文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应

电磁感应

电磁感应
电磁感应

《电磁感应》说课稿

尊敬的各位评委,老师,上午好!

我是号选手,我说课的题目是《电磁感应》。对本节课我将从以下几个方面进行说课。

一、教材分析

1、“电磁感应”是在“电流的磁效应”和“磁场对电流的作用”后进行的教学,使学生对“电与磁相互作用的内容”有了较完整的认识,具有承前的作用,是知识的自然延续;“电磁感应”为以后学习发电机的内容打下理论基础,并为学习能的转化和守恒提供前置知识,具有启后作用。

2.法拉第电磁感应的发现,为电能的大规模应用创造了条件,在人类的发展史上具有划时代的意义,充分说明了科学技术推动社会的发展。

2、学情分析

学生经过对前面几章的学习,已具备了电、磁的初步知识,知道了电能产生磁和磁场对电流有力作用等方面的知识,也初步具备了电学实验操作技能和初步的观察、分析、归纳能力,但理性思维的能力还不强,在分析感应电流产生的条件时会遇到一定的困难。

优势是:思维较活跃,对具体形象的实验比较感兴趣。

劣势是:对学习抽象理论知识存在为难情绪缺乏主动性。

3、教学目标

根据教学大纲要求及中职学生的总体认知水平和思维发展水平,围绕

“激发兴趣,培育信心,点拨方法,教会学习”的指导思想,设计如下三维教学目标:

知识与技能:1.理解产生感应电流的条件。

2.会使用线圈以及常见磁铁完成简单的实验。

过程与方法:1.学生通过对实验的实际操作、观察分析论证等探

究过程,学习科学探究的方法,体会科学探究乐趣。

情感与态度:1.激发学生对科学的好奇性和求知欲。

2.感受科学技术对社会发展的作用。

4、教学重、难点

重点:1.法拉第实验

2.产生感应电流的条件

难点:1.闭合电路中磁通量变化的判定

2.电磁感应中能量的转化

二、教法学法

1.教法: 1.实验探究法

2.引导教学法

2.学法:创设乐学环境,分四个步骤进行探究学习:

实验观察---小组合作----思考探究----归纳总结

三、教学过程

整个教学过程分为六个步骤,及每个步骤分配时间如图:(一)创设情境,激趣导入

出示图片,著名的奥斯特实验,它发现了电流的磁效应,即电能生磁。引导学生猜想:1、既然电能生磁,那么,磁能否生电呢?

2、如果磁能生电,那么,实现的条件是什么?

这个问题引发了电与磁探究的热潮:

1820年奥斯特发现电流的磁效应之后,法拉第于1821年提出“有磁产生电”的大胆设想,并开始了十年艰苦的探索,终于在1831年8月29日发现了电磁感应现象,开辟了人类的电气化时代。

下面就开始引导学生操作实验:

(二)操作实验,引出新知

实验一:如图连接电路,先将开关闭合,使闭合电路的一部分导体做切割磁力线的运动(向左,向右)观察发生的现象。然后使导体沿着磁力线的方向运动,观察发生的现象。再断开开关使导体做切割磁力线的运动时,观察发生的现象。

学生回答看到的实验现象,然后归纳总结实验结论:

闭合回路的一部分导体做切割磁力线的运动时,回路产生了电流。这时引出两个概念:

电磁感应现象:

感应电流:

进而推广一下如图在匀强磁场中,导体AB向右运动时,可以产生感应电流。

即:当磁场强弱不变但闭合回路面积发生变化时,可以产生感应电流。实验一是导体在磁场中运动,如果导体不动,磁场运动呢?进入

实验二:

如图连接好线圈和电流计,将条形磁体的一端插入线圈时,在线圈中不动时,拔出线圈时,观察发生的现象。

引导小组讨论,填写发放的实验数据记录表,总结归纳实验结论:当磁铁相对线圈运动时,有感应电流产生。

那么利用常见的器材我们还可以怎样得到感应电流呢?进入

实验三:

