文档库 最新最全的文档下载
当前位置:文档库 › 大气腐蚀环境分类

大气腐蚀环境分类

大气腐蚀环境分类
大气腐蚀环境分类

大气腐蚀环境分类

材料在不同大气环境中的腐蚀破坏程度差异很大,例如,距海24.3米处的钢腐蚀速度为距海243.8米处的大约12倍。试验表明,若以Q235钢板在我国拉萨市大气腐蚀速率为1,则青海察尔汉盐湖大气腐蚀速率为4.3,广州城市为23.9,湛江海边为29.4,相差近30倍。因此,在防腐蚀工程设计和制定产品环境适应性指标时,均需按大气腐蚀环境分类进行。

大气环境分类一般有两种方法,一种是按气候特征划分,即自然环境分类;另一种是按环境腐蚀严酷性划分。后者更接近于应用实际而被普遍采用。国际标准ISO9223~9226便是根据金属标准试片在环境中自然暴露试验获得的腐蚀速率及综合环境中大气污染物浓度和金属表面润湿时间进行分类。将大气按腐蚀性高低分为5类,即:

C1:很低

C2:低

C3: 中

C4:高

C5:很高

在涂料界,国际标准化组织又颁布了更有针对性的标准:ISO12944-1~8:1998 《色漆和清漆─保护漆体系对钢结构的防腐保护》(Paints and varnishes ─Corrosion protection of steel structures by protective paint systems)[。这是一部在国际防腐界通行的、权威的防护涂料与涂装技术指导性国际标准。目前,在国内涂料、涂装行业、腐蚀与防护行业及相关设计研究院所、高等学校,在重大防腐工程设计、招投标及施工过程中都使用到这一综合性标准。标准共分八个部分:

第1部分总则

第2部分环境分类

第3部分设计上的考虑

第4部分表面类型与表面处理

第5部分保护漆体系、

第6部分试验方法

第7部分涂漆工艺

第8部分新工程和维护工作规范的制定。

其中第2部分系统地介绍了大气腐蚀环境分类。而导致腐蚀产生的环境因素主要有大气、各类水质和土壤三方面,所以标准规定了大气腐蚀环境级别和钢结构在水下和土壤中的腐蚀环境分类。参照ISO12944-5,就可以针对某种腐蚀环境设计涂装系统。其中,该标准根据不同大气环境的腐蚀性及其特征污染物质的污染程度,将涂料产品面对的大气环境大致分为乡村大气、城市大气、工业大气和海洋大气四种类型。

表-1 ISO 12944-2对于大气腐蚀环境的分类以及典型环境的举例

表-2 ISO 12944-2对于钢结构所处水和土壤环境的分类

在我国,上世纪九十年代也制定并颁布了类似标准,即GB/T 15957-1995《大气环境腐蚀性分类》。该标准系以裸露的碳钢(以A3钢为基准)在不同大气环境下腐蚀等级划分和防护涂料及其类似防护材料品种选择为重要依据。该标准主要根据碳钢在不同大气环境下暴露第一年的腐蚀速率(mm/a),将腐蚀环境类型分为:无腐蚀、弱腐蚀、轻腐蚀、中腐蚀、较强腐蚀、强腐蚀六大类,并给出不同腐蚀环境下的腐蚀速率等

。该标准还按照影响钢铁腐蚀的气体成分与含量,将腐蚀性气体分为A、B、C、D四类,

表1-8GB/T 15957-1995大气腐蚀环境类型的技术指标

注:在特殊场合与额外腐蚀负荷作用下,应将腐蚀类型提高等级,如:

a)机械负荷:1)风砂大的地区,因风携带颗粒(砂子等)使钢结构发生磨蚀的情况。

2)钢结构上用于(人或车辆)通行或有机械重负载并定期移动的表面。b)经常有吸潮性物质沉积于钢结构表面的情况。

表1-9环境气体分类GB/T15957-1995

注:当大气中同时含有多种腐蚀性气体,则腐蚀级别应取最高的一种或几种为基准。如有侵权请联系告知删除,感谢你们的配合!

大气腐蚀环境分类

大气腐蚀环境分类 材料在不同大气环境中的腐蚀破坏程度差异很大,例如,距海24.3米处的钢腐蚀速度为距海243.8米处的大约12倍。试验表明,若以Q235钢板在我国拉萨市大气腐蚀速率为1,则青海察尔汉盐湖大气腐蚀速率为4.3,广州城市为23.9,湛江海边为29.4,相差近30倍。因此,在防腐蚀工程设计和制定产品环境适应性指标时,均需按大气腐蚀环境分类进行。 大气环境分类一般有两种方法,一种是按气候特征划分,即自然环境分类;另一种是按环境腐蚀严酷性划分。后者更接近于应用实际而被普遍采用。国际标准ISO9223~9226便是根据金属标准试片在环境中自然暴露试验获得的腐蚀速率及综合环境中大气污染物浓度和金属表面润湿时间进行分类。将大气按腐蚀性高低分为5类,即: C1:很低 C2:低 C3: 中 C4:高 C5:很高 在涂料界,国际标准化组织又颁布了更有针对性的标准:ISO12944-1~ 8:1998 《色漆和清漆─保护漆体系对钢结构的防腐保护》(Paints and varnishes ─ Corrosion protection of steel structures by protective paint systems)[。这是一部在国际防腐界通行的、权威的防护涂料与涂装技术指导性国际标准。目前,在国内涂料、涂装行业、腐蚀与防护行业及相关设计研究院所、高等学校,在重大防腐工程设计、招投标及施工过程中都使用到这一综合性标准。标准共分八个部分: 第1部分总则 第2部分环境分类 第3部分设计上的考虑 第4部分表面类型与表面处理 第5部分保护漆体系、 第6部分试验方法 第7部分涂漆工艺 第8部分新工程和维护工作规范的制定。

