文档库 最新最全的文档下载
当前位置:文档库 › 滑石粉填充聚丙烯塑料的研究

滑石粉填充聚丙烯塑料的研究

滑石粉填充聚丙烯塑料的研究
滑石粉填充聚丙烯塑料的研究

滑石粉在塑料改性中的应用解析

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/071703988.html,)滑石粉在塑料改性中的应用解析 1、在聚丙烯树脂中的应用(PP) 滑石粉常用于填充聚丙烯,滑石粉具有薄片构型的片状结构特征,因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。 在汽车工业中,聚丙烯添加滑石粉主要用于汽车的保险杠和仪表盘,另外还用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件,在家电工业中,用于冰箱抽屉、洗衣机滚筒等注塑件。 2、在聚乙烯树脂中的应用(PE) 滑石是天然硅酸镁,它独特的微鳞片状结构,具有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂竞争。 用它填充聚乙烯能够提高以下性能: ①韧度、挠曲模量和扭曲模量; ②提高挠曲强度;

③降低在常温和高温下下蠕变倾向; ④提高热变温度及尺寸稳定性; ⑤改善变形和翘曲,同时亦有较低的热膨胀系数; ⑥改进导热性; ⑦提高模塑件的表面硬度及光洁度; ⑧提高聚乙烯的机械强度。 添加不同比例的滑石粉对聚乙烯材料的物性将产生不同的影响,添加比例在10-15%达到最佳。 对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装食品。 3、在ABS树脂中的应用 ABS树脂是无定形聚合物,具有聚苯乙烯那样优良的成型加工性;它具有良好的抗冲击强度,耐低温性能好,拉伸强度高耐蠕变性能好。为了提升ABS现有的使用性能,人们对ABS改性的研究广泛的开展。比如ABS与PVC共混制造的汽车仪板吸塑片、ABS 与PVC共混制造的仿皮箱包蒙面皮,不但强度高、韧性大而且能够保持表面花纹的耐久性。这种共混材料加超细碳酸钙或超细滑石粉进行填充,能够显着的提高共混材料的缺口冲击强度和耐撕裂强度,比如:添加超细滑石粉或碳酸钙5-15%,缺口冲击强度可提高2-4倍。 由于ABS是无定型聚合物具有容纳较多填料的功能。其中添加超细滑石粉既能显着地提高ABS原存的性能,又能降低成本。因而多用它注塑成型各种仪表、电视机、收录机、手机等的壳体,当然在其他领域如:纺织器材、电气零件、汽车部件、飞机部件等的应用也非常广泛。

填充剂及其在塑料中的应用

填充剂及其在塑料中的应用 第一章:填充剂的基本概念 1. 填充剂定义 n 填充剂又称填料”,是一大类添加到塑料中能增加体积、降低制品成本及价格的物质。 n 填充剂不但降低了塑料制品的生产成本,提高了树脂的利用率,同时也扩大了树脂的应用范围,而且一些填料的应用可赋予或提高制品某些特定的性能,如尺寸稳定性、阻燃性、电气绝缘性、防粘性、不透明性和刚性。有些填料还能对提高拉伸强度和冲击强度有帮助。 2. 填充剂的基本要求 1. 本身化学性质稳定,相对纯度高,杂质含量低。 2. 颜色尽量为白色或浅色,不含铁等易加热变黄的杂质。 3. 不对塑料制品的理化性能指标产生严重损害。 4. 容易分散和混合,粒度适当。 5. 吸油值相对较低,对加工性无大影响。 6. 有合适的晶型结构。 7. 有较低的莫氏硬度。 8. 与树脂相比有相对便宜的价格。 3. 填充剂的分类 1. 根据其来源通常分为矿物性、植物性填料和工业性填充剂。后者可分为合成型和废渣型。 2. 根据其形状分为粉末状、球状、片状、柱状、针状及纤维状填充剂。 3. 根据其效能分为增量型、补强型及功能型填充剂。 4. 根据其化学组成分为无机填充剂和有机填充剂。 4. 填充剂的特性 1. 粒径及粒径分布。 2. 晶型结构。 3. 吸油性。 4. 分散性。 5. 粘度特性。 6. 刚性与硬度。 7. 电气性能。 第二章:常见填充剂的分类介绍 一,碳酸钙。(CaCO3) 碳酸钙的种类很多,如石灰石,大理石,珍珠,珊瑚,冰洲石等。工业用碳酸钙接来源分重质和轻质两种。碳酸钙是最有代表性的塑料用的白色填充剂,因其无味、无※,白度可达到96%,可自由着色且价格低廉,故在许多塑料中得到广泛应用。 1,重质碳酸钙