指导同学们如图连接电路,特别注意观察,开关闭合瞬间、断开瞬间时和快速滑动变阻器时的现象。引导小组讨论,填写发放的实验数据记录表,总结归纳实验结论:

只有当线圈A中电流发生变化,线圈B中才有感应电流。

顺利完成三个实验的操作,我们进入教学过程的第三个环节:(三)类比归纳,形成结论

由上面三个实验结论可以看出:

磁生电是一种在变化过程中才出现的现象。可以是:

1.闭合电路中的电路面积发生变化;

2.闭合电路中的磁场发生变化。

为了讲清楚感应电流产生的条件要用到一个物理量--磁通量。

教材先介绍了磁通量的概念,再来讲授电磁感应现象。这体现的是一种传授式教学的特点。以前我按照这种顺序来讲授,发现学生在学习磁通量的概念时很吃力。因为这个概念太抽象,尽管其物理意义很形象:穿过一个面的磁感线条数。但是学生抽象数学思维能力不高,

对其理解不深,需要反复地训练。

因此在这节课中我做了大胆创新,采取了发现式的教学方法。先总结出穿过闭合电路磁感线的变化产生感应电流,让学生知道现象直观利用磁感线的判断方法。然后提出一个问题“?条如何用图形来表示?”这个问题暴漏了磁感线的缺点,激发了学生的学习兴趣。使学生知道了磁感线尽管很形象,但不能机械地利用磁感线进行定量计算。为了科学地表示磁感线的条数,学生就理解了引入磁通量的概念的目的:定量地科学地表示磁感线条数的。这样处理教材符合了人们认识事物的一般过程:先认识非常形象具体的磁感线,再抽象出磁通量这样的抽象却很科学的概念。实现了从感性认识到理性认识的飞跃。这样处理磁通量后,学生就会对它的物理意义印象深刻,再进一步讨论磁通量的变化等知识难度就会降低很多。

对磁通量加以理解和应用,就不难得到如下结论:只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

能量守恒是个普遍适用的定律,同样适用于电磁感应现象。引导同学们讨论在电磁感应中能量的转化和守恒。

结论:在电磁感应现象中,不同形式的能量在相互转换过程中能量守恒。

下面进入教学过程的第四个环节

(四)例题讲解,应用新知。

(课堂练习的设计主要加强学生对本节知识的应用,对问题分析思路上的理解。)

例一:

例二:

(五)分层作业,延伸学习

我们知道地球可视为一个磁偶极,地磁场也在时时刻刻影响着我们的生产生活。我们不妨做如下的探索:“摇绳能发电么?”

把一条大约10米长的电线的两端连在一个灵敏电流表的两个接线柱上,形成闭合电路。两个同学迅速摇动这条电线,可以发电么?(六)课堂小结,自我评价

设计意图:

通过学生自己对本节内容的回顾与小结,使知识系统化,找出自己不清楚的知识点,通过及时的反馈信息为下节课的教学做好准备。

四、教学评价

板书设计:针对本节课特点,设计板书如下:

说课完毕,谢谢指导!

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

大学物理吴百诗习题答案电磁感应

大学物理吴百诗习题答案 电磁感应 LELE was finally revised on the morning of December 16, 2020

法拉第电磁感应定律 10-1如图10-1所示,一半径a =,电阻R =×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(42-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 内通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35-?-=i ε,A 102100.1102.32 3 5---?-=??-= =R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)42 2123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I , 小的回路在大的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路内的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02 232 2() IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 203 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= 图 10-

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

电磁感应的四种类型

电磁感应的四种类型 选择题中等难度题,计算题难度较大.电磁感应知识点较少,一般与电路知识、安培力进行简单的结合,或定性分析、或定量计算,通常涉及4~5个知识点. 电磁感应中的计算题综合了力学,电学、安培力等知识,难度较大,尤其是导体棒模型和线框模型., 高考热点