EN10025-5:2004《结构钢热轧产品第5部分:改进型耐大气腐蚀结构钢交货技术条件》.

结构钢热轧产品第5部分: 改进型耐大气腐蚀结构钢交货技术条件 BS EN 10025-5:2004 BS EN 10025-5:2004与BS EN 10025-1:2004一起取代BS EN 10155:1993。 第1部分:总交货技术条件 第2部分:非合金结构钢交货技术条件 第3部分:正火/正火轧制可焊接细晶粒结构钢交货技术条件 第4部分:热机械轧制焊接用细晶粒结构钢交货技术条件 第6部分:淬火和回火高屈服强度结构钢扁平材产品交货技术条件 1 范围 该标准第5部分,第1部分除外,规定了热轧改进型耐大气腐蚀结构钢扁平材和长材产品及半成品的技术要求,按表2~表3(化学成份)和表4~表5(力学性能)在6.3中给出的通常的交货条件。 本标准中特别指定的钢种和质量中关于产品的厚度在表1中给出。 除EN10025-1:2004钢之外,本标准特别指定的钢计划用在环境温度中抗空气腐蚀的焊接、栓接及铆接。(从属于7.4.1的限制说明)。 第5部分中指定的钢并不为热处理而设计,除非交货条件中的产品交货+N 重点减轻退火被允许(同样参见EN 10025-1:2004中7.3.1.1的注解)。+N条件下的交货产品在交货后应该能被热加工及/或标准化(见条款3)。 2 标准参考标准 下列参考标准是本标准用途所必须的。关于过时的参考标准,只用于版本引用的用途。关于更新的参考标准,采用最新的参考标准版本(包括任何修订)。 2.1 基础标准 EN 1011-2 焊接–金属材料焊接的建议–第2部分:铁素体钢电弧焊接的建议

EN 10020:2000 钢种的定义和分类 EN 10025-1:2004 结构钢热轧产品–第1部分:总交货技术条件 EN 10027-1 钢的命名体系–第1部分:钢名称、符号 EN 10027-2 钢的命名体系–第2部分:钢号 EN 10163-1 热轧钢板、宽扁平材和型钢表面条件的交货要求–第1部分:总要求。 EN 10163-2 热轧钢板、宽扁平材和型钢表面条件的交货要求–第2部分:板材和宽扁平材 EN 10163-3 热轧钢板、宽扁平材和型钢表面条件的交货要求–第3部分:型钢 EN 10164 厚度方向性能钢产品–交货技术条件 EN 10221 热轧棒材和圆钢表面质量分类–交货技术条件 CR 10260 钢产品名称体系–增加的符号 2.2 尺寸和偏差标准(见7.7.1) EN 10017 拉拔和/或冷轧的棒材–尺寸和偏差 EN 10024 热轧锥形凸缘I型钢–形状和尺寸偏差 EN 10029 3mm或以上厚度热轧钢板–尺寸和形状及质量偏差 EN 10034 I和H型结构钢–形状和尺寸偏差 EN 10048 热轧窄带钢–尺寸和形状偏差 EN 10051 非合金钢和合金钢的连续热轧无镀层钢板、薄板和带钢–尺寸和形状偏差 EN 10055 带圆弧根和底的热轧等凸缘丁字钢–尺寸和形状及尺寸偏差 EN 10056-1 结构用等边和不等边角–第1部分:尺寸 EN 10056-2 结构用等边和不等边角–第2部分:形状和尺寸偏差 EN 10058一般用热轧扁平钢棒材–尺寸和形状及尺寸偏差 EN 10059一般用热轧方形钢棒材–尺寸和形状及尺寸偏差 EN 10060一般用热轧圆钢棒材–尺寸和形状及尺寸偏差