PP+20%滑石粉填充

SABIC? PPcompound 37T1020 聚丙烯共聚物 Saudi Basic Industries Corporation (SABIC) Technical Data 产品说明 SABIC? PPcompound 37T1020是一种聚丙烯共聚物(PP Copoly)产品,含有的填充物为20% 滑石填料。它可以通过注射成型进行加工,在欧洲有供货。 典型应用领域为:汽车行业。特性包括:? 冲击改性? 高流动性? 共聚物? 良好的刚度? 耐冲击总体材料状态资料 1 ? 已商用:当前有效 ? Technical Datasheet (English) ? Saudi Basic Industries Corporation (SABIC)? SABIC? PPcompound 搜索 UL 黄卡供货地区? 欧洲 填料/增强材料添加剂? 滑石填料, 20% 填料按重量? 冲击调节器? 改良抗撞击性? 刚性,良好? 共聚物? 抗撞击性,良好特性? 流动性高 用途? 汽车领域的应用? 颗粒料? 汽车内部零件形式加工方法 ? 注射成型 物理性能额定值 单位制测试方法密度 1.04 g/cm313 g/10 min 1.0 %ISO 1183熔流率 (230°C/ 2.16 kg)收缩率 (24小时)机械性能 ISO 1133内部方法额定值 单位制测试方法 拉伸应力 ISO 527-2/5/50 屈服, 3.20 mm, 注塑断裂, 3.20 mm, 注塑28.0 MPa 25.0 MPa 45 %拉伸应变 (断裂, 3.20 mm, 注塑)弯曲模量 3 (注塑) ISO 527-2/5/50ASTM D790测试方法2350 MPa 额定值 单位制 6.3 kJ/m218 kJ/m2冲击性能 简支梁缺口冲击强度 (23°C, 注塑)简支梁缺口冲击强度 (-40°C, 注塑)悬壁梁缺口冲击强度-20°C, 注塑ISO 179/1eA ISO 179/1eU ISO 180/4A 3.0 kJ/m23.5 kJ/m25.7 kJ/m2额定值 单位制 710°C, 注塑23°C, 注塑硬度 测试方法支撐硬度 (邵氏 D, 注塑)热性能 ISO 868额定值 单位制110 °C 测试方法热变形温度 (0.45 MPa, 未退火)维卡软化温度ISO 75-2/B ISO 306/A ASTM D696 145 °C 线形膨胀系数 - 流动-30 到 30°C 8.0E-5 cm/cm/°C 1.1E-4 cm/cm/°C 23 到 80°C 1 / 3

聚丙烯

聚丙烯-PP-Polypropylene原料介绍 发布日期:2013-05-18 20:02 点击次数:662次 聚丙烯-PP-Polypropylene原料介绍 聚丙烯,英文名称:Polypropylene(PP),日文名称:ポリプロピレン,分子式:(C3H6)n。CAS 登录号:9003-07-0,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaetic polyprolene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯 (syndiotatic polypropylene)三种。 介绍 甲基排列在分子主链的同一侧称等规聚丙烯, 聚丙烯树脂若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。PP的维卡软化温度为150℃。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。 PP的熔体质量流动速率(MFR)通常在1~100。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚型的抗冲强度比均聚型的要高。由于结晶,PP的收缩率相当高,一般为1.6~2.0%。 性质描述 中文名:聚丙烯[1] 聚丙烯结构图3D模型 中文别名:丙纶;聚丙烯纤维;丙纶短纤维;聚丙烯短纤维;丙纶短纤;丙纶fdy;丙纶长丝fdy;烟用聚丙烯过滤丝束油剂[2] 英文名: Polypropylene 缩写:PP

滑石粉在塑胶行业的应用

在很多行业和领域都要涉及到粉体,可以说粉体技术是支撑高新技术的基础技术之一。所谓粉体技术包括两个方面,一是粉体粒子的设计和制造技术,二是粉体的处理技术,即如何能够将粉体添加到其他的物质中,发挥它独特作用。超细目滑石粉母料添加到塑料里,可显著提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。 一、在聚丙烯树脂中的应用: 滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa力)提高到88℃或从121℃(0.45Mpa力)提高到147℃。用于电气元件,介电常数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中,聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件

