文档库 最新最全的文档下载
当前位置:文档库 › 生活垃圾焚烧炉渣性质及处置技术

生活垃圾焚烧炉渣性质及处置技术

生活垃圾焚烧炉渣性质及处置技术
生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质

(1)炉渣的物理性能

生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、陶瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、陶瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。

炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和陶瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。

(2)炉渣的含水率、热灼减率、堆积密度、吸水率

由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。

(3)炉渣的粒径分布

炉渣粒径分布较均匀,主要集中在2~50mm的范围内(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。

(4)炉渣化学成分

预处理后的炉渣主要化学成分及含量为:硅35%~50%、钙7%~15%、铝3.5%~7.0%、铁3.0%~6.0%、钠2.5%~8.0%、钾1.3%~3.0%、磷0.7%~3.0%,不同地点、不同批次的炉渣主要化学组成接近,由此可认为预处理后的炉渣的化学成分相对比较稳定。

(5)炉渣矿物组成

对预处理后的炉渣取样进行X衍射,X衍射结果显示,炉渣的主要矿物为石英(Quartz)、钙长石(Anorthite)、斜方沸石(Gismondine),其他的矿物峰比较弱,含量很少。各矿物衍射峰均比较尖锐,说明结晶程度较高,且石英、钙长石、斜方沸石的水化活性都不高,据此初步判断炉渣的活性不高。炉渣表面很粗糙,呈不规则角状,孔隙率较高,孔隙直径也比较大。炉渣部分位置晶体生长良好,要为棒状、针状和粒状晶体,但是发育不是很均匀,可能是因为焚烧过程中温度和空气分布不均,停留时间不同以及炉渣组分复杂的缘故。

(6)炉渣的轻漂物含量

炉渣的轻漂物含量进过测试,炉渣轻漂物含量为0.1%~0.2%,满足GB/T25032-2010《生活垃圾焚烧炉渣集料》中轻漂物含量不大于0.2%的技术要求。以轻漂物含量高的炉渣为原料生产的制品,其质量必然受到负面影响,因为这些轻漂物不仅增加了需水量,造成了更多空隙,还影响界面的粘结力。轻漂物含量与发电厂煅烧制度以及炉渣预处理工艺有关。

(7)炉渣毒性浸出

炉渣的有害物质浸出(铅、镍、镉、铬、砷、汞、氰化物)含量远低于GB5085.3-2007《危险废物鉴别标准浸出毒性鉴别》安全浓度限量标准值,可认为炉渣不属于有毒废物。

(8)炉渣的放射性

对炉渣进行放射性检测,其检测结果为:内照射指数IRa在0.30~0.39之间,外照射指数Ir在0.63~0.68之间。参照GB6566-2001《建筑材料放射性核

素限量标准》的要求,当材料的内照射指数、外照射指数均小于1.0时,可用于民用、公用建筑的主体结构。

(9)炉渣二恶英含量

参照HJ77.3-2008《固体废物二恶英类的测定同位素稀释高分辨气相色谱-高分辨质谱法》,随机抽取炉渣进行检测,二恶英总含量为 1.706×10ng/kg,远低于GB16889-2008《生活垃圾填埋场污染控制标准》中对二恶英含量3.0×103ng/kg的要求。

2、污泥焚烧底灰的理化性质及再利用技术

环保工程成套有限公司的王少波等人通过对两种不同的污泥焚烧底灰的粒径、抗剪、压缩固结性、渗透性以及重金属含量等理化性质进行了研究,并将其与原生污泥性质进行对比,分析焚烧处理对污泥理化性质的影响,并进一步根据焚烧底灰性质,探索其再利用途径。结果表明污泥焚烧底灰属于砂土,且抗剪强度较污泥焚烧前有明显增大,可达76.23~80.03kPa,金属含量有所超标,但重金属浸出量均小于相应标准限定值,可进行路基材料、CO2 捕集、填海造陆等再利用。

所用的原生污泥、污泥加煤焚烧底灰、污泥不加煤焚烧底灰的样品来源如下。

(1)原生污泥,为上海某污水处理厂污泥经105℃烘干后的产物;

(2)污泥加煤焚烧底灰(以下简称为加煤底灰),为未烘干的原生污泥与矿化垃圾筛上物、木屑、M1脱水剂、煤粉以100∶10∶5∶5∶20(w/w)混合后在20℃下自然风干5d,然后制成的污泥燃料经900℃焚烧1h后产生的残余物;

(3)污泥不加煤底灰(以下简称为不加煤底灰),同(2),只是在污泥燃料配比中取消了煤粉的添加。

其中,原生污泥稍有气味,颜色近似于土黄色;而加煤底灰和不加煤底灰则均由粉状物和烧结物组成,无明显气味,底灰中烧结物质地坚硬,并呈疏松多孔的状态;粉状物则较为疏松,渗透性好,类似于砂土。加煤底灰颜色较黑,而不加煤底灰颜色偏黄。

(1)粒径分布

加煤底灰粒径大于2mm的颗粒比率为36.%,而不加煤底灰的为25%,根据《岩土工程勘察规范》(GB50021-94)和《公路桥涵地基与基础设计规范》(JTJ024-85)关于土的分类规定可知,两种底灰均属于砂土中的砾砂。

(2)抗剪强度

加煤底灰和不加煤底灰的抗剪强度明显高于原生污泥,在垂直压力为50kPa 的情况下,原生污泥的抗剪强度仅为39.4,而加煤底灰和不加煤底灰的抗剪强度则分别达80.3和76.3kPa。由在相似的含水率条件下,原生污泥的凝聚力和内摩擦角分别仅为17.19kPa和24°,而加煤底灰和不加煤底灰的凝聚力和内摩擦角则比原生污泥有明显增大,分别达到43.93kPa、35.97°和42.98kPa、33.76°,因此相应的施工允许坡度也分别提高到了29.17°和27.21°,由此可知污泥经焚烧处理后,抗剪性质较原生污泥能有明显增强。

(3)渗透系数

渗透系数是根据100kPa固结压力下的渗透时间而得到。渗透系数由大到小的顺序为不加煤底灰>原生污泥>加煤底灰。由此可知不加煤底灰最为疏松,透水效果较高;而加煤底灰的颗粒更为致密,颗粒间的空隙更小,从而透水性较差。

(4)压缩固结性质

压缩系数、压缩模量Es及压缩指数Cc可作为反映试样的压缩性大小的指标,利用这3种指标表征土样的可压缩性。在100~200kPa压力变化下,不加煤底灰和加煤底灰近似于中压缩土,而原生污泥则趋近于高压缩土。即污泥经焚烧处理后,压缩固结性质会较原生污泥有所降低。

(5)重金属含量

原生污泥的重金属含量明显高于加煤底灰和不加煤底灰,且相对于《土壤环境质量标准》(GB15618-1995)的三级标准,即能够保障农林业生产和植物正常生长的土壤临界值,原生污泥的重金属浓度除As外,Zn、Cd、Ni、Cr、Cu均严重超标,其中Zn、Cd超标最为严重,超标率分别为392.6%和300%,而Ni、Cr、