海洋腐蚀环境与换热器表面处理选型

海洋腐蚀环境 海洋腐蚀环境包括海洋大气腐蚀环境和海水腐蚀环境, 1﹑海水腐蚀环境 海水是一种复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水是一种含盐量相当大的腐蚀性介质,表层海水含盐量一般在3.20%-3.75%之间,随水深的增加,海水含盐量略有增加。盐分中主要为氯化物,占总盐量的88.7%.由于海水总盐度高,所以具有很高的电导率,海水中pH值通常为8.1-8.2,且随海水深度变化而变化。若植物非常茂盛,CO2减少,溶解氧浓度上升,pH值可接近10;在有厌氧性细菌繁殖的情况下,溶解氧量低,而且含有H2S,此时pH值常低于7。海水中的氧含量是海水腐蚀的主要影响因素之一,正常情况下,表面海水氧浓度随水温大体在5~10mg/L范围内变化。海水温度一般在-2℃-35℃之间,热带浅水区可能更高。海水中氯离子含量约占总离子数的55%,海水腐蚀的特点与氯离子密切相关。氯离子可增加腐蚀活性,破坏金属表面的钝化膜。 2﹑海洋大气腐蚀环境 大气腐蚀一般被分成乡村大气腐蚀,工业大气腐蚀和海洋大气腐蚀。乡村地区的大气比较纯净;工业地区的大气中则含有SO2,H2S, NH2和NO2等。大气中盐雾含量较高,对金属有很强的腐蚀作用。 海洋环境对金属腐蚀同其它环境中的大气腐蚀一样是由于潮湿的

气体在物体表面形成一个薄水膜而引起的。这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上,腐蚀现象是非常严重的,除了在强风暴的天气中,在距离海岸近的大气中的金属材料也强烈的受到海洋大气的影响。海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,空气的相对湿度都高于它的临界值。空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于铜带表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使铜的腐蚀速度增加几倍。 海洋环境对金属腐蚀的影响因素 1﹑盐度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海洋环境中遭到严重腐蚀。 2﹑含氧量 海洋环境对金属腐蚀是以阴极氧去极化控制为主的腐蚀过程。 海水中的含氧量是影响海洋环境对金属腐蚀性的重要因素。氧在海

耐大气腐蚀钢

简介:耐大气腐蚀钢,又称耐候钢。耐候钢是指通过添加少量合金元素,使其在大气中具有良好耐腐蚀性能的低合金强度钢。耐候钢的耐大气腐蚀性能为普碳钢的2~8倍,耐候钢除具有良好的耐候性外,还具有优良的成形、焊接等使用性能。耐候钢是通过在普通钢中添加一定量的合金元素制成的一种低合金钢,主要合金成分为Cu、P、Cr、Ni等元素。耐候钢的耐大气腐蚀性能远高于普碳钢,在国外被广泛应用于集装箱、桥梁、汽车、铁路车辆和建筑等制造行业,目前国内耐候钢主要用于集装箱、铁路车辆,由此可见我国的耐候钢应用领域还有很大的发展空间。耐候钢作为一种高效钢材。一直是大气腐蚀用钢品种开发与腐蚀研究的热点。特别是近二十年来,人们进行了大量的大气暴晒、干湿循环等试验。并利用X-射线、扫描电镜、偏光显微镜、电子探针微区分析等现代物理测试手段对金属腐蚀产物的组成、结构及其形成过程进行了研究。对合金元素的作用及锈层的保护作用有了更深刻、更全面地了解,还开发了新型的耐候钢及其锈层稳定化处理技术。 1.耐候钢的发展 耐候钢的研制起源于欧美。早在1900年,欧美的科学家就发现Cu可以改善钢在大气中的耐蚀性能。1961年美国实验和材料学会(ASTM)开始了大气腐蚀的研究,30年代美国的U.S.Steel公司首先研制成功了耐腐蚀高抗拉强度的含Cu低合金钢-Corten钢,并在60年代不涂漆直接用于建筑和桥梁其中应用最普遍的是高P、Cu加Cr、Ni的Corten A系列和以Cr、Mn、Cu合金化为主的(Corten B系列这种耐候钢在欧洲、日本也得到广泛应用。我国自60年代起大量研制耐候钢,并发展了一些自己的钢种,如鞍钢集团的08CuPVRE系列、武钢集团的09CuPTi系列、济南钢铁公司的09MnNb、上海第三钢铁厂的10CrMoAl和10CrCuSiV等。现在,国外已将耐候钢逐渐当作普通钢种来广泛使用。在钢种开发、使用及设计施工上也逐渐作了详细规定。根据使用情况,耐候钢又可分为结构用高耐候钢和焊接结构用耐候钢。前者主要用于车辆、塔架、建筑等其它结构件中,具有优良的耐大气腐蚀性能,以Cu—P系为主,其中P含量在0.07%~0.15%之间由于含P 量高,所以这类钢的屈服强度一般在 343 MPa以下,板厚一般不超过16 mm,美国的 ASTMA242系列和日本JAS中的SPA系列耐候钢均属此类。目前我国这种结构用高耐候钢的发展十分迅速,除了仿制的几个品种如09CuPcrNi(仿 Corten)和09CuPTi(叉称09MnCuPTi)以外,还发展了具有中国特点的新品种,如09CuPTiRE、09CuPRE和08CuPvRE等。并且已经制定出国家标准<高耐候性结构钢)GB 4171—84。焊接结构用耐候钢主要用于桥梁、建筑等大型焊接结构中,以Cu-Cr-Ni系为主,含P量0.04%以下,具有优良的焊接性能和低温韧性,应用十分广泛。如已有美国的ASTM A588和A514系列、日本的JIS SMA 系列耐候钢等型号,而在我国尚在研制中。国内外耐候钢发展的主要历程如表1所示。 表1 耐候钢的发展历程 年份记述 1900 美国开始了含铜钢-早期耐候钢的研究和开发 1933 美国U.S.Steel公司推出Corten-A型低台金耐候钢商品 1955 日本开发耐候钢 1959 美国开始使用裸耐候钢 1961 中国开始试制16MnCu钢 1965 中国试制出09CuPTi薄钢板 日本建成第一座耐候钢大桥(涂漆)

