大全 一、力学 1、胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料 有关) 2、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受 到的地球引力) 3 、求F 1、F 2 两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m 为最大静摩擦力,与正压力有关)

说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h— 卫星到天体表面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π b、在地球表面附近,重力=万有引力 mg = G Mm R2 g = G M R2 c、第一宇宙速度 mg = m V R 2 V=gR GM R =/ 8、库仑力:F=K22 1 r q q (适用条件:真空中,两点电荷之间的作用力) 9、电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1)洛仑兹力:磁场对运动电荷的作用力。 公式:f=qVB (B⊥V) 方向--左手定则 (2)安培力:磁场对电流的作用力。

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

动力学中的典型传送带模型-高三

“传送带”模型1.水平传送带模型 项目 图示运动情况判断方法 情景1可能一直加速,也可能先加 速后匀速 若 v2 2μg≤l,物、带能共 速 情景2当v0>v时,可能一直减速, 也可能先减速再匀速;当 v0

【例2】(多选)如图所示,绷紧的水平传送带足够长,且以v1=2 m/s的恒定速率运行。初速度大小v2=3 m/s的小墨块从与传送带等高的光滑水平地面(图中未画出)上的A处滑上传送带,墨块可视为质点。若从墨块滑上传送带开始计时,墨块在传送带上运动5 s后与传送带的速度相同,则() A.墨块与传送带速度相同之前,受到传送带的摩擦力方向水平向右 B.墨块在传送带上滑行的加速度大小a=0.2 m/s2 C.墨块在传送带上留下的痕迹长度为4.5 m D.墨块在传送带上留下的痕迹长度为12.5 m 【拓展提升1】若将【例2】中的v1、v2的值改为v1=3 m/s,v2=2 m/s,求墨块在传送带上留下的痕迹长度。 考向倾斜传送带 解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动的情况。 【例3】(多选)如图所示,一足够长的倾斜传送带顺时针匀速转动。一小滑块以某初速度沿传送带向下运动,滑块与传送带间的动摩擦因数恒定,滑块可视为质点,最大静摩擦力等于滑动摩擦力,则滑块速度v随时间t变化的图象可能是() 【拓展提升2】(多选)在【例3】中,若滑块以某一初速度从传送带下 端沿传送带向上运动,如图7所示,传送带运动的速度v1小于滑块的初速度v0,其他条件不变,则滑块的速度v随时间t变化的图象可能是() 图7

(完整版)高考物理动力学经典试题

1.汽车前方120 m处有一自行车正以6 m/s的速度匀速前进,汽车以18 m/s的速度追赶自行车,若两车在同一条公路不同车道上做同方向的直线运动,求: (1)经多长时间,两车第一次相遇? (2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2 m/s2,则再经多长时间两车第二次相遇? 2.如图2-1-2所示,一个球形物体静止于光滑水平面上,并与竖直光滑墙壁接触,A、B两点是球跟墙和地面的接触点,则下列说法中正确的是() 图2-1-2 A.物体受重力、B点的支持力、A点的弹力作用 B.物体受重力、B点的支持力作用 C.物体受重力、B点的支持力、地面的弹力作用 D.物体受重力、B点的支持力、物体对地面的压力作用 3.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图2-1-3所示),现让小车从光滑斜面上自由下滑,在下图的情况中杆发生了不同的形变,其中正确的是() 图2-1-3 4.如图2-1-7所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球。下列关于斜杆对小球的作用力F的判断中,正确的是() 图2-1-7 A.小车静止时,F=mg sin θ,方向沿杆向上 B.小车静止时,F=mg cos θ,方向垂直于杆向上 C.小车向右匀速运动时,一定有F=mg,方向竖直向上 D.小车向右匀加速运动时,一定有F>mg,方向一定沿杆向上

5.图2-1-9的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态。现用等长的轻绳来代替轻杆,能保持平衡的是() 图2-1-9 A.图中的AB杆可以用轻绳代替的有甲、乙、丙 B.图中的AB杆可以用轻绳代替的有甲、丙、丁 C.图中的BC杆可以用轻绳代替的有乙、丙、丁 D.图中的BC杆可以用轻绳代替的有甲、乙、丁 6.足球运动是目前全球体育界最具影响力的运动项目之一,深受青少年喜爱。如图1所示为四种与足球有关的情景,下列说法正确的是() 图1 A.图甲中,静止在草地上的足球受到的弹力就是它的重力 B.图乙中,静止在光滑水平地面上的两个足球由于接触而受到相互作用的弹力 C.图丙中,即将被踢起的足球一定不能被看作质点 D.图丁中,落在球网中的足球受到弹力是由于球网发生了形变 7.在半球形光滑碗内斜搁一根筷子,如图2所示,筷子与碗的接触点分别为A、B,则碗对筷子A、B两点处的作用力方向分别为() 图2 A.均竖直向上 B.均指向球心O C.A点处指向球心O,B点处竖直向上 D.A点处指向球心O,B点处垂直于筷子斜向上 8.如图4所示,质量为m的球置于斜面上,被一个竖直挡板挡住。现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是()