Cu则分别超标9%、62.7%和47.3%。

原生污泥在燃烧过程中,底灰和烟气间发生了重金属的分配,部分重金属转移至烟气中,但由于原生污泥重金属本底值较高,故底灰类物质中的重金属含量普遍未达到土壤环境质量三级标准的要求。Zn、Cd、Cr、Cu均超标,其中加煤底灰和不加煤底灰的Zn分别超标270.2%和284.4%、Cd均超标200%。Cr和Cu 则较为接近标准值,其中加煤底灰Cr超标8.33%,而Cu未超标,不加煤底灰的Cr和Cu则分别超标20.7%和9.5%。

(6)重金属浸出量

根据《危险废物鉴别标准-浸出毒性鉴别》(GB5085.3-2007)中的相关标准方法测定,可知各试样重金属浸出浓度均小于鉴别标准值。因此仅就重金属浸出毒性来讲,不加煤底灰、加煤底灰、原生污泥均不属于危险废物。

(7)污泥焚烧底灰的再利用途径

对于污泥焚烧底灰的再利用途径传统的方法主要是用作建材,如制砖、作为水泥原料和路基等。近年来,亦有报道利用垃圾焚烧底灰捕集酸性气体,如利用垃圾焚烧底灰作为填料吸收CO2气体,吸收量可达到12.5L/kg(干基底灰),且达到吸附平衡后,底灰pH可由11.8降至8.2,Pb、Cr、Cd的浸出浓度明显降低。

分析其用作路基土以及CO2捕集材料的可行性。根据污泥焚烧底灰的理化性质及《公路路基设计规范》(JTGD30—2004)中对于路基土的相关标准可知:

(1)加煤底灰粒径大于2mm的颗粒比率为36.5%,而不加煤底灰的为25%,

属于砂土中的砾砂,为理想的路基材料;

(2)不加煤底灰的渗透性较好,达到2.7×10-5cm/s,十分适用于冰冻地区的

路基和浸水部分的路堤等,加煤底灰的渗透性虽差,排水性能不好,但亦可用于干旱地区的路基及路堤等;

(3)不加煤底灰及加煤底灰的凝聚力及内摩擦角均较大,允许坡度分别达到

了29.7°和27.12°,远大于泥土的允许坡度,符合标准中最大边坡倾角

的要求。因此,加煤和不加煤底灰理论上可以用作路床土和边坡等路基

材料。然而,对于确定底灰适用的具体路基类型,则需对污泥焚烧底灰

进行进一步的填料最小强度CBR的测试。

污泥焚烧底灰与垃圾焚烧底灰具有类似的性质,如呈碱性,pH接近11,有利于CO2等酸性气体的吸收;结构疏松,具备多孔性,有助于CO2的吸收转化。因此,利用污泥焚烧底灰吸收CO2等酸性气体可能与利用垃圾焚烧底灰具有类似结果。而且与垃圾焚烧底灰相比,污泥焚烧底灰的重金属含量较少,这使得经过吸收CO2后,污泥底灰重金属的浸出性可能会更低,从而有利于扩大污泥焚烧底灰的利用范围,达到以废治废的目的

城市生活垃圾综合分选处理系统设计毕业设计

毕业设计 城市生活垃圾综合分选处理系统设计 第0章绪论 0.1课题设计背景 随着经济的持续发展和城市化进程的加快,我国城市数量和规模在不断提高和扩大,城市生活垃圾大量产生,越来越多的垃圾包围了城市。据有关资料统计,全国663个城市,年产生活垃圾已达14500万吨,平均每天产垃圾40万吨,而且还在以每年8%~10%的幅度增长。生活垃圾已成为一个污染环境、影响人们生活和妨碍城市发展的社会问题。[1]目前,我国城市生活垃圾的处理方式大多以卫生填埋为主。由于部分垃圾不能自然分解,占用了大量土地,不但影响城市景观,而且给附近的地表水、地下水、土壤、大气造成了严重的污染, 危害人们健康、影响城市化进程和城市的可持续性发展。[5] 0.1.1生活垃圾的危害 (1)污染土壤 垃圾渗出液改变土壤成分和结构,有毒垃圾会通过食物链影响人体健康。垃圾破坏了土壤的结构和理化性质,使土壤保肥、保水能力大大下降。 (2)污染水体 垃圾中含有病原微生物、有机污染物和有毒的重金属等,在雨水的作用下,它们被带入水体,会造成地表水或地下水的严重污染,影响水生生物的生存和水资源的利用。 (3)污染大气 细小固体废物会随风飞扬,加重大气污染。在大量垃圾露天堆放的场区臭气熏天,老鼠成灾,蚊蝇滋生,有大量氨、硫化物等有害气体向大气释放,仅有机挥发性气体就多达 100多种,其中含有许多致癌致畸物。 (4)传播疾病

生活垃圾中含有大量微生物,是病菌、病毒、害虫等的滋生地和繁殖地,严重地危害人身健康。[6] 0.1.2资源与废物的相对性 固体废物包括所有经过使用而被弃置的固态或半固态物质,甚至还包括具有一定毒害性的液态或气态物质。固体废物的“废”具有时间和空间的相对性。在一个生产过程可能是暂时无使用价值的,但并不代表在其他生产过程或其他方面也无使用价值。在当前经济技术条件下暂时无使用价值的废物,在发展了循环利用技术后可能就是资源。故固体废物常被看作是“放错地点的原料”。[2-5]因此,虽然生活垃圾有以上几方面危害,但如果能对生活垃圾进行有效系统地处理,回收垃圾中有用成分,将会变废为宝。其中,生活垃圾的综合分选技术尤显重要。 0.1.3城市生活垃圾综合分选处理的技术认识 随着消费者生活水平的提高,生活垃圾中的有用物质(如废纸、塑料、玻璃、金属等)所占的比例不断增加,鉴于目前环境资源不断萎缩,除了节约资源本身外,从人类生活的废弃物中回收有用资源也非常重要。目前城市垃圾处理的方法主要3种,即填埋、焚烧和堆肥。从节约资源的角度出发,在进行这3种垃圾处理之前,均需对垃圾中的有用物质进行分选,从中提取有用的再生原料重新加以综合利用,以减少垃圾的最终处理量。[8] 垃圾分选的目的就是,要把无机物和有机物分离,从而更好地回收能源与物质。目前城市生活垃圾分选技术主要有筛选、重力分选、磁力分选、电力分选、光电分选、摩擦及弹跳分选、浮选、溶剂分选等。[11] 0.2生活垃圾分选技术及发展现状 0.2.1生活垃圾分选技术 生活垃圾分选技术就是将生活垃圾中的各种可回收利用的成分或不利于后