腐蚀的基本类型

腐蚀的基本类型 论文导读:而引起的变质和破坏统称为腐蚀。材料腐蚀的现象和机理比较复杂。腐蚀控制技术涉及面广。腐蚀控制,免费论文,腐蚀的基本类型。关键词:腐蚀,材料腐蚀,腐蚀控制 一般而言,金属、混凝土、木材等材料受周围环境介质的影响而发生的化学、电化学和物理等反应,而引起的变质和破坏统称为腐蚀,其中也包括上述因素与机械因素、生物因素等的共同作用。金属腐蚀的主要对象,其中尤以钢铁的腐蚀最为常见,危害、损害性极大。 一、腐蚀的概念及分类 (一)腐蚀的概念 腐蚀是材料与其环境间的物理化学作用引起材料本身性质的变化,如铁的生锈是金属腐蚀的普遍形式,又如氢氧化钠破坏肌肉和植物纤维。材料的腐蚀是包括材料本身和环境介质两者在内的一个具有反应作用的体系,腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。材料包括金属和非金属材料,如碳钢及其合金、有色金属、塑料、混凝土和木材等,在一个腐蚀系统中,对材料行为起决定性作用的是化学成分、组织结构和表面形态。材料的周围环境介质包括与其接触的气体、液体和固体以及周围环境条件,如温度、压力、速度、光照、辐射、生物条件等。这个作用包括化学的、电化学的、机械的、生物的以及物理的作用。 采用科学的方法防止或者控制腐蚀的危害作用的工程,称为腐蚀工程。(二)材料腐蚀的分类及特征

材料腐蚀的现象和机理比较复杂,材料腐蚀的分类方法也有许多,根据不同的起因、机理和破坏形式而有各种方法。以下介绍几种常用的分类方法。 1.按腐蚀机理分类 通常材料腐蚀按照腐蚀机理可以分为金属化学腐蚀、金属电化学腐蚀、结晶腐蚀、物理化学复合腐蚀。 (1)化学腐蚀:是指金属表面与非电解质直接发生纯化学反应而引起的破坏、其特点是在反应过程中没有电流产生。如铝在四氯化碳、三氯甲烷或乙醇中的腐蚀,镁或钛在甲醇中的腐蚀、物理化学复合腐蚀。 (2)电化学腐蚀:是指金属表面与离子导电的介质发生化学反应而产生的破坏。在反应过程中有电流产生,腐蚀金属表面上存在着阴极和阳极。阳极的反应是金属原失去电子而成为离子状态转移到介质中,成为阳极氧化反应。阴极反应是介质中的去极化剂吸收来自阳极的电子,成为阴极还原过程。这两个反应是相互独立而又同时进行的,称之为一对共轭反应。有阴阳极组成了短路电流,腐蚀过程中有电流产生。如金属在潮湿大气、海水、土壤及酸、碱、盐溶液中的腐蚀均属这一类。电化学腐蚀比较普遍,对金属结构的危害比较严重。 (3)结晶腐蚀:是指因酸、碱、盐等腐蚀介质侵入到建筑物或材料内部生成结晶盐,由于结晶盐的体积膨胀作用使建筑物或材料内部产生应力而引起的破坏现象。结晶腐蚀是工业厂房、非金属设备常见的腐蚀类型。

海水海洋大气腐蚀特点及防腐

海水海洋大气腐蚀特点 及防腐 COmPany number : [0089WT-8898YT-W8CCB-BUl^^^?8]

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在3□g∕L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。PH变化小,海水表层PH在~范围内,而在深层PH则为左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,CI-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中山于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 盐类及浓度 盐度是指IOO克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为%~%,这对—般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以CI-为主,一方面:盐浓度的増加使得海水导电性増加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 PH值