等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。 二、在聚乙烯树脂中的应用: 滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变温度及尺寸稳定性;改善变形和翘曲,同时亦有较低的热膨胀系数;改进导热性;提高模塑件的表面硬度及光洁度;提高聚乙烯的机械强度。例如:用超细滑石粉(1250目、2500目)母料填充注塑级高密度聚乙烯复合材料,除上述性能有明显改善外,该种复合材料的拉伸强度增加,添加10%时增加到最大值,添加30%时仍能保持原强度,冲击强度稍有增加。对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降低70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装如火腿、肉肠、乳酪等食品。 三、在ABS树脂中的应用: 用特种方法制造的超细滑石粉母料,添加到塑料中具有很好的分散性、

聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟 聚丙烯改性 引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应 用。是目前增长速度最快的通用型热塑性塑料。聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。 关键词:聚丙烯;改性 1.物理改性 物理改性由于工艺过程简单,生产周期短。所制得材料性能优良。近年来已成为高分子材料一个新的研究热点。常用的改性方法主要有共混改性、填充改性、增强改性等。 1.1 共混改性 共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。最古老和最简单的方法是机械掺合法。共混改性可明显改进低温脆性、冲击强度和耐寒性等。如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。聚丙烯除了二元共混体外,还采用了三元共混体系。如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。 1.2填充改性 为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本 1.3增强改性 用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料 中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。同时,其要食品卫生方面无害,尤其是电性质良好 1.4添加助剂改性 为使聚丙烯性能适合各方面的需要,添加抗氧剂和紫外线吸收剂可提高聚丙烯的耐气展性}添加阻燃剂可降低聚丙烯的易燃性;添加成核剂可增强聚丙烯的透明性和光泽性。并可缔短成型周期等}添加其它助剂如抗氧剂、润滑剂、热稳定剂、发泡剂、着色剂等,可以改善聚丙烯的耐老化性、加工稳定性,抗静电性能等。 2. 化学改性

常用聚烯烃改性剂

聚烯烃用改性剂 1. 大分子相容剂 塑料合金化、填充改性是提高塑料物理与力学性能的主要方法之一。但通常塑料与填料极性差异大, 相容性不好, 造成填料在树脂中不易均匀分散, 界面粘合力低, 导致材料的冲击强度、断裂伸长率等力学性能降低。用传统表面活性剂或有机偶联剂(如硬脂酸、硅烷、钛酸酯等)处理填料表面, 虽可改善填料的分散性和界面粘合力, 但因为有机偶联剂的有机链段短, 与基体作用小, 对材料力学性能的提高有限。而大分子相容剂的应用收到了良好的效果。大分子相容剂不但可促进填料在基体中的分散, 而且可提高填料与基体、基体与偶联剂间的界面粘合, 克服传统偶联剂与基体作用弱的缺点, 从而使复合材料的综合性能得到提高。用于改性填充塑料的大分子相容剂主要是带有反应性基团的官能团化接枝高分子。一方面大分子相容剂的反应性官能团可以和填料发生化学反应, 另一方面大分子相容剂含有高分子长链, 可与基体产生良好的缠结或共结晶。因此, 大分子相容剂不但可以使填料在塑料中的分散性改善, 而且增加组分间的粘合力, 从而提高填充塑料的综合性能。 大分子相容剂用于改性填充PP的研究最多, 常用马来酸酐接枝聚丙烯(PP-g-MAH)、丙烯酸接枝聚丙烯(PP-g-AA)、甲基丙烯酸缩水甘油酯/苯乙烯(GMA/St)熔融接枝PP(PP-g-GMA-co-St)、甲基丙烯酸甲酯接枝聚丙烯(PP-g-MMA)等来改性CaCO3、云母、滑石粉、高岭土等填充和增强聚丙烯。其次大分子相容剂较多的应用于填充聚乙烯改性中。常用的有马来酸酐接枝高密度聚乙烯(HDPE-g-MAH)、马来酸二丁酯接枝聚乙烯(PE-gDBM)等来改性CaCO3、Mg(OH)2等填充和增强聚乙烯。应用于聚氯乙烯的大分子相容剂的有:甲基丙烯酸-苯乙烯-丁二烯共聚物胶乳涂覆CaCO3填充PVC/氯化聚乙烯,丙烯酸丁酯接枝PVC(PVC-g-BA)改性CaCO3填充PVC。 2. 成核剂 结晶改性是目前聚烯烃, 尤其是聚丙烯塑料工程化改性的重要途径。目前聚烯烃用成核剂主要包括聚烯烃α晶型成核透明剂和聚烯烃β晶型成核剂在内的两大体系三个系列化的产品。其中α晶型成核透明剂涉及TM和TMP两个产品系