1.如图所示,平行金属导轨与水平面成α角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面。有一质量为m 的导体棒ab ,其电阻与R 1和R 2的阻值均相等,与导轨之间的动摩擦因数均为μ,导体棒ab 沿导轨向上运动,当其速度为v 时,受到的安培力大小为F 。此时 A .电阻R 1消耗的热功率为Fv/6 B .电阻R 2消耗的热功率为Fv/3 C .整个装置因摩擦而消耗的热功率为(F+μmgcos α D .整个装置消耗机械能的功率为(F+μmgcos α)v 1. AD 2.如图所示,一沿水平方向的匀强磁场分布在宽度为2L 的某矩形区域内(长度足够大),该区域的上下边界MN 、PS 是水平的。有一边长为L 的正方形导线框abcd 从距离磁场上边界MN 的某高处由静止释放下落而穿过该磁场区域,已知当线框的ab 边到达 MN 时线框刚好做匀速直线运动,(以此时开始计时)以MN 处为坐标原点,取如图坐标轴x ,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab 边的位置坐标x 间的以下图线中,可能正确的是 -I I I -I -I I -I x I a b c d S

2.D 3.如图所示,质量为m 的U 型金属框N MN M '' ,静放在倾角为θ的粗糙绝缘斜面上,与斜面间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力;MM′、NN′边相互平行,相距L ,电阻不计且足够长;底边MN 垂直于MM′,电阻为r ;光滑导体棒ab 电阻为R ,横放在框架上;整个装置处于垂直斜面向上、磁感应强度为B 的匀强磁场中。在沿斜面向上与ab 垂直的拉力作用下,ab 沿斜面向上运动。若导体棒ab 与MM′、NN′始终保持良好接触,且重力不计。则: (1)当导体棒ab 速度为v 0时,框架保持静止,求此时底边MN 中所通过的电流I 0,以及MN 边所受安培力的大小和方向。 (2)当框架恰好将要沿斜面向上运动时,通过底边MN 的电流I 多大?此时导体棒ab 的速 度v 是多少? 3.(1)(共9分) ab 中的感应电动势00BLv E = ①(2分) 回路中电流r R E I +=0 0 ②(2分) 联立得r R BLv I += 0 ③(1分) 此时底边MN 所受的安培力 BIL F =安 ④(2分) r R v L B L BI F +==0 220安 ⑤(1分) 安培力方向沿斜面向上 ⑥(1分) (2)(共9分) 当框架恰好将要沿斜面向上运动时,MN 受到的安培力 θμθcos sin mg mg F +=安 ⑦(2分)

高考电磁感应 三类题型总结

高考电磁感应中的三类常见问题的解题思路 一、 与力学问题相关的电磁感应问题 近年来,与安培力相关的平衡问题多次在高考中出现,需要做好“源”、“路”、“力”的分 析,解决这类问题的一般思路如下: 例题1、不计电阻的平行金属导轨与水平面成某角度固定放置,两完全相同的金属导体棒a 、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面,如图所示,现用一平行于导轨的恒力F 拉导体棒a ,使其沿导轨向上运动,在a 运动过程中,b 始终保持静止,则以下说法正确的是( ) A .导体棒a 做匀变速直线运动 B .导体棒b 所受摩擦力可能变为0 C .导体棒b 所受摩擦力可能先增大后减小 D .导体棒b 所受摩擦力方向可能沿导轨向下 【题型点津】题目较为容易,仔细体会一般步骤 例题2、如图所示,DEF 、XYZ 为处于竖直向上匀强磁场中的两个平行直角导轨,DE 、XY 水平,EF 、YZ 竖直.MN 和PQ 是两个质量均为m 、电阻均为R 的相同金属棒,分别与水平和竖直导轨良好接触,并垂直导轨,且与导轨间的动摩擦因数均为μ.当MN 棒在水平恒力的作用下向