海洋环境下钢铁腐蚀的影响因素及腐蚀机理研究进展

海洋环境下钢铁腐蚀的影响因素及腐蚀机理研究进展[摘要] 本文阐述了海洋环境下钢铁腐蚀的研究意义及腐蚀影响因素,综述了海洋环境五个不同区带的腐蚀机理的研究进展。 [关键词]海洋腐蚀影响因素腐蚀机理 [Abstract] In this paper, research significance of corrosion and influence factors of steels in marine environment were reviewed, and the corrosion mechanism of five different zones in marine environment was summarized. [Key words]Marine corrosioninfluence factorcorrosion mechanism 引言 海洋中蕴藏着巨大的资源财富,有着极为广阔的发展前景。海洋资源的开发和利用,离不开海上基础设施的建设。由于海洋环境是一个腐蚀性很强的环境,海洋大气中相对湿度都高于它的临界值,海洋大气中的钢铁表面很容易形成有腐蚀性的水膜;海水中含有较高浓度的盐分,是一种容易导电的电解质溶液,是腐蚀性最强的天然腐蚀剂之一。同时波、浪、潮、流又会对金属构件产生低频往复应力和冲击,加上海洋微生物、附着生物及它们的代谢产物等都会对腐蚀过程产生直接或间接的加速作用。因此,在诸多工程领域广泛使用的钢结构等工程材料容易发生各种灾害性腐蚀破坏。这不仅仅涉及造成材料的浪费,更严重的是造成灾害性事故,引发油气泄漏,造成环境污染和人员伤亡等,导致巨大经济损失。 作为工业材料,由于钢铁材料韧性大、强度高、价格便宜,因而大量应用于海洋环境中;但是苛刻的海洋腐蚀环境使得钢铁构筑物的腐蚀不可避免,所以海洋环境中的钢铁腐蚀和防护是一个重大课题。因此,研究钢铁在海洋环境中的腐蚀规律及其防护对策,对于延长海洋钢铁设施的使用寿命,保证海上钢铁构造物的正常运行和安全使用以及促进海洋经济的发展,都具有十分重要的意义。本文综述了钢铁在海洋环境中的腐蚀影响因素以及腐蚀机理的研究进展。 1. 海洋环境下钢铁腐蚀的影响因素 海水不仅仅是盐度在32‰~37‰,pH值在8~8.2之间的天然强电解质溶液,更是一个含有悬浮泥沙、溶解各种气体、生物以及腐败有机物的复杂体系。钢铁海洋腐蚀是海洋环境中诸多因素的综合作用结果,例如,溶解氧、盐度、温度、pH 值、流速、海洋生物等环境因素以及钢铁合金元素都是影响腐蚀的重要因素,而且它们的影响常常是相互关联的。 1.1溶解氧:氧是钢铁海水腐蚀的去极化剂,如果海水中没有溶解氧,钢铁是不会腐蚀的,因此海水中溶解氧是影响钢铁海洋腐蚀的重要因素之一。它在钢铁腐蚀的微电池的阴极区不断反应,产生很强的阴极去极化作用,微电池阳极区的金属

大气腐蚀

姓名:段平学号:2010214145 科目:腐蚀与材料保护指导老师:陈存华 大气腐蚀的研究进展 摘要:大气腐蚀是指在环境温度下由于空气中的水气、氧气以及污染物质等的电化学或者化学作用而引起的金属腐蚀,电化学腐蚀是由潮湿大气所引起的,即金属表面存在着许多肉眼看不见的薄膜液层和凝结水膜层,大气腐蚀主要是氧通过金属表面所形成液膜的扩散,而发生氧去极化的腐蚀。而化学腐蚀是由于干大气所引起的。 关键词:大气腐蚀;种类;原因;影响;金属;措施 正文: 一、大气腐蚀的种类 通过大气含水的多少可以将大气腐蚀分为三种。(1)干的大气腐蚀:空气十分干燥,金属表面上不存在水膜,金属的腐蚀属于常温氧化。(2)潮的大气腐蚀:Rh<100%,在金属表面上存在肉眼不可见的薄液膜,随水膜厚度增加,V-迅速增大。(3)湿的大气腐蚀:Rh≈100%,金属表面上形成肉眼可见的水膜,随水膜厚度增加,V-逐渐减小。 Rh指的是相对湿度。还可以通过其他的条件进行分类,具体划分见下表: 大气环境腐蚀分类 腐蚀类型腐蚀速度 (mm/a)腐蚀环境 等级名称环境气体类型相对湿度(年平均)% 大气环境I 无腐蚀<1.001 A <60 乡村大气 II 弱腐蚀0.001~0.025 A B 60~75 <60 乡村大气 城市大气 III 轻腐蚀0.025~0.050 A B C >70 60~75 <60 乡村大气 城市大气 工业大气 IV 中腐蚀0.050~0.2 B C D >70 60~75 <60 城市大气 工业大气和海洋大 气 V 较强腐蚀0.2~1.0 C D >70 60~75 工业大气 VI 强腐蚀1~5 D >75 工业大气 腐蚀气体分级 气体类型腐蚀物质名称腐蚀物质含量 (mg/m3) 气体类型腐蚀物质名称 腐蚀物质含量 (mg/m3)

金属腐蚀的分类

金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。生物腐蚀是指由各种微生物的生命活动引起的腐蚀。电化学腐蚀是指发生电化学反应导致的腐蚀。电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义! 电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得 腐蚀不断进行。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 阳极(Fe):Fe=Fe2++2e- Fe2++2H2O=Fe(OH)2+2H+ 阴极(杂质):2H++2e-=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