小型生活垃圾焚烧处理方案设计

垃圾焚烧处理方案设计 1总说明 1.1工程概况及基本特征 1)简要说明工程概况及其基本特征,工程建设背景中含社会政治、经济现状及发展规划。 2)工程位置简介中含地形、河流湖泊、水库、气象、水文、工程地质等自然条件。 3)业主介绍,含组织机构、业绩、资金、管理、人材、设备等技术实力、建设及运营经验的简介。 4)建设内容及规模、服务范围与使用年限;项目所在地垃圾清运现状、处理现状及近期或远期规划概况。 5)项目的定性设计,含全厂设计使用寿命、防洪、防风、防火、防震等的定性设计。 1.2设计指导思想与原则 结合项目特点,阐明设计遵循的指导思想和原则。 1.3设计依据及设计范围 (1)与项目业主签订的设计合同; (2)行政主管部门批准的项目可行性研究报告、环境影响评价报告、选址报告等,包括批准机关、文号、日期等; (3)工程测量及工程地质、水文地质初勘报告; (4)采用或参考的设计标准及规范; (5)其它有关文件、会议纪要等;项目业主提供的其它与工程相关、并经设计单位确认的资料。 1.4主要技术经济指标 简要汇总说明初步设计得出的主要技术经济指标,主要包括:工程(分期)建设规模,占地面积,绿化面积、道路面积,建构筑物占地面积;焚烧炉处理能力、发电装机容量,使用年限,劳动定员,单位能耗物耗指标、工程投资、财务指标等; 2 ?处理厂工艺总体设计 2.1垃圾产生量及理化特性分析 根据可行性研究报告批复规定的工程服务范围与期限,调查说明垃圾现状产量、成份及理化特性,并对服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势作出合理预测,计算确

定其设计点低位热值。 2.2工程规模及厂址选择 根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定工程规模及其分期建设规模;论证确定垃圾焚烧生产线配置数量,进一步论证确定经可行性研究报告批准的机炉配置方案。 场址选择需说明城市总体规划和环境卫生专业规划对场址的原则性要求;项目环境影响评价报告对场址的要求;综合分析地形地貌、工程地质及水文地质,道路交通,占地面积,水源、电力供应情况,卫生防护距离与城镇布局关系、污水排放条件等因素的影响,说明拟建场址的合理性与不足之处,以及需采取的针对性技术方案等内容。 2.3垃圾的接收、贮存与输送 根据垃圾接收量及生产线布置状况: 1)合理确定并说明进厂垃圾检视设施、计量设施布置、数量及技术规格、参数。 2)进厂垃圾卸料门的数量、技术规格、参数。 3)垃圾贮坑的容量、垃圾贮坑构造应具有的防渗、防撞、防腐措施。防垃圾臭气 外泄的负压状态的保持措施。 4)垃圾贮坑设置的渗沥液收集设施。 5)根据垃圾的混合、倒堆、给料的时间分配,合理确定并说明垃圾起重抓斗的布 置、数量及技术规格、参数,重点描述抓斗防碰撞、及称量等功能。 2.4垃圾处理工艺系统 1)描述垃圾焚烧处理工艺系统。 2)根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定配置的每台垃圾焚烧炉处理能力、焚烧炉炉型、技术规格及参数。 3)垃圾进料斗、给料溜槽的结构形式、技术规格及参数;说明在溜槽内垃圾检测装置的数量、技术规格及参数,防火、防堵塞、防搭桥的措施。 4)垃圾推料器的结构形式、技术规格及参数。 5)垃圾焚烧炉结构形式、技术规格及参数,垃圾焚烧工况图,同时说明料层调节 装置的结构形式、技术规格及参数。 6)焚烧炉调节控制油系统的工艺流程,主要设备的技术规格及参数。 7)燃烧空气系统构成及主要设备技术规格及参数。 8)辅助燃烧系统及主要设备技术规格及参数。

大连城市中心区生活垃圾焚烧处理项目

大连城市中心区生活垃圾焚烧处理项目 环境影响报告书简本 1项目概况 拟建项目位于大连市甘井子区拉树房村西侧,距大连市中心区33km,北临渤海,南临拉树房至土革路。项目总占地面积7.62万m2,建筑物占地面积21960m2,绿化系数30%。采用3台500t/d的机械炉排炉型垃圾焚烧炉,总焚烧量可适应在1050~1650t/d范围,工程内容参见表1。 表1 项目工程内容 全厂职工共64人,其中:焚烧发电生产技术人员54人,管理人员10人。焚烧发电为连续工作制,年有效工作日333天,每天3班,每班8小时。辅助生产岗位和管理人员根据工作性质采用间断或连续工作制,年工作250天。 工程拟于2010年3月开工建设,2011年10月1日竣工投产,2011年底投入商业运营。发电量预计可达17206.8×104kWh/a。 2项目区域环境质量现状 2.1环境空气质量现状 本项目环境空气质量现状调查采取引用历史数据和现场监测相结合的方式进行。因项目周边近三年内无新增污染源,故本次引用了周边区域6个监测点位的环境空气质量历史监测数据,该数据由大连市环境监测中心于2006年3月(采

暖期)监测;同时,本次环评又在上述6个点位中选取了位于项目评价区域内的4个典型点位进行了大气现状监测。 通过引用历史数据和本次大气现状监测数据可以看出: 采暖期,评价区域所有点位SO2、NO2小时浓度均未出现超标现象;PM10日均值除5#点位未超标外,其余各点位均出现不同程度的超标现象,分析其超标原因,由大连市区环境空气质量报告中PM10季(月)变化曲线可看出,春季可吸入颗粒物均值最高,尤以3月份(引用数据监测月份)月均值最高,主要受沙尘影响。故在本项目区域采暖期的历史监测数据中PM10日均值偏高,出现超标现象。 非采暖期,评价区域内所有点位的常规污染物任何一次值均无超标现象,达到了《环境空气质量标准》二级标准;特征污染物中,HCL的检出率为40.6%,NH3的检出率为18.75%,Hg的检出率为100%,Pb和H2S均未检出,所有点位除HCL日均值出现一次超标外,其余各污染物测值均未超标。 分析HCL超标原因:该超标值出现在1#点位(拉树房居民区),此点位邻近项目北侧海域,受大连地区三面环海的地理特征和海洋气候的影响,使得环境空气中存在一定浓度的氯离子,促使了该监测点位处空气本底中的HCL浓度偏高。 2.2声环境质量现状 根据评价区域的地理位置和周边情况,本次评价在项目东、南两个厂界和拉树房村分别设置1个监测点位,共3个噪声监测点。 从声环境监测结果看,各监测点位昼夜间噪声均超过1类标准要求,项目区域的声环境本底质量一般。分析原因,本项目南侧毗邻土革路,交通噪声对周边环境噪声有一定的贡献值,同时,因土羊高速施工作业,使得土革路来往的大型载重车辆较多,造成2#点位(南厂界)噪声显著超标。1#(东厂界)和3#点位(拉树房居民区)噪声略有超标,其影响因素主要为自然和社会噪声。 2.3地下水环境质量现状 本次地下水现状监测设置1个采样点,选取了项目附近拉树房村中的一口民用水井,坐标为N39o04′05.9″,E121o36′32.0″。 本次地下水水质现状的监测项目为:pH、挥发酚、高锰酸盐指数、阴离子表面