右匀速运动时,PQ棒恰好匀速下滑.已知导轨间距为L,磁场的磁感应强度为B,导轨电阻不计,重力加速度为g,试求: (1)作用在MN棒上的水平恒力的大小; (2)金属棒MN的运动速度大小. 【题型点津】解决此类问题的关键是:根据右手定则或楞次定律判断感 应电流方向,再根据左手定则判断安培力的方向,进行受力分析,确定 物体的运动情况,由动力学方程结合物体的运动状态进行求解。 二、与能量问题相关的电磁感应问题 能量转化和守恒定律在电磁感应现象中的体现非常明显,是高考题命题关注的热点之一。主要包括以下两个方面: ①由有效面积变化引起的电磁感应现象中,由于磁场本身不发生变化,一般认为磁场并不输出能量,而是其他形式的能量借助安培力做功来实现能量的转化。 ②由磁场变化引起的电磁感应现象中,无论磁场增强还是减弱,在回路闭合的情况下,磁场通过感应导体对外输出能量。 解题思路如下:

电磁感应经典例题

电磁感应典型例题 【例题1】图为地磁场磁感线的示意图,在北半球的地磁场 的竖直分量向下,飞机在我国的上空匀速航行,机翼保持水平, 飞行高度不变。由于地磁场的作用,金属机翼上有电势差,设 飞行员左方机翼末端处的电势为U1,右方机翼末端的电势为U2。 A.若飞机从西向东飞,U1比U2高 B.若飞机从东向西飞,U2比U1高 C.若飞机从南往北飞,U1比U2高 D.若飞机从北往南飞,U2比U1高 【例题2】如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将: A.逐渐增大 B.逐渐减小 C.保持不变 D.不能确定 【例题3】如边长为0.2m的正方形导线框abcd斜靠在墙上,线框平面与地面成30°角,该区域有一水平向右的匀强磁场,磁感应强度为0.5T,如图所示。因受振 动线框在0.1s内滑跌至地面,这过程中线框里产生的感应电动势的平均值为_____。 【例题4】关于自感现象,下列说法中正确的是: A.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大 B.对于同一线圈,当电流变化越快时,其自感系数也越大 C.线圈中产生的自感电动势越大,则其自感系数一定较大

D.感应电流有可能和原电流的方向相同 【例题5】用力拉导线框使导线框匀速离开磁场这一过程如图所示,下列说法正 确的是: A.线框电阻越大,所用拉力越小 B.拉力做的功减去磁场力所做的功等于线框产生的热量 C.拉力做的功等于线框的动能 D.对同一线框,快拉与慢拉所做的功相同,线框产生的热量也相同 【例题6】如右图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总 小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为: A. a A>a B>a C>a D B. a A=a C>a B>a D C. a A=a C>a D>a B D. a A=a C>a B=a D 【例题 7】如图所示,固定在匀强磁场中的正方形导线框abcd,各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线。磁场的磁感应强 度为B,方向垂直纸面向里。现有一与ab段的材料、粗细、长度都相同的电阻丝PQ 架在导体框上,如图所示,PQ以恒定速度υ从ad滑向bc,当滑过1 3 l的距离时,通 过aP段电阻丝的电流多大?方向如何?

电磁感应现象的发现

第一章电磁感应 一、电磁感应的发现 教学目标: 1.知识与技能: (1)知道电磁感应现象,了解利用不同磁体的磁场产生感应电流的方法; (2)知道感应电流的产生是由于穿过闭合回路的磁通量发生改变而引起的; (3)了解电源电动势的概念,知道感应电流大小是由感应电动势大小决定的。 2.过程与方法: (1)由课文第一句“奥斯特发线电流的磁效应”入手,引导学生逆向思维思考,让学生领会科学研究中逆向思维的途径与重要性; (2)探究产生感应电流的三种不同的方法,经历科学研究的主要环节,通过探究实验,观察实验现象,分析实验结果,获得科学探究的感性认识; (3)初步认识对比与归纳是物理思维的两种基本形式; (4)通过对“感应电流的产生是由于穿过闭合回路的磁通量变化而引起”内容的学习,了解抽象、概括等思维形式在物理定律发现中的重要性。 3.情感、态度与价值观 了解科学发现对社会文明进程的巨大推动作用,激发学生的求知欲和探究精神;在探究过程中学习合作与交流 教学重点、难点: (1)探究产生感应电流的三种不同的方法,归纳、总结出产生感应电流的条件; (2)正确理解产生感应电流的条件。 教具准备与教学方法 (1)灵敏电流计、大小螺线管、线圈、导线、开关、滑动电阻、电源、条形磁铁,蹄形磁铁; (2)运用实验探究、启发引导、对比与归纳等教学方法。 教学设计思路 本设计的基本思路是:以实验创设情景,激发学生的好奇心。通过对问题的讨论,引入学习电磁感应现象。本设计强调问题讨论、交流讨论、实验研究、教师指导等多种教学策略的应用,重视概念、规律的形成过程以及伴随这一过程的科学方法的教育。通过学生主动参与,培养其分析推理、比较判断、归纳概括的能力,使之感受猜想、假设、实验、比较、归纳等科学方法的重要作用;感悟科学家的探究精神,提高学习的兴趣。 新课教学 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。自奥斯特发现电能生磁之后,历史上许多科学家都在研究“磁生电”这个课题。介绍瑞士物理学家科拉顿的研究。