大气腐蚀环境分类OK

1. 大气腐蚀环境分类:乡村大气、城市大气、工业大气、海洋大气。 ①乡村大气的腐蚀性通常情况下是最小的,正常情况下也不含化学污染物,但的确包含有机物和无机物颗粒,其主要的腐蚀性来源是水分,氧气和二氧化碳。干旱和热带大气是乡村大气中的特殊情况。①②③④⑤⑥⑦ ②城市大气与乡村大气类似,因为很少有工业活动,其主要腐蚀源是机动车排放和民用燃料排放所产生的硫化物和氮化物类污染物。 ③工业大气通常具有较强的腐蚀性,但与石化工业、重工业等工厂区排放物的类型和浓度有关,其主要污染和腐蚀性物质是不同浓度的二氧化硫、氯化物、磷酸盐和硝酸盐等。工业大气环境下通常会形成酸雨,使其腐蚀环境区域扩大化。 ④海洋大气通常具有高度的腐蚀性,而且其腐蚀性与距离海岸的远近和朝向、风向和风速、所处气候带和纬度等有关,其腐蚀性来源是海风卷着海水中的氯化物粒子并沉积到基材表面 2. 一般来说,钢铁的腐蚀是一种电化学腐蚀。水和氧是钢铁产生腐蚀的两个必要条件。 3. 大气腐蚀的关键因素:湿润时间、环境温度、大气污染物。(1)二氧化硫(2)氯化物(3)其他大气污染物 4. 防止海洋腐蚀的措施:除正确设计金属构件、合理选材外,通常有以下几种:(1)采用阳极性金属热喷涂层或复合涂层(2)采用厚浆型重防腐涂料;(3)根据电化学腐蚀原理,采用牺牲阳极(4)对重点部件采用耐腐蚀材料包套(5)设计构件时要考虑到足够的腐蚀裕量。 5. 只有热喷涂才是最有效的长效防腐方法 6. 一般来说,重防腐涂料由底漆、中间漆、面漆等三部分组成,除了防腐性和要求各层之间具有良好的相容性、附着力和干燥时间外,各部分涂料因为所处位置不同要求也各不相同。如底漆需要与基材有良好的,中间层主要起增加厚度和提供柔韧性作用,面漆需要抵抗腐蚀介质和耐候性等。 7. 涂层体系特点:①重防腐涂料体系的配套具有差异性②重防腐涂料对钢铁的保护不能一劳永逸③重防腐蚀涂装的初期投资少但后期维护费用高④重防腐涂料高压无气喷涂施工效益高⑤无机富锌底漆表面处理要求高及需要涂装后保养 8. 热喷涂技术是指利用不同的热源来加热各种被喷涂的材料至熔融状态,并借助于雾化气流的加速使其形成"微粒雾流",高速喷射到经过表面预处理的工件上,形成与基体紧密结合的堆积状喷涂层的技术。 9. 电弧喷涂是利用燃烧于两根连续送进的被喷涂金属线材之间的电弧作为热源来使金属线材熔化,用高速气流把熔化的金属雾化成微粒,并使雾化金属粒子加速,雾化粒子射流高速沉积到工件表面形成涂层的技术。 10. 电弧喷涂层大多是均匀腐蚀,涂层的厚度与防腐蚀寿命大致成正比例关系。所以涂层厚度的选择至关重要。 11. 由电弧喷涂金属涂层和有机封闭涂层组合在一起的防护涂层体系就成为电弧喷涂复合涂层体系。它是由阳极性金属喷涂层+涂料封闭底层+涂料封闭中间层+涂料封闭面层组成。涂料封闭底层主要起封孔作用,应与金属喷涂层有良好的相容性,能充分渗透并填充金属喷涂层的孔隙并良好附着。涂料封闭中间层是封闭和隔离层,耐蚀性好。涂料封闭面层应对腐蚀环境有适应性,能耐腐蚀和耐大气老化。 12. 桥梁钢结构其他防护技术:①电镀锌及锌合金涂层技术②热镀锌涂层技术③冷镀锌涂层技术④阴极保护技术 13. 热镀锌图层技术:是将除锈后的钢件侵入熔化的锌液中,铁与熔融锌反应生成一层合金化的锌层,附着在钢件表面,从而起到防腐的目的。这是一种有效的金属防腐蚀方式,主要

海水 海洋大气腐蚀特点及防腐

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 3.1盐类及浓度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 3.2 pH值 海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。 3.3碳酸盐饱和度 在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。若未饱和,则不会形成保护层,使腐蚀速度增加。