垃圾焚烧炉渣综合利用技术及管理现状

垃圾焚烧炉渣综合利用技术及管理现状 摘要:炉渣规范化综合利用是建设现代化生活垃圾焚烧处理厂的必然要求。通过对炉渣综合利用项目的调研分析得出:在应用技术方面,湿法预处理-替代集料/制砖是当前我国炉渣综合利用主流技术路线,具体工艺流程取决于综合利用产品市场需求,并受产品质量要求、设备效率以及运行管理水平的影响;在管理方面,目前炉渣项目总体呈现建设水平不高、运行管理不规范等问题。建议通过制定炉渣综合利用技术规范,健全相关政府监管考核制度等措施,进一步提高我国焚烧炉渣综合利用项目运行管理水平。 炉渣是生活垃圾焚烧过程中不可避免产生的副产物,具有产生量大、资源化潜力高的特性。随着我国生活垃圾焚烧发电厂建设管理水平的提高,炉渣规范化综合利用已经成为焚烧厂管理的重点关注问题。为此有必要对焚烧炉渣综合利用项目进行调研分析,总结适用的综合利用技术路线与运行管理建议,从而为进一步规范与提高我国焚烧炉渣综合利用水平提供技术支持。 1焚烧炉渣综合利用总体情况 1.1焚烧炉渣综合利用特性分析 焚烧炉渣是生活垃圾焚烧过程伴生副产物,其产生量约为进厂垃圾量的20%,按2017年全国生活垃圾焚烧量9.321 5×107t,则焚烧炉渣年产生量约为1.8×107 t。炉渣主要由陶瓷和砖石碎片、石头、玻璃、熔渣、铁和其他废旧金属及未燃尽可燃物组成?。炉渣的化学成分与水泥混凝土工业中的硅质混和材料相似,矿物组成主要与建筑天然集料相似,因此具有良好的资源化潜力。 1.2焚烧炉渣综合利用设施总体情况 由于焚烧炉渣为一般固体废物,在生活垃圾管理及技术研究中其重视度远低于飞灰、渗沥液、烟气等;同时,我国垃圾焚烧厂基本上采用委托第三方处理的方式,政府监管较为薄弱,由此造成目前我国焚烧炉渣项目相关的应用技术研究较少,管理数据信息缺失。本课题组结合2017—2018年住建部组织开展的“生活垃圾焚烧处理设施集中整治工作”,对全国125家焚烧厂炉渣处理情况进行资

生活垃圾综合分选与焚烧、填埋的分析比较

生活垃处理工艺比较分析 由于固体废物本身往往是污染的“源头”,故需对其产生-收集运输-综合利用-处理-贮存-处置,实行全过程管理,在每一个环节都将其当做污染源进行严格控制。在以资源化、无害化、减量化作为控制固体废物污染的技术政策下,目前,城市生活垃圾处理工艺主要有卫生填埋、综合分选+生化降解与利用、焚烧及综合利用等几种方式。 一、综合分选+生化降解与利用 城市生活垃圾的综合利用关系到我国经济的可持续发展。生活垃圾综合分选+生化降解与利用可有效进行精确分类,生活垃圾综合分选系统可将生活垃圾中的塑料、纸张、金属等可回收利用的物料进行回收再利用,生活垃圾中橡胶、皮革、布类等无机可燃物制成RDF去热解气化产生能源,无机物惰性物料制成新型免烧砖或新型环保建材,分选后有机质进行好氧堆肥制成有机肥,从而达到无害化和资源化的目的。采用的综合利用工艺,实现了城市生活垃圾资源化。 堆肥处理是利用微生物分解垃圾有机成分的生物化学过程。在生物化学反应过程中,有机物、氧气和细菌相互作用,析出二氧化碳、水和热,同时生成腐殖质。根据堆肥原理,可分为厌氧分解与好氧分解两种。厌氧分解需在严格缺氧条件下进行,厌氧微生物分解生长较慢,故不多用。好氧分解过程可同时产生高温,杀灭病虫卵、细菌等,我国主要采用好氧分解法。主要工艺路线有静态高温好氧工艺及动态高温好氧工艺,如下图所示:

好氧堆肥工艺流程图 静态好氧堆肥工艺(仓式),经过综合处理后的物料经传送带由布料机在初级发酵仓内均匀布料。初级发酵仓采用矩形仓体,由仓顶进料。仓的一侧设备装载机进出的密闭门一扇,底部设备供风管道强制通风,以保证好氧发酵进行。顶部设抽风管道将初级发酵仓内气体抽出后经生物滤池处理后达标排放。仓底设集水管道收集垃圾渗沥水,在垃圾含水量偏低时可利用这些渗沥水回喷,初级发酵周期为10—20天,由初级发酵的物料经中间处理后进入次级发酵周期为20天,次级发酵后的物料,经筛分和密度分选后作为产品销售或继续深加工后制成有机无机复混肥。 堆肥处理的优点:1)建设、投资成本适中;2)技术简单;3)有机物分解后可作为肥料再利用。4)通过预处理系统回收利用的物品较多,最大程度上实现了垃圾处理的减量化、资源化和无害化。 缺点在于:1)对垃圾分类要求很高,仅仅依靠堆肥处理仍然不能彻底解决垃圾问题,往往与其他处理方法综合使用。2)有氧分解过程易产生渗漏液和臭味污染。 解决方案:生活过程中产生的渗滤液和臭气可返喷到发酵仓中进行生物降解,当肥料市场不好时,利用发酵仓对综合分选后的生活垃圾进行生物干化处理,提

生活垃圾焚烧处理工程技术规范

生活垃圾焚烧处理工程技术规范

中华人民共和国行业标准 生活垃圾焚烧处理工程技术规范Technical code for Projects of Municipal Waste Incineration CJJ90— 批准部门:中华人民共和国建设部

前言 根据建设部建标[ ] 号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90- 进行了修订。 本次修订主要在下列方面对上一版(CJJ90- , J184- )进行了较大修订: 1 对术语进行了充实和完善; 2 本着节约用地的原则,提出了对厂区道路设计和绿地率要求; 3 在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款; 4 对烟气净化系统工艺增加了干法和湿法的内容;5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件; 6 为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改; 7 为了节约用水,对给排水和消防章节进行了调整和部分修改; 8 与修改条文相适应,对相应的条文说明进行了修改和补充。 本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。 本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3

号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。 本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。 本规范主要起草人: 徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益 王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼 目录 1 总则

生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质 (1)炉渣的物理性能 生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。 炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。 (2)炉渣的含水率、热灼减率、堆积密度、吸水率 由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为