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

大学物理(吴百诗)习题答案10电磁感应

法拉第电磁感应定律 10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与 回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(4 2-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35 -?-=i ε,A 10210 0.1102.323 5---?-=??-==R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)422 123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I ,小的回路在大 的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02232 2()IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 2 03 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= (3)由楞次定律可知,小线圈中感应电流方向与I 相同。 动生电动势 10-3 一半径为R 的半圆形导线置于磁感应强度为B 的均匀磁场中,该导线以 速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高? 解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向, 在x 处 2 1(2)2m Rx R B π=+Φ,∴22m d dx RB RBv dt dt εΦ=-=-=- 由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 2RBv ε=- 负号表示电动势方向为逆时针,即上端电势高。 图10-2

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应计算题类型大全

电磁感应易错题 1.如图所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导 线框每边的电阻R0=1.0Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。导线框放置在匀强磁场中,磁场的磁感应强度B=0.50T,方向垂直导线框 所在平面向里。金属棒MN与导线框接触良好,且与导线框对角 线BD垂直放置在导线框上,金属棒的中点始终在BD连线上。若 金属棒以v=4.0m/s的速度向右匀速运动,当金属棒运动至AC的 位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面,cd边保持水平。磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l。已知cd边刚进入磁场时线框恰好做匀速运动。重力加速度为g。 (1)求cd边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd边刚进入磁场到ab边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h=0.50m的平行虚线围,有磁感强度B=0.50T、方向水平向里的匀强磁场,正方形线框abcd的质量m=0.10kg、边长L =0.50m、电阻R=0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd边跟磁场下边缘有一段距离。现用一竖直向上的恒力F=4.0N向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面,且cd边保持水平。设cd边刚进入磁场时,线框恰好开始做匀速运动。( g a b d c l l

电磁感应经典高考题综合1

高考电磁感应经典试题(精选)专题训练 1.(2013全国新课标理综1第25题)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 2.(2012·上海物理)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t=0时,一水平向左的拉力F垂直作用在导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。 (1)求回路中感应电动势及感应电流随时间变化的表达式; (2)经过多长时间拉力F达到最大值,拉力F的最大值为多少 (3)某过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

3.(22分)(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。如图所示,自行车后轮由半径r1=×10-2m的金属内圈、半径r2=的金属外圈和绝缘幅条构成。后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。在支架上装有磁铁,形成了磁感应强度B=、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6 。后轮以角速度ω=2πrad/s相对于转轴转动。若不计其它电阻,忽略磁场的边缘效应。 (1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向; (2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图; (3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab 随时间t变化的U ab-t图象; (4)若选择的是“、”的小灯泡,该“闪烁”装置能否正常工作有同学提出,通过改变磁感应强度B、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方 案,请给出你的评价。 4.(2011海南物理)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M’N’是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与