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性 1、铝的耐氧腐蚀性能 铝是一种活泼金属,极容易和空气中的氧气起化应生成氧化铝。氧化铝在铝制器皿表面结一层灰色致密的极薄的(约十万分之一厘米厚)薄膜,这层薄膜十分坚固,它能使里力的金属和外界完全隔开。从而保护内部的铝不再受空气中氧气的侵蚀。 2、铝的酸碱腐蚀 铝和氧化铝薄膜都能和许多酸性或碱性物质起化学反应,一旦氧化铝薄膜被碱性溶液或酸性溶液溶解掉,则内部铝就要和碱性或酸性溶液起反应而渐渐被侵蚀掉。 3、铝的腐蚀形式 (1)点腐蚀:点腐蚀又称为孔腐蚀,是在金属上产生针尖状、点状、孔状的一种为局部的腐蚀形态。点腐蚀是阳极反应的一种独特形式,是一种自催化过程,即点腐蚀孔内的腐蚀过程造成的条件,如有腐蚀介质(CL-、F-等)、促进反应的物质(CU2+、ZN2+等),既促进又足以维持腐蚀的继续进行。 (2)均匀腐蚀:铝在磷酸与氢氧化钠等溶液中,其上的氧化膜溶解,发生均匀腐蚀,溶解速度也是均匀的。溶液温度升高,溶液浓度增大,促进铝的腐蚀。 (3)缝隙腐蚀:缝隙腐蚀是一种局部腐蚀。金属部件在电解溶液中,由于金属与金属或金属与非金属之间形成缝隙,其宽度足以使介质浸入而又使介质处于一种停滞状态,使得缝隙内部腐蚀加剧的现象称为缝隙腐蚀。缝隙腐蚀特别容易发生在机械组件接合的地方,例如金属垫圈或是铆接处和铝门窗与灰浆填隙处。它是属于一种电池效应,但是缝隙一般需在特定程度大小的范围内才会发生,例如:有足够的宽度可使溶液进入,足够窄得使溶液可以停滞等,所以在应用或工程上必须要小心,避免发生足以产生缝隙腐蚀的环境。缝隙腐蚀的机构很类似穿孔腐蚀的情况,首先是均匀腐蚀,然后因氧浓淡电池会引起阳极反应(缺氧区)和阴极反应(富氧区),由于间隙内氧无法补充,因此阳极反应会继续在同一个位置进行,因此产生严重的腐蚀结果。

在各种环境中不锈钢的耐腐蚀性能

在各种环境中不锈钢的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1Cr17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变,奥氏体型不锈钢如1Cr17Ni7、1Cr18Ni9和0Cr18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0Cr17Ni12M02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素。即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感。即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要经常的清理。 2.淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH值、氧含量和成垢倾向性的影响。结垢(硬)水。其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作用。非结垢(软)水,这种水一般比硬水的腐蚀性强。可以通过提高pH值或减少含氧量来降低其腐蚀性。 1Cr13不锈钢明显地比碳素钢耐淡水腐蚀,而且在淡水中使用有极好的特征。这种钢广泛用于例如需要高强度和耐腐蚀的船坞和水坝等用途。然而,应当考虑到在某些情况下。1Cr13在淡水中可能对中度点蚀敏感.但是点蚀完全可以用阴极防蚀方法来避免。1Cr17和奥氏体型不锈钢在室温(环境温度)几乎完全可以耐淡水腐蚀。 3.酸性水 酸性水是指从矿石和煤浸析出的被污染的自然水,由于是较强的酸性所以其腐蚀性比自然淡水强得多。,由于水对矿石和煤中所含硫化物的浸析作用,酸性水中通常含有大量的游离硫酸,此外,这种水含有大量的硫酸铁,对碳钢的腐蚀有非常大的作用。 受酸性水作用的碳钢设备通常很快被腐蚀。用受酸性河水作用的各种材料所做试验的结果表明,在这种环境下奥氏体型不锈钢有较高的耐腐蚀性能。 奥氏体型不锈钢在淡水和酸性河水中有极好的耐腐蚀性能,特别是其腐蚀膜对热传导的阻碍较小,所以在热交换用途中广泛使用不锈钢管。 4.盐性水 盐性水的腐蚀特点是经常以点蚀的形式出现。对于不锈钢,在很大程度上是由于盐性水导致起耐腐蚀作用的钝化膜局部破坏。这些钢发生点蚀的其他原因是附着于不锈钢设备上的茗荷介和其他海水有机物可形成报送的浓差电池。一旦形成,这些电池非常活跃,并且造成大量腐蚀和点蚀。在盐性水高速流动的情况下,例如泵的叶轮,奥氏体型不锈钢的腐蚀通常是非常小

腐蚀环境种类

环境种类 大气腐蚀环境 1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。影响腐蚀的因素主要是相对湿度、温度和温差. 2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。 3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。随着大气相对湿度和温差的变化,这种腐蚀作用更强。很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。 4.海洋大气其特点是空气湿度大,含盐分多。暴露在海洋大气中的金属表面有细小盐粒子的沉降。海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。在季节或昼夜变化气温达到露点是尤为明显。同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。风浪大时,大气中的水分含盐量高,腐蚀性增加。据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。相对湿度升高会使海洋大气腐蚀加剧。一般热带腐蚀性最强,温带次之,两级最弱。中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。 5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。2种腐蚀介质的相互作用对混凝土的危害更大。 淡水腐蚀环境 混凝土碳化模型 国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。 灰色理论 它是一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。传统的系统理论,大部研究那些信息比较充分的系统。对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。这一空白区便成为灰色系统理论的诞生地。在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。 基本观点 (1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。灰色系统理论在相对高层次上处理问题,其视野较为宽广; (2)应从事物的内部,从系统内部结构和参数去研究系统。灰色系统的内涵更为明确具体;