1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。 (3)炉渣的粒径分布 炉渣粒径分布较均匀,主要集中在2~50mm的围(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。 (4)炉渣化学成分 预处理后的炉渣主要化学成分及含量为:硅35%~50%、钙7%~15%、铝3.5%~7.0%、铁3.0%~6.0%、钠2.5%~8.0%、钾1.3%~3.0%、磷0.7%~3.0%,不同地点、不同批次的炉渣主要化学组成接近,由此可认为预处理后的炉渣的化学成分相对比较稳定。 (5)炉渣矿物组成 对预处理后的炉渣取样进行X衍射,X衍射结果显示,炉渣的主要矿物为石英(Quartz)、钙长石(Anorthite)、斜方沸石(Gismondine),其他的矿物峰比较弱,含量很少。各矿物衍射峰均比较尖锐,说明结晶程度较高,且石英、钙长石、斜方沸石的水化活性都不高,据此初步判断炉渣的活性不高。炉渣表面很粗糙,呈不规则角状,孔隙率较高,孔隙直径也比较大。炉渣部分位置晶体生长良好,要为棒状、针状和粒状晶体,但是发育不是很均匀,可能是因为焚烧过程中温度和空气分布不均,停留时间不同以及炉渣组分复杂的缘故。 (6)炉渣的轻漂物含量

临海市生活垃圾焚烧处理工程环境影响报告书

临海市生活垃圾焚烧处理工程环境影响报告书 临海市生活垃圾焚烧处理工程 环境影响报告书 一、建设项目概况 1、项目名称:临海市生活垃圾焚烧处理工程; 2、建设性质:新建;

3、建设地址:临海市邵家渡街道钓鱼亭村松山; 4、建设规模:日焚烧生活垃圾700吨; 5、服务范围:临海市域范围内的5个街道、14个镇范围; 6、建设内容:建设2台350t/d炉排式垃圾焚烧锅炉,配1×12MW凝汽式汽轮机组和QF-12发电机组; 7、项目总投资及环保投资:项目总投资22388.55万元,其中环保投资4035万元。 8、立项文件:浙江省发展和改革委员会工业投资联系单。 二、工程分析 经工程分析,项目主要污染物排放见表1。 表1项目主要污染物排放情况一览表 污染物名称产生量t/a 削减量t/a 排放量t/a 废气SO2 485.36 364 121.36 烟尘31536 31488 47.28 NOX 178.88 0 178.88 HCl 249.6 212.16 37.44 二?英/ / 1.04×10-4 Hg / / 0.08 Pb / / 0.24 Cd / / 0.005 废水废水量 56960 0 56960 CODCr 28.48 25.06 3.42

NH3-N 1.99 1.53 0.46 固体 废弃物灰渣71928 71928 0 污泥360 360 0 生活垃圾273 273 0 三、项目拟建地周围主要保护目标 项目拟建地周围主要保护目标见表2。 表2项目拟建地周围主要保护目标 序号敏感点名称方位距厂界距离m 人口人 1 许安村 N 1600 417 2 石年村 NNW 1500 629 3 吕公岙村NNE 1900 400 4 钩鱼亭村西山NW 1300 300 5 钩鱼亭村松山新村W 700 828 6 钓鱼亭村WSW 480 7 岙蒋村项家W 2300 300 8 中台村 W 850 811 9 章后洋村SSW 1000 450 10 浦口村 S 1550 450 11 下洋峙村WSW 1150 1109 12 岙蒋村岙蒋WNW 1850 1039

城市垃圾分选工艺设计说明书

城市垃圾分选工艺设计说明书 1.1 垃圾的来源与危害 垃圾按来源大致可分为生活垃圾、一般工业固体废物、和危险废物三种。生活垃圾是指在人们日常生活中产生的废物,包括食物残渣、纸屑、灰土、包装物、废品等。固体废物如不加妥善收集、利用和处理处置,将会污染大气、水体和土壤,危害人体健康。垃圾的气味是最直观的气体污染,但是更为严重的是垃圾燃烧形成的二噁英等致癌性毒物。垃圾的填埋会污染土壤以及地下水。垃圾的危害直接使人们的生活环境降低,间接的影响健康,比之水污染和空气污染带来的危害轻但也不容忽视。 1.2 设计目的和意义 (1)通过设计进一步消化和巩固本门课程所学容,并使所学知识系统化,培养运用所学理论知识进行城市生活垃圾综合分选处理系统设计的初步能力; (2)了解工程设计的容、方法及步骤,培养确定固体废物处理与处置系统的设计方案,进行设计计算、绘制工程图,应用技术资料,编写设计说明书的能力。 2.原始资料 设计规模140t/d的某城市生活垃圾分选系统 垃圾主要成分见表1。 表1 垃圾成分设计参数取值 垃圾组分有机物无机物纸类金属塑料玻璃其他 含量% 54.3 31.3 2.68 2.58 5.13 1.2 2.81 有机物组分包括:食品残余、果皮、植物残余等。 无机物组分包括:砖瓦、炉灰、灰土、粉尘等。 垃圾容量平均值为0.43t/m3,换水率为49.4%。 垃圾热值:1923kJ/kg。 分选系统工作量为140t/d;日工作时间为9h。 3.分选工艺流程 本次课程设计确定工艺从我国目前城市生活垃圾处理现状出发,考虑到原生垃圾成分复杂,劳动力资源又丰富,采用机械为主,辅以人工粗选的方法;废塑料和废纸

生活垃圾焚烧处理工程技术要求规范

生活垃圾焚烧处理工程技术规范 CJJ90-2002 1 总则 1.0.1 为贯彻《中华人民共和国固体废物污染环境防治法》和国家有关生活垃圾处理法规,实现生活垃圾处理的资源化、减量化、无害化目标,规范生活垃圾焚烧处理工程规划、设计、施工及验收和运行管理,制定本规范。 1.0.2 本规范适用于以焚烧方法处理生活垃圾的新建工程。 本规范不适用于有毒、有害废物和危险废物的焚烧处理工程。 1.0.3 生活垃圾焚烧工程规模的确定和技术路线的选择,应根据城市社会经济发展、城市总体规划、环境卫生专业规划和垃圾收集与处置以及焚烧技术的适用性等合理确定。 1.0.4 生活垃圾焚烧工程建设,应采用成熟可靠的技术和设备,做到焚烧技术先进、运行可靠、维修方便、经济合理、管理科学、保护环境、安全卫生。垃圾焚烧热能应充分加以利用。 1.0.5 采用焚烧技术处理生活垃圾(以下简称“垃圾”)的工程建设,除应遵守本规范外,尚应符合国家现行的有关强制性标准的规定。 2 术语 2.0.1 生活垃圾municipal solid waste(MSW) 人们在日常生活中或为日常生活提供服务的活动中产生的固体废物,以及法律、行政法规规定视为城市生活垃圾的固体废物。生活垃圾主要包括居民生活垃圾、集市贸易与商业垃圾、公共场所垃圾、街道清扫垃圾及企事业单位垃圾等。 2.0.2 垃圾焚烧锅炉 waste incineration boiler 垃圾焚烧炉和利用垃圾焚烧释放的热能进行有效换热,并产生蒸汽或热水的热力设备的统称。 2.0.3 低位热值 low heat value (LHV)