电磁感应经典高考题

电磁感应经典高考题 (全国卷1)17.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5 10 5T。一灵敏电压表连接在当地入海河段的两岸,河宽100m该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水 自西向东流,流速为2m/s。下列说法正确的是 A.河北岸的电势较高 B .河南岸的电势较高 C.电压表记录的电压为9mV D .电压表记录的电压为5mV 【答案】BD 【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D对C错。根据法拉第电磁感应定律 E BLv 4.5 10 5100 2 9 10 3V, B 对A错。 【命题意图与考点定位】导体棒切割磁场的实际应用题。 (全国卷2)18.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b和下边界d水平。在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。线圈从水平面a开始下落。已知磁场上下边界之间的距离大于水平面a、b之间的距离。若线圈下边刚通过 圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流, 在c处不受安培力,但线圈在重力作用下依然加速,因此从d处切割磁感线所受安培力必然大于b处,答案D。 【命题意图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解。 (新课标卷)21.如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一 缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场 水平面b、c (位于磁场中)和d时,线圈所受到的磁场力的大小分别为F b、F c 和F d,则 A. F d>F c>F b B. C. F c > F b > F d D. F c < F d < F b F F 【答案】D 【解析】线圈从a到b做自由落体运动, 在b点开始进入磁场切割磁感线所有受到安培力F b,由于线 .一铜质细直棒ab水平置于缝隙中,且与圆

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

十年高考分类解析-电磁感应

十年高考分类解析电磁感应 总题数:72 题 第1题(2006年普通高等学校夏季招生考试理综全国卷Ⅰ(新课程)) 题目 21.如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置。保持导轨之间接触良好,金属导轨的电阻不计。现经历以下四个过程:①以速率v移动d,使它与ob的距离增大一倍;②再以速率v移动c,使它与oa的距离减小一半;③然后,再以速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处。设上述四个过程中通过电阻R的电量的大小依次为Q1、Q2、Q3和Q4,则 A. Q1=Q2=Q3=Q4 B. Q1=Q2=2Q3=2Q4 C. 2Q1=2Q2=Q3=Q4 D. Q1≠Q2=Q3≠Q4 答案 A

解析:由,可知,在四种移动情况下变化的面积是相同的,则磁通量的变化相同,跟移动的速度无关,跟移动的时间也无关,所以A选项正确。 第2题(2006年普通高等学校夏季招生考试理综全国卷Ⅱ(新课程)) 题目 20.如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab放在导轨上并与导轨垂直。现用一平行于导轨的恒力F拉杆ab,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E表示回路中的感应电动势,i表示回路中的感应电流,在i随时间增大的过程中,电阻消耗的功率等于 A F的功率 B 安培力的功率的绝对值 C F与安培力的合力的功率 D iE 答案 BD 解析:ab棒在匀强磁场中运动,切割磁感线,产生感应电动势,产生感应电流,从而使ab 棒在磁场中受到安培力作用,电路中所产生的电能是通过克服安培力做功实现的,电流通过电阻产生热量,电能转化为热量,遵循能量守恒,所以电阻消耗的功率就是ab棒上的电功率,,也就是安培力的功率,由于安培力做负功,所以为安培力的功率的绝

(完整版)电磁感应经典例题

电磁感应 考点清单 1 电磁感应现象 感应电流方向 (一)磁通量 1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ). 2.磁通量的计算 (1)公式Φ=BS 此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直. (2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积. θsin S B ?=Φ 其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”. (3)磁通量的方向性 磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量. (4)磁通量的变化 12Φ-Φ=?Φ ?Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意. (二)电磁感应现象的产生条件 1.产生感应电流的条件:穿过闭合电路的磁通量发生变化. 2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源. [例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( ) 图13-36 A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 [解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.

大学物理 电磁感应习题

第6章 电磁感应 思考讨论题 1·判断下列情况下可否产生感应电动势,若产生,其方向如何确定? (1)图8.1a ,在均匀磁场中,线圈从圆形变为椭圆形; (2)图8.1b ,在磁铁产生的磁场中,线圈向右运动; (3)图8.1c ,在磁场中导线段AB 以过中点并与导线垂直的轴旋转; (4)图8.1d ,导线圆环绕着通过圆环直径长直电流转动(二者绝缘)。 解:(1)线圈面积变小,产生顺时针方向的感应电动势(俯视) (2)产生电动势,从左往右看顺时针方向。 (3)产生电动势,由B 指向A 。 (4)不产生电动势。 2·一段导体ab 置于水平面上的两条光滑金属导轨上(设导轨足够长),并以初速 v 0向右运 动,整个装置处于均匀磁场之中(如图8.2所示),在下列两种情况下判断导体ab 最终的运动状态。 解: 图 8.1a 图8.1b O 图8.1c 图8.1d 图8.2a 图8.2b