高考物理必备公式大全

高考必背物理公式 质点运动 1.匀速直线运动:------t s v = ---vt s = v 表示速度,s 表示位移,t 表示时间。 2.变速直线运动:------t v s = 其中:s 表示位移,v 表示平均速度,t 表示时间。 3.匀变速直线运------基本公式:t v v a t 0-= t v s = 2 0t v v v += 导出公式:2021at t v s += 2 022v v as t -= t v v s t 2 += t v v 中中>+=2 v v 2t 2 0s 纸 带 法 :2 aT s =? 2 )(T N M S S a N M --= 2T 两侧中S v v t == 4.平抛运动:沿V 0方向 t v S x 0= 0v v x = 0=x a 0=x F y x t t = 沿垂直于V 0方向(竖直)---2 2 1gt S y = ---gt v y = ---g a y = ---mg F y = 各量方向------位移:θφtan 21 2tan 0===v gt S S x y ------速度:0tan v gt v v x y ==θ 其余量的求法:---位移:4 2220 224 1t g t v S S S y x +=+= ---速度:222022t g v v v v y x +=+= ---时间:g h t 2= 5.匀速率圆周运动: ---基本公式:---运动快慢---线速度:t s v = 其中:s 为t 时间内通过的弧长。 --转动快慢---角速度:t φ ω= 其中:φ为t 时间内转过的圆心角。 ---周期:f T 12= = ω π v r ?=π2 r v =ω ---向心力:心心ma v m r f m r T m r v m r m F =??=====ωππω2222 22 44 ---向心加速度:m F r f r T r v r a 心心=====2222 22 44ππωv ?=ω 力的表达式 1.重力---mg G =---不考虑地球自转的情况下 ,重力与万有引力相等2 R GMm mg = 2.弹力---不明显的形变---用动力学方程求解; 明显的形变---在弹性限度以内,满足胡克定律:x k f ??-= 3.摩擦力---静摩擦力---max 0f f ≤< 最大静摩擦力:N s F f μ=m a x 其中:s μ为最大静摩擦因数。 ---滑动摩擦力---N F f μ= 其中:μ为动摩擦因数,F N 为正压力。 4.力的合成和分解 ------合力的大小:θcos 2212221F F F F F ++=其中:θ为F 1与F 2的夹角; ------合力的方向: 6.核力:组成原子核的核子之间的作用力。 强力、短程力 7.电场力:------库仑力:2 2 1r Q kQ F = ------电场力:Eq F = 8.安培力:---当为有效长度均匀其中时l B l I B F I B ,,??=⊥;当0//=F I B 时。

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高考物理-用动力学和能量观点解决多过程问题(解析版)

2020年高考物理备考微专题精准突破 专题3.8 用动力学和能量观点解决多过程问题 【专题诠释】 1.本专题是力学两大观点在多运动过程问题、传送带问题和滑块—木板问题三类问题中的综合应用,高考常以计算题压轴题的形式命题. 2.学好本专题,可以极大地培养同学们的审题能力、推理能力和规范表达能力,针对性的专题强化,可以提升同学们解决压轴题的信心. 3.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律). 【高考领航】 【2019·浙江选考】如图所示为某一游戏的局部简化示意图。D 为弹射装置,AB 是长为21 m 的水平轨道, 倾斜直轨道BC 固定在竖直放置的半径为R =10 m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连 接,且在同一竖直平面内。某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10 m/s 的速度滑上轨道 AB ,并恰好能冲到轨道BC 的最高点。已知小车在轨道AB 上受到的摩擦力为其重量的0.2倍,轨道BC 光 滑,则小车从A 到C 的运动时间是( ) A .5 s B .4.8 s C .4.4 s D .3 s 【答案】A 【解析】设小车的质量为m ,小车在AB 段所匀减速直线运动,加速度210.20.22m/s f mg a g m m ====,在AB 段,根据动能定理可得2201122AB B fx mv mv -=-,解得4m/s B v =,故1104 s 3s 2 t -==;小车在BC 段,根据机械能守恒可得 2 12 B CD mv mgh =,解得0.8m CD h =,过圆形支架的圆心O 点作B C 的垂线,根据几何知识可得1 2BC BC CD x R x h =,解得4m BC x =,1sin 5 CD BC h x θ==,故小车在BC 上运动的加速度为2 2sin 2m/s a g θ==,故小车在BC 段的运动时间为224 s 2s 2 B v t a = == ,所以小车运动的总时间为