单位质量垃圾完全燃烧时,当燃烧产物回复到反应前垃圾所处温度、压力状态,并扣除其中水分汽化吸热量后,放出的热量。 2.0.4 焚烧速率rate of burning 单位炉排面积、单位时间的垃圾焚烧量。又称炉排机械负荷。 2.0.5 炉排热负荷heat intensity per grate area 单位炉排面积、单位时间内焚烧垃圾的发热量。 2.0.6 连续焚烧方式continuous incineration 通过送料器连续运动,将垃圾投入垃圾焚烧炉内进行焚烧的作业方式。 2.0.7 焚烧线 incineration line 对垃圾进入垃圾焚烧装置,经过焚烧变成炉渣排出和垃圾热能的转换,以及产生烟气的净化等垃圾处理过程所需要的全部工程设施的总称。 2.0.8 燃烧室 combustion chamber 垃圾焚烧锅炉内的垃圾燃烧空间。包括垃圾在炉床上干燥、燃烧、燃尽过程和燃烧过程中生成的可燃气体与可燃颗粒物燃烧过程所占据的全部空间。 2.0.9 飞灰稳定化flyash stabilization 使飞灰转化为非危险废物的处理过程。 2.0.10 飞灰固化 flyash solidification 采用物理、化学等方法使飞灰稳定化的处理过程。 2.0.11 垃圾焚烧锅炉热效率 thermal efficiency of waste incineration boiler 垃圾焚烧锅炉输出的热量与输入的总热量之比。 2.0.12 炉渣热灼减率 loss of ignition 焚烧垃圾产生的炉渣在600±25℃保持3h条件下,经灼热减少的质量占烘干后的原始炉渣质量的百分比。 2.0.13 烟气净化系统 flue gas cleaning system 对烟气进行净化处理所采用的各种处理设施组成的系统。 2.0.14 二噁英类 dioxins 多氯代二苯并一对一二噁英(PCDDs)、多氯代二苯并呋喃 (PCDFs)等化学物质的总称。 2.0.15 渗沥液 leach ate

城市生活垃圾综合分选处理系统设计

第0章绪论 课题设计背景 随着经济的持续发展和城市化进程的加快,我国城市数量和规模在不断提高和扩大,城市生活垃圾大量产生,越来越多的垃圾包围了城市。据有关资料统计,全国663个城市,年产生活垃圾已达14500万吨,平均每天产垃圾40万吨,而且还在以每年8%~10%的幅度增长。生活垃圾已成为一个污染环境、影响人们生活和妨碍城市发展的社会问题。[1]目前,我国城市生活垃圾的处理方式大多以卫生填埋为主。由于部分垃圾不能自然分解,占用了大量土地,不但影响城市景观,而且给附近的地表水、地下水、土壤、大气造成了严重的污染, 危害人们健康、影响城市化进程和城市的可持续性发展。[5] 0.1.1生活垃圾的危害 (1)污染土壤 垃圾渗出液改变土壤成分和结构,有毒垃圾会通过食物链影响人体健康。垃圾破坏了土壤的结构和理化性质,使土壤保肥、保水能力大大下降。 (2)污染水体 垃圾中含有病原微生物、有机污染物和有毒的重金属等,在雨水的作用下,它们被带入水体,会造成地表水或地下水的严重污染,影响水生生物的生存和水资源的利用。 (3)污染大气 细小固体废物会随风飞扬,加重大气污染。在大量垃圾露天堆放的场区臭气熏天,老鼠成灾,蚊蝇滋生,有大量氨、硫化物等有害气体向大气释放,仅有机挥发性气体就多达 100多种,其中含有许多致癌致畸物。 (4)传播疾病 生活垃圾中含有大量微生物,是病菌、病毒、害虫等的滋生地和繁殖地,严重地危害人身健康。[6]

0.1.2资源与废物的相对性 固体废物包括所有经过使用而被弃置的固态或半固态物质,甚至还包括具有一定毒害性的液态或气态物质。固体废物的“废”具有时间和空间的相对性。在一个生产过程可能是暂时无使用价值的,但并不代表在其他生产过程或其他方面也无使用价值。在当前经济技术条件下暂时无使用价值的废物,在发展了循环利用技术后可能就是资源。故固体废物常被看作是“放错地点的原料”。[2-5]因此,虽然生活垃圾有以上几方面危害,但如果能对生活垃圾进行有效系统地处理,回收垃圾中有用成分,将会变废为宝。其中,生活垃圾的综合分选技术尤显重要。 0.1.3城市生活垃圾综合分选处理的技术认识 随着消费者生活水平的提高,生活垃圾中的有用物质(如废纸、塑料、玻璃、金属等)所占的比例不断增加,鉴于目前环境资源不断萎缩,除了节约资源本身外,从人类生活的废弃物中回收有用资源也非常重要。目前城市垃圾处理的方法主要3种,即填埋、焚烧和堆肥。从节约资源的角度出发,在进行这3种垃圾处理之前,均需对垃圾中的有用物质进行分选,从中提取有用的再生原料重新加以综合利用,以减少垃圾的最终处理量。[8] 垃圾分选的目的就是,要把无机物和有机物分离,从而更好地回收能源与物质。目前城市生活垃圾分选技术主要有筛选、重力分选、磁力分选、电力分选、光电分选、摩擦及弹跳分选、浮选、溶剂分选等。[11] 生活垃圾分选技术及发展现状 生活垃圾分选技术 生活垃圾分选技术就是将生活垃圾中的各种可回收利用的成分或不利于后续处理工艺要求的成分采用适当技术分离出来的过程。城市生活垃圾的组分复杂而不稳定,根据其粒度、密度、磁性、电性、光电性、摩擦性、弹性的物理、化学性质的不同,可分别选用筛选、重力分选、磁力分选、电力分选、光电分选、

等离子体火炬生活垃圾焚烧处理方案.doc

等离子体火炬生活垃圾焚烧处理方案 概述: 随着我国经济的快速发展,城市规模日益扩大,人口大量增加,生活垃圾产生量逐年增长。 生活垃圾处理不当将污染土壤、地下水,传播疾病,对环境造成巨大危害。 采用现代化技术,提高管理水平,以投资省、运行费用低、运行稳定、安全可靠为设计 宗旨。 妥善处理生活垃圾焚烧处理过程中产生的烟气、废渣,避免二次污染。 焚烧装置概况: 近年来永研环保科技陆续推出等离子火炬工业固废焚烧、等离子火炬医疗废弃物焚烧、 等离子火炬生活垃圾焚烧装置等一系列产品。 等离子火炬生活垃圾焚烧装置由等离子火炬、等离子火炬电源、进出料装置、焚烧炉、 搅拌输送、烟气处理系统组合而成。 焚烧装置工作机理: 生活垃圾、固态、半固态、液态废弃物由料仓进入等离子火炬焚烧炉,等离子焚烧炉内 置等离子火炬、搅拌、输送装置。 生活垃圾在搅拌输送装置作用下,翻滚前移,离子体火炬上千度穿透力极强的等离子焰, 在短时间内将生活垃圾焚烧殆尽。 汞、锌、铅、锡、铜等重金属氧化并随烟气排出,经活性炭喷射装置,喷射活性炭富集 后再行处理。 等离子火炬焚烧炉内烟气与生活垃圾逆向运动,助燃空气由等离子火炬焚烧炉布气机构输 入炉体。 生活垃圾由干燥区进入焚烧区时含水率已经显著降低,高温烟气自焚烧区经干燥区与生活垃圾相向运动。 焚烧炉工作于微负压状态,设有泄爆装置保证设备安全。 烟气净化: SNCR+ 半干法 +干法 +活性炭喷射 +袋式。 焚烧装置技术参数: 等离子体火炬: 工作温度:800--1000 ℃用户设定,自动控制。 输出功率:100--400kW 自动调节输出功率,精确控制焚烧炉温度。 使用寿命:连续工作 5000 小时 焚烧炉: 等离子火炬焚烧炉(微负压)日处理 50 吨 --200 吨 送料装置:以处理量决定进料频度。 温度传感器:实时采集温度数据。 泄压装置保证设备安全 控制器:DCS 控制