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用 聚丙烯具有比重小、刚性好、强度高、耐挠曲,以及有高于100℃的耐热温度和良好的耐化学腐蚀性等优点。通过改性,其耐低温性﹑耐冲击性和耐老化性等有所提高,广泛应用于家电、汽车等领域。 根据产品的要求和用途,聚丙烯可以用共混、填充、增强、添加助剂,以及共聚、共混、交联等方法加以改性。例如可以添加碳酸钙、滑石粉、矿物质等以提高硬度、耐热性、尺寸稳定性,添加玻璃纤维、石棉纤维、云母、玻璃微珠等以提高拉伸强度、改善低温抗冲击性、耐蠕变性,添加橡胶、弹性体、和其它柔性聚合物等以提高冲击性能、透明性,添加各种特殊助剂可赋予聚丙烯诸如耐候性、抗静电性、阻燃性、导电性、可电镀性、成核性、抗铜害性等等。 改性聚丙烯在家电领域的应用 易涂装改聚丙烯材料:直接通过共混改性,引入极性官能团,使其与聚丙烯树脂形成共结晶,规避析出,避免弱界面层的形成,从而整体提升表面张力。 满足无人看守电器要求阻燃改性聚丙烯材料:满足国际电工委员会(IEC)提出的长期无人看管电器用改性PP材料要求:IEC60335标准要求750℃灼热丝接触被测材料或制品30秒内不起火或者燃烧时间≤5秒(即GWIT≥750℃)和漏电起痕指数(CTI)≥250V。 感温变色聚丙烯材料:在聚丙烯材料中通过加入感温变色颜料实现颜色转变,感温变色颜料是由电子转移型有机化合物进行制备,在特定温度下因电子转移使该有机物的分子结构发生变化从而使颜色发生转变,从而在直观上辨别温度。 防蟑螂、防鼠咬材料:通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。主要应用于电磁炉等电器。 抗染色聚丙烯材料:内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质。使用抗染色聚丙烯材料可以解决这些问题。聚赛龙抗染色聚丙烯材料具有污染、抗染色、高流动性、刚韧平衡等特点,主要应用于喷臂管、滤网等洗碗机部件。 抗菌聚丙烯材料:家用电器如:洗衣机、空调、空气净化器、净水机、冰箱等家电,使用一段时间后滋生大量致病菌、霉菌等,对消费者的健康造成直接的威胁。抗菌聚丙烯材料对沾污在塑料上的细菌、霉菌、醇母菌、藻类甚至病毒等起抑制或杀灭作用,通过抑制微生物的繁殖来保持自身清洁。聚赛龙家电用抗菌塑料具有高强度、高韧性、抑制细菌霉菌生长等特点。 改性聚丙烯在汽车领域的应用 长玻纤增强聚丙烯材料:聚赛龙LFT-PP减重效果明显,性能也非常好,在120℃时的高温

粉体改性剂对滑石粉表面改性方法及作用

粉体改性剂对滑石粉表面改性方法及作用 滑石粉是一种层状含水镁硅酸盐,其表面含有亲水基团,且具有较高的表面能,作为无机填料与有机高聚物分子材料之间在化学结构和物理形态上有着很大的差异,缺少亲和性,使之滑石粉与聚合物之间混合不均匀、粘合力弱,导致制品的力学性能降低。为此,必须对滑石粉进行表面改性处理。 滑石粉表面改性的机理是利用某些带有两性基团的小分子或高分子化合物对进行复合的物质中的一种或两种进行表面改性,使其表面由憎水变为亲水,目的是使两种物质与树脂更好地相结合。 1、表面覆盖改性法