2020年高考物理必考考点题型

高考物理必考考点题型 必考一、描述运动的基本概念 【典题1】2010年11月22日晚刘翔以13秒48的预赛第一成绩轻松跑进决赛,如图所示,也是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在110米中的( ) A.某时刻的瞬时速度大 B.撞线时的瞬时速度大 C.平均速度大 D.起跑时的加速度大 【解题思路】在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度,是矢量,方向与位移方向相同。根据x=Vt可知,x一定,v越大,t越小,即选项C正确。 必考二、受力分析、物体的平衡 【典题2】如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A、B分别穿在两个杆上,两球之 间有一根轻绳连接两球,现在用力将B球缓慢拉动,直到轻绳被拉直时,测出拉力F=10N则此时关于两个小球受到的力的说法正确的是() A、小球A受到重力、杆对A的弹力、绳子的张力 B、小球A受到的杆的弹力大小为20N C、此时绳子与穿有A球的杆垂直,绳子张力大小为 203 3N D、小球B受到杆的弹力大小为 203 3N 【解题思路】对A在水平面受力分析,受到垂直杆的弹力和绳子拉力,由平衡条件可知,绳子拉力必须垂直杆才能使A平衡,再对B在水平面受力分析,受到拉力F、杆的弹力以及绳子拉力,由平衡条件易得杆对A的弹力N等于绳子拉力T,即N=T=20N,杆对B的弹力N B= 203 3。 【答案】AB 必考三、x-t与v-t图象 【典题3】图示为某质点做直线运动的v-t图象,关于这个质点在4s内的运动情况,下列说法中正确的是() A、质点始终向同一方向运动 B、4s末质点离出发点最远 C、加速度大小不变,方向与初速度方向相同 D、4s内通过的路程为4m,而位移为0 【解题思路】在v-t图中判断运动方向的标准为图线在第一象限(正方向)还是第四象限(反方向),该图线穿越了t轴,故质点先向反方向运动后向正方向运动,A错;图线与坐标轴围成的面积分为第一象限(正方向位移)和第四象限(反方向位移)的面积,显然t轴上下的面积均为2,故4s末质点回到了出发点,B 错;且4s内质点往返运动回到出发点,路程为4m,位移为零,D对;判断加速度的标准是看图线的斜率, F θ A B t/s v/(m·s-2) 1 2 3 4 2 1 -2 -1 O

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

第三章 动力学中三种典型物理模型

专题强化四动力学中三种典型物理模型 专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题. 2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力. 3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识. 1.两种模型(如图1) 图1 2.等时性的证明 设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=g sin α,位移为x=d sin α,所以运动时间为t0 =2x a= 2d sin α g sin α= 2d g. 即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关. 例1(2019·安徽芜湖市期末)如图2所示,PQ为圆的竖直直径,AQ、BQ、CQ为三个光滑斜面轨道,分别与圆相交于A、B、C三点.现让三个小球(可以看作质点)分别沿着AQ、BQ、CQ轨道自端点由静止滑到Q点,运动的平均速度分别为v1、v2和v3.则有:() 图2 A.v2>v1>v3 B.v1>v2>v3 C.v3>v1>v2

D.v1>v3>v2 答案 A 解析设任一斜面的倾角为θ,圆槽直径为d.根据牛顿第二定律得到:a=g sin θ,斜面的长 度为x=d sin θ,则由x=1 2at 2得t=2x a=2d sin θ g sin θ =2d g ,可见,物体下滑时间与斜面的 倾角无关,则有t1=t2=t3,根据v=x t ,因x2>x1>x3,可知v2>v1>v3,故选A. 变式1如图3所示,竖直半圆环中有多条起始于A点的光滑轨道,其中AB通过环心O 并保持竖直.一质点分别自A点沿各条轨道下滑,初速度均为零.那么,质点沿各轨道下滑的时间相比较() 图3 A.无论沿图中哪条轨道下滑,所用的时间均相同 B.质点沿着与AB夹角越大的轨道下滑,时间越短 C.质点沿着轨道AB下滑,时间最短 D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短 答案 A 1.水平传送带模型 项目图示滑块可能的运动情况 情景1 ①可能一直加速 ②可能先加速后匀速 情景2 ①v0>v,可能一直减速,也可能先减速再匀速 ②v0=v,一直匀速 ③v0v,返回时速度为v,若v0