城市生活垃圾焚烧处理工程项目建设标准模板

《城市生活垃圾焚烧处理工程项目建设标准》( 建标[ ]213号) - 第一章总则 第一条为促进社会经济和环境保护的协调发展, 实现城市生活垃圾处理的无害化、减量化、和资源化, 加强国家对建设项目投资和建设的管理, 提高城市生活垃圾焚烧处理工程项目的决策和规划建设水平, 合理确定和正确掌握建设标准, 保护环境, 推动技术进步, 充分发挥投资效益, 制定本建设标准。 第二条本建设标准是为项目决策服务和合理确定项目建设水平的全国统一标准, 是编制、评估、审批城市生活垃圾焚烧处理工程项目可行性研究报告的重要依据, 也是有关部门审查城市生活垃圾焚烧处理工程项目初步设计和监督检查整个建设过程标准的尺度。 第三条本建设标准适用于城市生活垃圾焚烧处理新建工程项目。改、扩建工程项目可参照执行。 第四条城市生活垃圾焚烧处理工程项目的建设, 必须遵守国家有关的法律、法规, 执行国家环境保护、节约土地、劳动保护、安全卫生、节约能源、消防等有关方面的规定。 第五条城市生活垃圾焚烧处理工程的建设水平, 应以本地区的经济发展水平和垃圾成分特点, 并考虑城市经济建设和科学技术的发展, 按不同城市、不同建设规模, 合理确定, 做到技术先进、经济合理、安全卫生。

第六条城市生活垃圾焚烧处理工程项目的建设, 应根据城市总体规划和环境卫生专业规划, 统筹规划, 近、远期结合, 以近期为主。建设规模、布局和选址应与现有的垃圾收运及处理系统相协调, 改、扩建工程应充分利用原有设施。 第七条城市生活垃圾焚烧处理工程项目的建设, 应采用成熟可靠的技术、工艺和设备; 对于需要引进的先进技术和关键设备, 应以提高项目的综合效益、推动技术进步为原则, 在充分的技术经济论证的基础上合理确定。 第八条城市生活垃圾焚烧处理工程项目的建设, 应坚持专业化协作和社会化服务的原则, 合理确定配套工程项目, 提高运营管理水平, 降低运营成本。 第九条城市生活垃圾焚烧处理工程项目的建设, 应考虑焚烧处理的资源化利用。 第十条城市生活垃圾焚烧处理工程项目的建设, 应落实工程建设资金和土地、供电、给排水、交通、通信等建设条件; 并采取有效措施确保工程建成后正常运行所需的费用。 第十一条城市生活垃圾焚烧处理工程项目的建设, 除执行本建设标准外, 尚应符合国家现行的有关标准、定额和指标的规定。 第二章建设规模与项目构成 第十二条城市生活垃圾焚烧处理工程项目主体是城市生活垃圾焚烧厂( 以下简称”焚烧厂”) , 焚烧厂的建设, 应根据城市的规模与特点, 合理确定建设规模和建设数量。中小城市集中的地区宜进行

第五届纺大杯学生羽毛球比赛秩序册【模板】

第五届“纺大杯”学生羽毛球比赛 秩 序 册 主办单位:武汉纺织大学体育运动委员会 承办单位:武汉纺织大学体育课部 时间:2015年4月11日 地点:阳光校区大学生活动中心

关于举办2015年武汉纺织大学第届纺大杯学生羽毛球比赛的通知 各院系: 根据武汉纺织大学体育课部年度竞赛计划,2015年武汉纺织大学第届纺大杯学生羽毛球比赛将于2015年4月11日至12日在阳光校区大学生活动中心举行。现将相关事宜通知如下: 一、时间与地点: 比赛定于2015年4月11日至12日在阳光校区大学生活动中心举行。 二、报名时间与办法: 报名办法:根据规程要求,认真填写报名表。 1、将电子版报名表发邮件到规程中指定邮箱。 2、纸质版报名表盖院系公章,且必须有院系分管学生工作书记签名,送交体育课部部办公室。 3、报名截止时间:2015年3月31日下午17:00。 请各院系积极配合,组织好各院系报名工作,保证各年级学生都能知晓此次活动且能踊跃报名参赛,为推动我校学生羽毛球运动的发展做出积极地贡献。 武汉纺织大学体育运动委员会 2015年3月21日 第五届“纺大杯”学生羽毛球比赛

竞赛规程 一、主办单位 武汉纺织大学体育运动委员会 二、承办单位 武汉纺织大学体育课部 三、协办单位 武汉纺织大学裁判协会 四、竞赛时间和地点 2015年4月11日至12日在阳光校区大学生活动中心举行。 五、竞赛项目 男子团体、女子团体 六、参赛单位 以学院为单位组队参加。 七、参赛办法 (一)每学院可报男、女各一个队,领队、教练员各一人,每队报运动员6名。 (二)运动员基本参赛条件 1.报名参赛的运动员,必须是本校在校全日制本专科大学生及研究生。 2.思想政治进步,遵守赛会纪律和运动员手册,并经校医院检查证明身体健康,同意参赛者。 八、竞赛办法 1.团体赛分两个阶段进行,根据报名队数决定第一阶段采用分组循环、第二阶段交叉淘汰决出前八名;循环赛顺序采用“1号位固定的逆时针轮转法”, 2.团体赛出场顺序为单打、双打、单打。 3.团体赛采用三场二胜制。 4.团体赛运动员不得兼项。 5. 团体比赛第一阶段每局采用11分制,三局二胜制,必