表面覆盖改性法是将表面活性剂或粉体改性剂覆盖于粒子表面,使表面活性剂或粉体改性剂以吸附或化学键的方式与粒子表面结合,使粒子表面由亲水变为疏水,赋予粒子新的性质,使粒子与聚合物的相容性得以改善。 该方法是目前最普遍采用的方法。大致可理解为:针对滑石粉与聚合物亲和力不高的缺点,将带有两性基团的表面活性剂覆盖粒子上,亲水基团朝向粒子表面,亲油基团朝向外面,这样与聚合物结合时就有好的相容性,达到改性目的,扩大滑石粉的应用范围。 2、机械化学法 机械化学法是通过粉碎、摩擦等方法将比较大的粒子变得较小,使粒子的表面活性变大,即增强其表面吸附能力,简化工艺的同时还可以降低成本,同时更易控制产品的质量。超细粉碎是物料深加工的重要手段,其主要目的是为现代工业提供高性能的粉体产品。此过程不是简单的物料粒度减小,它包含了许多复杂的粉体物质性质和结构的变化、机械化学变化。 滑石粉经搅拌磨超细粉碎后,表面活性增强,热效应改善,白度提高,粉体性质变化与超细粉碎过程的热力学特性密切相关。 3、外膜层改性法 外膜层改性是在粒子表面均匀地包覆一层聚合物,从而赋予粒子表面新的性质。 用澳达粉体表面改性剂对无机粒子滑石粉进行表面处理,与常规的滑石粉粒子填充物相比,包覆后的滑石粉填充高分子材料后,其最大拉伸强度、冲击强度均明显提高,提高率分别达到136%和162%,可作为新型强韧型填充改性剂用于PVC电缆料。 4、局部活性改性 局部活性改性利用化学反应在粒子表面接枝上一些可与聚合物相容的基团或官能团,使无机粒子与聚合物有更好的相容性,从而达到无机粒子与聚合物复合的目的。

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

滑石粉在塑料行业的应用

滑石粉在塑料行业的应用 在很多行业和领域都要涉及到粉体,可以说粉体技术是支撑高新技术的基础技术之一。所谓粉体技术包括两个方面,一是粉体粒子的设计和制造技术,二是粉体的处理技术,即如何能够将粉体添加到其他的物质中,发挥它独特作用。超细目滑石粉母料添加到塑料里,可显着提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。 一、在聚丙烯树脂中的应用: 滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显着的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显着提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa 力)提高到88℃或从121℃(0.45Mpa力)提高到147℃。用于电气元件,介电常 数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中, 聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。 二、在聚乙烯树脂中的应用: 滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂 竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变温度及尺寸稳定性;改善变形和翘曲,同时亦有较低的热膨胀系数;改进导热性;提高模塑件的表面硬度及光洁度;提高聚乙烯的机械强度。例如:用超细滑石粉(1250目、2500目)母料填充注塑级高密度聚乙烯复合材料,除上述性能有明显改善外,该种复合材料的拉伸强度增加,添加10%时增加到最大值,添加30%时仍能保持原强度, 冲击强度稍有增加。对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包 装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降低70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装如火腿、肉肠、乳酪等食品。 三、在ABS树脂中的应用: 用特种方法制造的超细滑石粉母料,添加到塑料中具有很好的分散性、均匀

滑石粉的表面改性及其对填充PP性能的影响

滑石粉的表面改性及其对填充PP性能的影响 项素云田春香孙彩霞 (大连理工大学,辽宁大连116012) 摘要:滑石粉的表面改性处理,对提高与改善填充塑料的性能至关重要。本文报道采用钛酸酯、铝酸酯、硼酸酯等偶联剂,对滑石粉等填料进行表面改性处理的研究结果,通过接触角、活化率、吸油量等实验方法对改性效果进行了研究,其结果有助于筛选偶联剂。通过红外光谱、DSC扫描、电镜等手段研究滑石粉等填充PP的结晶性能、结晶行为、微观结构,说明滑石粉在填充PP中的改性机理与对性能的改善。 1 偶联剂作用机理 滑石粉的表面有亲水性基团,并呈极性,而多数塑料有疏水性,两者之间的相容性差;同时,越细的滑石粉,加工过程中越易于团聚而最终影响填充塑料的性能。因此,为了改善两者之间的界面结合,必须采用适当的方法对滑石粉进行表面改性,也称为表面活化处理。 应用偶联剂处理填料的改性方法是应用最广、发展最快的一种技术。偶联剂的分子中通常含有几类性质和作用不同的基团,其功能是改善填料与聚合物之间的相容性,从而增强填充复合体系中组分界面之间的相互作用[1]。作用机理最早且比较完善的一种理论是化学键理论,该理论认为偶联剂分子中的一部分基团与无机填料表面的化学基团反应,形成强固的化学键合,而另一部分基团有亲有机物的性质,可与有机高分子反应或形成物理缠结,从而在无机相和有机相之间起了连接的桥梁作用,把两种不同性质的材料牢固的结合起来[2]。 目前偶联剂品种很多,如硅烷类、钛酸酯类、铝酸酯类、铝钛复合类、硼酸酯类、稀土类及硬脂酸盐等。偶联剂的选择应综合考虑填料表面结构、性质,偶联剂酸碱性、中心原子的电负性、几何结构和空间位阻等因素[3]。 偶联剂的用量一般都有最佳用量,低于此值,填料活化处理不彻底;而高于此值,填料表面会形成多层物理吸附的界面薄弱层,从而造成制品强度下降。所谓最佳用量,按经典理论即是处理剂在填料颗料表面上覆盖单分子层的用量[4]。 本文主要研究钛酸酯、铝酸酯、硼酸酯等偶联剂对滑石粉等填料表面改性,通过几种方法评价活化效果,确定最佳偶联剂类型及其用量;并对滑石粉填充聚丙烯的性能与结构进行了研究。