大气腐蚀简介

大气腐蚀简介 1、前言 铁在公元前4000年就从矿石中分离出来,而且从那时起腐蚀问题随之而来。据估计,全世界钢产量的60%是在大气环境下使用,因此,大气腐蚀造成的全球经济损失每年不少于一亿美元。大气的主要腐蚀成分是水汽和氧。我国幅员辽阔,不同地区大气差异极大,按气候特征可分为六各气候地区:寒温带、中温带、暧温带、亚热带、热带和高原气候带。从腐蚀性考虑,可将大气分为:农村大气、海洋大气、城郊大气、工业大气、极地大气和热带大气等。 2、大气腐蚀的主要因素 大气腐蚀通常由大气中的温湿度和污染物引起的影响的主要因素如下。 2.1湿度 早期研究发现,金属在大气中腐蚀和相对湿度的关上曲线上存在一个拐点,当相对湿度低于此值进,金属腐蚀速度可以忽略;超过这个相对湿度,腐蚀才明显发生。这个湿度称为临界相对湿度。临界相对湿度是金属大气腐蚀的重要参数,由金属种类、表面状态及大气环境决定。例如:钢铁在无污染大气中的临界相对湿度大约在50%~70%,同样材料在海洋大气中,由于金属沉积海盐粒子,临界相对湿度可能

下降到40%以下,严重污染的空气中,这种临界相对湿度可能不存在。一般说来,相对湿度增大,促进腐蚀速度加快。2.2温度 在增加温度不会引起或加速某些其他变化时,一般说来,温度升高10度,化学反应增加2~3倍,因而影响腐蚀速度的许多因素将随温度面变化。举例如下: 1)气体在水中溶解度,通常是随温度长葛市而降低。 在特殊凝露条件下,这可能反而减慢腐蚀速度; 2)如果在政党使用条件下,腐蚀产物在金属表面形成保护层,因而使腐蚀速度增加,腐蚀现象完全改变; 3)如果在正常条件下,金属只出现一般的缓慢腐蚀,介在高温条件下可能出现非常严重的腐蚀,例如产 生空穴腐蚀和应力腐蚀; 4)如果两各金属相接触,电极电位较低的金属保护电极电位较高的金属,在高温条件下,锌可以保护铁, 但当温度高于70度时,锌的电位可能变得比铁还 高,就起不到保护铁的作用了。 2.3腐蚀杂质 大气主要由80%氮气,20%氧气组成,此外还有少量二氧化碳等气体,它们都没有腐蚀性,大气的腐蚀性主要来自水汽及其他杂质。如海洋大气中的氯化钠,城市和工业大气中的二氧化硫等。它们的大致浓度范围见下

不锈钢的耐腐蚀性能

不锈钢的耐腐蚀性能 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显着增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效地保护着不锈钢表面,特别是能防止进一步再氧化。这

种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显着的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

材料腐蚀的分类

材料腐蚀的分类 材料腐蚀类别与相应机理 金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀。腐蚀现象是十分普遍的。从热力学的观点出发,除了极少数贵金属Au、Pt 等外,一般材料发生腐蚀都是一个自发过程。金属很少是由于单纯机械因素(如拉、压、冲击、疲劳、断裂和磨损等)或其他物理因素(如热能、光能等)引起破坏的,绝大多数金属的破坏都与其周围环境的腐蚀因素有关。 1.1金属的高温氧化腐蚀 1.1.1高温氧化腐蚀概念 在大多数条件下,使用金属相对于其周围的气态都是热不稳定的。根据气体成分和反应条件不同,将反应生成氧化物、硫化物、碳化物和氮化物等,或者生成这些反应产物的混合物。在室温或较低温干燥的空气中,这种不稳定性对许多金属来说没有太多的影响。因为反应速度很低。但是随着温度的上升,反应速度急剧增加。这种在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 从广义上看,金属的氧化应包括硫化、卤化、氮化、碳化,液态金属腐蚀,混合气体氧化,水蒸气加速氧化,热腐蚀等高温氧化现象;从狭义上看,金属的高温氧化仅仅指金属(合金)与环境中的氧在高温条件下形成氧化物的过程。 1.1.2高温氧化腐蚀机理 研究金属高温氧化时,首先应讨论在给定条件下,金属与氧相互作用能否自发地进行或者能发生氧化反应的条件是什么,这些问题可通过热力学基本定律做出判断。 金属氧化时的化学反应可以表示成: Me (s)+O 2(g)→MeO 2(g) 对该式来说: 可知,只要知道温度T 时的标准自由能变化值,即可得到该温度下的金属氧化物分解压,然后将其与给定条件下的环境氧分压比较就可判断金属氧化反应式的反应方向。 在一个干净的金属表面上,金属氧化反应的最初步骤是气体在金属表面上吸附。随着反应的进行,氧溶解在金属中,进而在金属表面形成氧化物薄膜或独立的氧化物核。在这

腐蚀的分类及特点

[分享] 腐蚀的分类及特点 特点, 腐蚀, 分类 - 腐蚀的分类及特点腐蚀的分类及特点 1 点蚀 点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。 由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。 在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。 PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。 点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 2 缝隙腐蚀 在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。 3 应力腐蚀 材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。 应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。 应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。 应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化

相关文档