XX市生活垃圾焚烧发电炉渣综合利用项目服务方案及安全管理方案

一 XX市生活垃圾焚烧发电炉渣综合利用项目服务方案 我公司在致力发展生产、服务社会的同时,牢固树立环保优先的理念,自觉承担社会道义和责任,遵守法律法规。 我公司郑重承诺: 加强环保宣传教育和培训,提高环保意识,配备专职的环保人员。 严格执行环境影响评价制度,提升技术工艺,减少污染物排放。 加强应急管理,维护安全稳定。若出现污染事故,引发群体性事件的,除承担相应责任外,愿主动接受处罚,并积极配合相关部门做好事故善后处理,最大限度消除影响。 建立长效机制,对环保工作常抓不懈、一抓到底,形成长效管理机制,经得起各级环保部门任何形式的检查。 我公司在运行中产的废水、废气及噪音、扬尘等污染物未达标排放,造成周边环境污染由我公司承担全部环境责任,与甲方无关。 具体服务方案,主要从以下几方面开展。 1 节能减排方案 1.1 节能措施 节能减排一直是我国发展国民经济的一项长远战略方针,也是垃圾填埋场建设运行管理中必须重点考虑的问题。 本项目在节能减排方面,主要有以下几点: 第一是加强清污分流措施,尽可能减少垃圾渗沥液的产生量; 第二要尽可能降低能源消耗、采用节能环保的设备配置; 第三是尽量利用地表水资源作为绿化、洒水降尘等生产用水,加强水资源的回收利用。 1.2 节能降耗 (1)本工程在工艺方案选择、设备选型和操作管理方面都考虑节省能源,降低运行成本。设备选型选用新型、高效、低耗的产品。 (2)合理设置各个功能分区,衔接紧凑,以减少车辆的运输距离; (3)工程节能:本工程在工程建设方面也都考虑了节约与降耗措施,降低

工程建设成本。 ①.在建筑物设计方面充分利用自然通风来降温,如利用穿堂风等; ②.注意建筑的朝向,布置基本采用南北朝向; ③.选择合理的建筑体形和平面形式,与建筑造型、采光通风等紧密相连。 (4)供配电系统节能: ①.合理布置变配电所及合理选择变压器; ②.提高供配电系统的功率因数,减少用电设备无功损耗,提高用电设备的功率因数; ③.选用高效率的电动机以提高电动机轻载时的效率从而达到节约电能的目的; ④.减少照明系统中光能的损失,最大限度的利用光能。 2 环保管理方案 为保证施工及生产运营环境污染控制有效,工程绿化完善美观,水保措施到位,建成一流的资源节约型、环境友好型的炉渣资源化再生项目,结合本项目的特点,在施工中坚决落实环境保护基本国策,严格执行环境影响评价制度、环境保护“三同时”制度和国家、省、市地方上有关的环保法规、标准;贯彻“预防为主、建设与保护并重”原则;采取国际先进的环保生产技术和严格的施工期环保管理措施,特制定本应方案。 2.1 施工期污染防治 由于本项目工程规模大施工过程不可避免地会产生一系列的环境问题,给这些地区群众的生活、工作、交通造成暂时不便,同时施工产生的噪声、振动、扬尘等污染也会影响当地的环境问题。 施工期间及投产使用对环境进行保护符合国家规定的规范要求,也是我司的自身职责。我公司根据企业管理标推、国家省市规定,结合工程的具体情况制定本工程《环境保护实施细则》,以细则的各项具体规定作为统一和规范全体施工人员的行为准则。 本着“保护环境,营造绿色建筑;以人为本,关爱生命健康;追求社区、人居和施工环境的不断改善,实现个人、企业和社会的协调发展”这一环境理念,使施工期间的环保工作更有序,有效进行,保护和改善生活环境与生态环境,把

城市生活垃圾综合分选处理系统设计

第0章绪论 0.1课题设计背景 随着经济的持续发展和城市化进程的加快,我国城市数量和规模在不断提高和扩大,城市生活垃圾大量产生,越来越多的垃圾包围了城市。据有关资料统计,全国663个城市,年产生活垃圾已达14500万吨,平均每天产垃圾40万吨,而且还在以每年8%~10%的幅度增长。生活垃圾已成为一个污染环境、影响人们生活和妨碍城市发展的社会问题。[1]目前,我国城市生活垃圾的处理方式大多以卫生填埋为主。由于部分垃圾不能自然分解,占用了大量土地,不但影响城市景观,而且给附近的地表水、地下水、土壤、大气造成了严重的污染, 危害人们健康、影响城市化进程和城市的可持续性发展。[5] 0.1.1生活垃圾的危害 (1)污染土壤 垃圾渗出液改变土壤成分和结构,有毒垃圾会通过食物链影响人体健康。垃圾破坏了土壤的结构和理化性质,使土壤保肥、保水能力大大下降。 (2)污染水体 垃圾中含有病原微生物、有机污染物和有毒的重金属等,在雨水的作用下,它们被带入水体,会造成地表水或地下水的严重污染,影响水生生物的生存和水资源的利用。 (3)污染大气 细小固体废物会随风飞扬,加重大气污染。在大量垃圾露天堆放的场区臭气熏天,老鼠成灾,蚊蝇滋生,有大量氨、硫化物等有害气体向大气释放,仅有机挥发性气体就多达 100多种,其中含有许多致癌致畸物。 (4)传播疾病 生活垃圾中含有大量微生物,是病菌、病毒、害虫等的滋生地和繁殖地,严重地危害人身健康。[6]

0.1.2资源与废物的相对性 固体废物包括所有经过使用而被弃置的固态或半固态物质,甚至还包括具有一定毒害性的液态或气态物质。固体废物的“废”具有时间和空间的相对性。在一个生产过程可能是暂时无使用价值的,但并不代表在其他生产过程或其他方面也无使用价值。在当前经济技术条件下暂时无使用价值的废物,在发展了循环利用技术后可能就是资源。故固体废物常被看作是“放错地点的原料”。[2-5]因此,虽然生活垃圾有以上几方面危害,但如果能对生活垃圾进行有效系统地处理,回收垃圾中有用成分,将会变废为宝。其中,生活垃圾的综合分选技术尤显重要。 0.1.3城市生活垃圾综合分选处理的技术认识 随着消费者生活水平的提高,生活垃圾中的有用物质(如废纸、塑料、玻璃、金属等)所占的比例不断增加,鉴于目前环境资源不断萎缩,除了节约资源本身外,从人类生活的废弃物中回收有用资源也非常重要。目前城市垃圾处理的方法主要3种,即填埋、焚烧和堆肥。从节约资源的角度出发,在进行这3种垃圾处理之前,均需对垃圾中的有用物质进行分选,从中提取有用的再生原料重新加以综合利用,以减少垃圾的最终处理量。[8] 垃圾分选的目的就是,要把无机物和有机物分离,从而更好地回收能源与物质。目前城市生活垃圾分选技术主要有筛选、重力分选、磁力分选、电力分选、光电分选、摩擦及弹跳分选、浮选、溶剂分选等。[11] 0.2生活垃圾分选技术及发展现状 0.2.1生活垃圾分选技术 生活垃圾分选技术就是将生活垃圾中的各种可回收利用的成分或不利于后续处理工艺要求的成分采用适当技术分离出来的过程。城市生活垃圾的组分复杂而不稳定,根据其粒度、密度、磁性、电性、光电性、摩擦性、弹性的物理、化学性质的不同,可分别选用筛选、重力分选、磁力分选、电力分选、光电分选、

相关文档
相关文档 最新文档