滑石粉在塑料中的应用

滑石粉在塑料中的应用 超细目滑石粉母料添加到塑料里,可显著提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。一、在聚丙烯树脂中的应用:滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa力)提高到88℃或从121℃(0.4 5Mpa力)提高到147℃。用于电气元件,介电常数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中,聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。二、在聚乙烯树脂中的应用:滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性。用它填充聚乙烯可作为工程塑料,可与ABS、尼龙、聚碳酸脂竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变

滑石粉特性

中文名称:滑石粉 英文名称:Talc 别名名称:滑石一水硅酸镁超微细滑石粉水合硅酸镁超细粉含水硅酸镁法兰西 白粉 更多别名:Talc super fine Talcum French chalk Hydrous magnesium silicate Steatite talc Nonfibrous talc 分子式:3MgO·4SiO2·H2O 分子量:379.29 物性数据: 1. 性状:白色粉末 2. 密度(g/mL,25/4℃):2.7~2.8 3. 相对蒸汽密度(g/mL,空气=1):未确定 4. 熔点(oC):800 5. 沸点(oC,常压):未确定 6. 沸点(oC,5.2kPa):未确定 7. 折射率:未确定 8. 闪点(oC):未确定 9. 比旋光度(o):未确定 10. 自燃点或引燃温度(oC):未确定 11. 蒸气压(kPa,25oC):未确定 12. 饱和蒸气压(kPa,60oC):未确定 13. 燃烧热(KJ/mol):未确定 14. 临界温度(oC):未确定 15. 临界压力(KPa):未确定 16. 油水(辛醇/水)分配系数的对数值:未确定 17. 爆炸上限(%,V/V):未确定 18. 爆炸下限(%,V/V):未确定 19. 溶解性:不溶于水。

毒理学数据: 皮肤/眼睛刺激数据(人类):300 ug/3D (Intermittent)REACTION SEVERITY : Mild 致肿瘤数据数据(小鼠):18 mg/m3/6H/2Y-I 滑石:粉尘吸入,眼睛及皮肤接触。反复大量的吸入会造成肺结疤,出现呼吸短促、咳嗽,可致残和死亡。眼睛接触后会引起刺激,造成眼睛的严重损害。X光胸透异常。 分子结构数据 1、摩尔折射率:无可用的 2、摩尔体积(m3/mol):无可用的 3、等张比容(90.2K):无可用的 4、表面张力(dyne/cm):无可用的 5、介电常数:无可用的 6、极化率(10-24cm3):无可用的 7、单一同位素质量:377.817456 Da 8、标称质量:378 Da 9、平均质量:379.2657 Da 计算化学数据 1、疏水参数计算参考值(XlogP): 2、氢键供体数量:0 3、氢键受体数量:12 4、可旋转化学键数量:0 5、互变异构体数量: 6、拓扑分子极性表面积(TPSA);253 7、重原子数量:19 8、表面电荷:-2 9、复杂度:18.8 10、同位素原子数量:0 11、确定原子立构中心数量:0 12、不确定原子立构中心数量:0 13、确定化学键立构中心数量:0 14、不确定化学键立构中心数量:0 15,共价键单元数量:7 性质与稳定性