3·长直螺线管产生的磁场 B 随时间均匀增强, B 的方向垂直于纸面向里。判断如下几种情 况中,给定导体内的感应电动势的方向,并比较各段导体两端的电势高低: (1)图8.3a ,管内外垂直于 B 的平面上绝缘地放置三段导体ab 、cd 和ef ,其中ab 位于 直径位置,cd 位于弦的位置,ef 位于 管外切线的位置。 (2)图8.3b ,在管外共轴地套上一个导体圆环(环面垂直于 B ),但它由两段不同金属材 料的半圆环组成,电阻分别为R 1、R 2,且R R 12>,接点处为a 、b 两点。 解:(1)b a U U =,c d U U >,f e U U > (2)b a U U > 4·今有一木环,将一磁铁以一定的速度插入其中,环中是否有感应电流?是否有感应电动势?如换成一个尺寸完全相同的铝环,又如何?通过两个环的磁通量是否相同? 解:木环没有感应电流。铝环有感应电流。通过两个环的磁通量相同。 5·两个互相绝缘的圆形线圈如图8.4放置。在什么情况下它们的互感系数最小?当它们的电流同时变化时,是否会有感应电动势产生? 解:当两者相互垂直放置时,互感系数最小,为0。 此时当电流变化时,没有互感电流。 6·试比较动生电动势和感生电动势(从定义、非静电力、一般表达式等方面分析)。 解:由定义知二者产生的原因不同。 (1)如果外磁场不变,而导体(或回路)的位置、形状等有变化,则产生动生电动势。 (2)如果导体(或回路)都固定不动,只有外磁场在变化,则产生感生电动势。 (3)从物理本质上看,它们都由不同的非静电力产生,前者为洛仑兹力,后者为涡旋电场力。 f 图8.3a b 2 R 1R a 图8.3b 图8.4

完整word版,高考物理电磁感应中的图像问题

2015届高考复习云课堂第2讲 电磁感应中的图象问题 1.图象类型 电磁感应中主要涉及的图象有B-t图象、Φ-t图象、E-t图象和I-t图象。还常涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象。 2.常见题型 图象的选择、图象的描绘、图象的转换、图象的应用。 3.所用规律 一般包括:左手定则、安培定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律等。 4.分析步骤 (1)明确图象的种类; (2)分析电磁感应的具体过程; (3)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数方程; (4)根据函数方程进行数学分析,例如分析斜率的变化、截距等; (5)画图象或判断图象 问题类型由给定的电磁感应过程选出正确的图象 解题关键根据题意分析相关物理量的函数关系、分析物理过程中的转折点、明确“+、-”号的含义,结合数学知识做正确的判断 匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好 接触.下列关于回路中电流i与时间t的关系图线,可 能正确的是() 解析设∠bac=2θ,MN以速度v匀速运动,导体棒单位长度的电阻为R0.经过时间t,导体棒的有效切割长度L=2v t tan θ,感应电动势E=BL v=2B v2t tan θ,回路 的总电阻R=(2v t tan θ+2v t )R,回路中电流i= E = B v 故i与t无

【例2】边长为a的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面的匀强磁场中,现把框架匀速拉出磁场,如图所示,则选项图中电动势、外力、外力功率与位移图象规律与这一过程相符合的是() 解析:感应电动势E=BLv=B×2xtan30°v=,则E与x成正比.故A错误,B正 确.线框匀速运动F外=F安=BIL,I=,E=BLv,得到F外=,L=则F外=, B、R、v一定,则F外∝x2.外力的功率P外=F外v=,P外∝x2,故选B

相关文档
相关文档 最新文档