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型 一.“滑块—滑板”模型 1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。 2. 两种位移关系 ①物体的位移:各个物体对地的位移,即物体的实际位移。 ②相对位移:一物体相对另一的物体的位移。两种情况。 (1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=?相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=?相 这是计算摩擦热的主要依据,.相滑x f Q ?= 3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。 (2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。 二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。 (3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。 相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。 (4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。 例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求: (1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ?相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f-μμμ,则合外力向右,向右加速运动. ./5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμ B 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2 v v x 1B o B =+= A 的速度大小v A =v B =1m/s.

高考物理动力学的图像问题专题训练

专题1.7 动力学的图像问题 【专题诠释】 1.“两大类型” (1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v -t 图象与F -t 图象的桥梁. 3.解决图象问题的方法和关键 (1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等表示的物理意义. (3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点. (4)动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等. 【高考引领】 【2019·全国卷Ⅲ】如图a ,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图b 所示,木板的速度v 与时间t 的关系如图c 所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2 。由题给数据可以得出( ) A .木板的质量为1 kg B .2~4 s 内,力F 的大小为0.4 N C .0~2 s 内,力F 的大小保持不变 D .物块与木板之间的动摩擦因数为0.2 【答案】 AB 【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42 m/s 2=0.2 m/s 2 ,撤去外力F 后的加速

高考物理必考知识点——常用的重要公式

高考物理必考知识点——常用的重要公式高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。如下为大家推荐了高考物理必考知识点,请大家仔细阅读,希望你喜欢。 1.平抛运动公式总结 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tg β=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2.原子和原子核公式总结 1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键; (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。

高三物理选择题专项训练题(全套)

2018届高三物理选择题专题训练1 14.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表相连,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A.安培力的方向可以不垂直于直导线 B.安培力的方向总是垂直于磁场的方向 C.安培力的大小与通电直导线和磁场方向的夹角无关 D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 16.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。 不计重力。铝板上方和下方的磁感应强度大小之比为() 2 A.2 B.2 C.1 D. 2 17.如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低 C.保持不变D.升高或降低由橡皮筋的劲度系数决定 18.如图(a),线圈ab、cd绕在同一软铁芯上。在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是()

2020高考物理一轮总复习 链接高考 两类动力学模型:“板块模型”和“传送带模型”讲义(含解析)新人教版

两类动力学模型:“板块模型”和“传送带模型” 模型1 板块模型 [模型解读] 1.模型特点 涉及两个物体,并且物体间存在相对滑动. 2.两种位移关系 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长. 设板长为L,滑块位移大小为x1,滑板位移大小为x2 同向运动时:L=x1-x2 反向运动时:L=x1+x2 3.解题步骤 [典例赏析] [典例1] (2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:

(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. [审题指导] 如何建立物理情景,构建解题路径 ①首先分别计算出B 与板、A 与板、板与地面间的滑动摩擦力大小,判断出A 、B 及木板的运动情况. ②把握好几个运动节点. ③由各自加速度大小可以判断出B 与木板首先达到共速,此后B 与木板共同运动. ④A 与木板存在相对运动,且A 运动过程中加速度始终不变. ⑤木板先加速后减速,存在两个过程. [解析] (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 与木板间的摩擦力的大小分别为f 1、f 2,木板与地面间的摩擦力的大小为f 3,A 、B 、木板相对于地面的加速度大小分别是a A 、a B 和a 1.在物块B 与木板达到共同速度前有: f 1=μ1m A g ① f 2=μ1m B g ② f 3=μ2(m A +m B +m ) g ③ 由牛顿第二定律得 f 1=m A a A ④ f 2=m B a B ⑤ f 2-f 1-f 3=ma 1⑥ 设在t 1时刻,B 与木板达到共同速度,设大小为v 1.由运动学公式有 v 1=v 0-a B t 1⑦ v 1=a 1t 1⑧ 联立①②③④⑤⑥⑦⑧式,代入数据解得: v 1=1 m/s (2)在t 1时间间隔内,B 相对于地面移动的距离为 s B =v 0t 1-1 2 a B t 21⑨ 设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有: f 1+f 3=(m B +m )a 2⑩ 由①②④⑤式知,a A =a B ;再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小

相关文档
相关文档 最新文档