改性滑石粉填充聚丙烯高密度聚乙烯复合体系的流变性能

第20卷第1期高分子材料科学与工程 VO1.20 NO.1 2004年1月POLYMER MATERIALS SCIENCE AND ENGINEERING Jan.2004改性滑石粉填充聚丙烯/高密度聚乙烯 复合体系的流变性能 史铁钧1何涛2吴德峰1 (1.合肥工业大学化工学院安徽合肥23000992.中国科技大学安徽合肥230026) 摘要:研究了纯滑石粉和插层~偶联等方法改性处理的滑石粉填充聚丙烯/高密度聚乙烯(PP/HDPE)复合体系的流变性能探讨了含量~温度~切变速率等因素对复合体系粘度特性的影响G结果表明复合体系总体上有切力变稀的特性G体系表观切粘度随纯滑石粉和插层处理的有机滑石粉含量的升高而有不同程度的增加9随温度升高~切变速率升高而下降9理论上分析了复合体系中各组分之间的微观相作用G 关键词:聚丙烯9高密度聚乙烯9滑石粉9插层9流变9微观相作用 中图分类号:O631.2+1文献标识码:A文章编号:1000 7555(2004)01 0125 04 近年来针对聚丙烯(PP)低温耐冲击性能差人们对其进行了一系列的改性其技术已由最初刚性无机填料填充或增强PP~弹性体增韧 PP二元复合体系发展到用机械共混技术向体系中掺入弹性体粒子形成三元复合体系以达 到既增强又增韧的目的[1 2]G根据硬增硬原理 的需要本文采用了聚丙烯/高密度聚乙烯 (PP/HDPE)作为整个体系的复合基体G已有研究表明[3~5]:采用HDPE与PP共混时HDPE 的球晶对PP的球晶有插入~分割作用能达到细化PP晶粒作用起到增韧效果G 滑石粉是一种由层状硅酸盐晶体组成的矿 物晶体表面有较多羟基存在用钛酸酯偶联剂 进行表面偶联可增加无机相与有机相之间的 相容性9同时滑石粉晶体片层之间存在一定量的阳离子可采用有机金翁离子通过离子交换初步撑开片层通过机械加工使聚合物熔融插层制备聚合物插层复合体系G本研究利用该法制备了改性滑石粉/PP/HDPE复合体系分析了体系的流变性能揭示了体系的微观结构及其相互作用G虽然聚合物插层复合材料许多特殊性能已有不少报道[6~12]但从流变学角度对此种体系的关注甚少G本研究的一些重要结果为插层复合体系的成型加工提供了较重要的理论依据G 1实验部分 1.1实验原料 聚丙烯(1300):燕山石化产品9高密度聚乙烯(7006A):齐鲁石化公司产品9滑石粉(1300 mesh):国产9钛酸酯偶联剂NDZ101:南京曙光化工厂产品G 1.2仪器及设备 毛细管流变仪:DCS5000型日本岛津公司9双辊筒炼塑机:SK160B型上海橡胶厂产品G 1.3工艺流程 (1)纯滑石粉经有机化插层处理:有机滑石粉9(2)纯滑石粉经偶联剂处理:填料A9(3)有机滑石粉经偶联剂处理:填料B G(注:偶联剂用量为滑石粉的1%) 填料 + PP/HDPE f 助剂 -双辊塑炼 -造粒 -流变仪测试 收稿日期:2002 01 219修订日期:2002 05 14作者简介:史铁钧博士生导师教授.

聚丙烯填充改性研究进展

文章编号:1008-7524(2004)01-0005-05 聚丙烯填充改性研究进展! 傅和青,汤风,黄洪,陈焕钦 (华南理工大学化工学院化工研究所,广东广州510640) 摘要:介绍了聚丙烯填充材料的种类特点,综述聚丙烯的填充改性的研究,指出了聚丙烯填充改性的发展趋势。 关键词:聚丙烯;填充改性;填料 中图分类号:T@325.1文献标识码:A 0引言 聚丙烯(PP)熔点高,综合性能优良,是当今最具发展前途的热塑性高分子材料之一,与其它通用热塑性塑料相比,它具有价格低、比重小、屈服强度、拉伸强度、表面强度等机械性能均较优异,有突出的耐应力开裂性和耐磨性,化学稳定性好、成型加工容易、应用范围广泛等特点,已被广泛应用于化工、电器、汽车、建筑、包装等行业,并正在向其它热塑性塑料、工程塑料乃至金属等材料的应用领域扩展,平均以15%的年增长率增长。但聚丙烯易发生热氧化和光老化,耐寒性差,低温易脆裂,收缩率大,抗蠕变性差,因而其应用受到一定的限制,为了提高其性能,需要对它进行改性,改性的方法很多,本文对聚丙烯的填充改性做了较详细综述。 1填充材料的种类及主要填充剂 聚丙烯填充改性技术发展比较晚,大约在20世纪60年代中叶,石棉纤维填充改性聚丙烯开始在欧洲市场出现。20世纪60年代末期碳酸钙、云母、木屑尤其是玻璃纤维及滑石粉等填充材料开始普遍使用。我国在20世纪70年代也开始研究聚丙烯的填充改性,并在后来对聚丙烯的填充技术进行了大量的研究。1.1填充材料种类 填充材料种类繁多,按形状分为球形、立方体形、矩形、薄片形和纤维形;按化学成分分为无机填料和有机填料,无机填料包括玻璃、碳、碳酸钙、金属氧化物、金属粉末、二氧化硅、硅酸盐、其它无机物,有机填料包括纤维素和塑料等。通常应用的填料为无机填料。 1.2常见填充材料及特点 常见的填料种类较多,但早期研究主要集中在云母和滑石粉填充改性PP上[1],以后逐渐扩充到其它填料的填充改性PP上。 !碳酸钙 有白垩、胡粉、石粉、重质型、沉降型等类型。碳酸钙价格低廉、来源丰富、无毒、无刺激性气味、白度好而折射率低、易于着色、粒度分布均匀、能增进塑料色泽、改进染色性;另外碳酸钙是球形结构且不含"-石英,所以对加工机械无磨损。 #硅酸盐类 包括滑石粉、云母、石棉和陶土。滑石粉为片状结构,粒度越细效果越好。滑石粉可提高制品的硬度、电绝缘性能。滑石粉使用时表面要处理,处理方法可采用加矿物脱活剂、润滑剂、加工助剂和偶联剂等。表面处理以后的滑石粉的加入,可 ? 5 ? !收稿日期:2003-07-28 作者简介:傅和青(1968-),男,博士。主要从事精细化工等领域的研究。

滑石粉5大表面改性实例

对滑石粉进行表面改性处理,可提高滑石粉与聚合物的界面亲和性,改善滑石粉填料在高聚物基料中的分散状态,这样滑石粉在复合材料中就不仅具有增量作用,还能起到增强改性的效果,从而提高复合材料的物理力学性能,使滑石得到更好的应用效果和更广泛的应用领域。 1、滑石粉钛酸酯偶联剂改性 钛酸酯偶联剂的作用是在填料表面形成一层单分子覆盖膜.改变其原有的亲水性质,使填料表面性质发生根本性变化。 由于钛酸酯偶联剂具有独特的结构,对聚合物与填充剂有良好的偶联效能,因而可提高填料的分散性和流动性,改善复合材料的断裂伸长率、冲击性和阻燃性能等。 (1)改性方法 干法改性:滑石粉在预热至100℃-110℃的高速混合机中搅拌烘干,然后均匀加入计量的钛酸酯偶联剂(用适量的15#白油稀释),搅拌数分钟,即可获得改性滑石粉填料。 湿法改性:计量的钛酸酯偶联剂用一定量溶剂稀释后,加入一定量滑石粉,于95℃下搅拌30min,过滤烘干得改性滑石粉产品。 (2)应用特性 经钛酸酯偶联剂改性的滑石粉填料可提高与聚丙烯(PP)的相容性,降低体系粘度,增加体系流动性,改善体系加工性能,减少变形,提高尺寸稳定性,扩大PP的应用范围。 2、滑石粉铝酸酯偶联剂改性 (1)改性方法 将适量的铝酸酯(如L2型)溶于溶剂(如液体石蜡)中,加入烘干的1250目的微细滑石粉进行研磨30min改性,并在100℃下恒温一段时间,冷却后即得改性产品。 (2)应用特性 用铝酸酯改性后的滑石粉与普通滑石粉相比,在液体石蜡中的粘度显著减小,水渗透时间增大,有机憎水改性效果明显。由铝酸酯改性的滑石粉代替半补强碳黑填充橡胶,其拉伸强度、伸长率等力学性能有所提高。同时,替代量很大。可达到降低成本,减少环境污染的效果。 3、滑石粉有机高分子改性 采用甲苯二异氰酸酯(TDI)和丙烯酸羟丙酯(HPA)对滑石粉体进行表面改性,分别接枝包覆聚甲基丙烯酸甲酯(PMMA)层和甲基丙烯酸甲酯-丙烯酸丁酯共聚物(PMMA-Co-PBA)层,构成复合粒子。 (1)复合粒子制备方法 取经TDI、HPA表面处理并进一步纯化处理的有机化滑石粉粒子、甲苯、引发剂及丙烯酸丁酯(BA)和二乙烯苯(DVB)各适量置于反应釜中,搅拌均匀,在维持温度为75±5℃的情况下,连续滴加下列按适当比例混合的溶液:甲基丙

相关文档
相关文档 最新文档