文档库 最新最全的文档下载
当前位置:文档库 › 100万吨热连轧轧制规程设计

100万吨热连轧轧制规程设计

100万吨热连轧轧制规程设计
100万吨热连轧轧制规程设计

太原科技大学

课程设计

题目:100万吨热连轧工艺设计

院系:材料科学与工程学院

专业:机械设计及其自动化

班级:机自0911班

学生姓名:张骁康

学号:200812030534

指导老师:杨霞

日期:2013年1月4日

目录

一.题目及要求

二.工艺流程图

三.主要设备的选择

3.1立辊选择

3.2轧机布置

3.3粗轧机的选择

3.4精轧机的选择

3.5工作辊窜辊系统

四.压下规程设计与辊型设计

4.1压下归程设计

4.2道次选择确定

4.3粗轧机组压下量分配

4.4精轧机组压下量分配

4.5校核咬入能力

4.6确定速度制度

4.7轧制温度的确定

4.8轧制压力的计算

4.9传动力矩

五.轧辊强度校核

5.1支撑辊弯曲强度校核

5.2工作辊的扭转强度校核

2

六.参考文献

3

一题目及要求

1.1计题目

已知原料规格为1.5~19.6×1250~1850mm,钢种为Q345A,产品规格为19.6×1250mm。

1.2的产品技术要求

(1)碳素结构钢热轧板带产品标准(GB912-89),尺寸、外形、重量及允许偏差应符合GB-709-88标准

钢板长度允许偏差

切边钢板宽度允许误差

2)表面质量:表面要缺陷少,需要平整,光洁度要好。

1

二工艺流程图

坯料→加热→除鳞→定宽→粗轧→(热卷取→开卷)→精轧→冷却→剪切→卷取

三主要设备的选择

轧钢机是完成金属轧制变形的主要设备,因此,轧钢机能力选取的是否合理对车间生产产量、品种和规格具有非常重要的影响。

选择轧钢设备原则:

(1)有良好的综合技术经济指标;

(2)轧机结构型式先进合理,制造容易,操作简单,维修方便;

(3)有利于实现机械化,自动化,有利于工人劳动条件的改善;

(4)备品备件要换容易,并有利于实现备品备件的标准化;

(5)在满足产品方案的前提下,使轧机组成合理,布置紧凑;

(6)保证获得质量良好的产品,并考虑到生产新品种的可能;

热带轧机选择的主要依据是:车间生产的钢材品种和规格。轧钢机选择的主要内容是:选取轧机的架数、能力、结构以及布置方式。最终确定轧钢机的结构形式及其主要技术参数。

3.1立辊选择

立压可以齐边(生产无切边带材)、调节板坯宽度并提高除磷效果。立压轧机包括:大立辊、小立辊及摆式压力机三种,各自特点如下:

大立辊:占地较多,设备安装在地下,造价高,维护不方便。而其能力较强,用来调节坯料宽度。

小立辊:能力较小,多用于边部齐边。

摆式侧压:操作过程接近于锻造,用于控制头尾形状,局部变形,提高成材率效果较好。缺点是设备地面设备占用场地较多,造价较高。

本设计采用连铸坯调宽,生产不同宽度带卷,选择小立辊齐边。

3.2 轧机布置

现代热带车间分粗轧和精轧两部分,精轧机组大都是6~7架连轧,但其粗轧机数量和布置却不相同。热带连轧机主要区分为全连续式,3/4连续式和1/2连续式,以及双可逆粗轧等。(1)全连续式:

全连续式轧机的粗轧机由5~6个机架组成,每架轧制一道,全部为不可逆式。这种轧制机产量可达500~600万吨/年,产品种类多,表面质量好。粗轧全连轧布置见图1a。但设备多,投资大,轧制流程线或厂房长度增大。而且由于粗轧时坯料短,轧机效率低,连轧操作难度大,效果并不很好,所以一般不采用粗轧连轧设计。

2

(2)3/4连续式

图1 各种热连轧及布置图

3/4连续式布置形式是先用二辊轧机轧一道,然后设置1架可逆式轧机轧制3或5道,再由后面两架轧机连续轧制一道(见图1(b))。后面这两道看上去作业率不高,但它是保证中间坯尺寸和凸度的关键,使精轧产品质量和轧制过程稳定。

另外,这种布置采用250 mm厚坯,轧制压缩比大,产品种类全面,曾经是国外流行的布置。

(3)半连续式:

半连续式轧机有两种形式:图1(C)中粗轧机组由一架不可逆式二辊破鳞机架和一架可逆式四辊轧机架组成,一般使用坯料在150mm以下,轧制5道次,对凸度厚度控制难度大。主要生产普通钢种带卷。高档品种开发难度大,较厚产品也较少生产。而且为保单卷重,常常设计坯料很长(最高14米),使加热炉过宽,大大限制了加热温度。这类轧机如果使用230mm厚坯,则轧制道次过多,温降过大。但这种布置如果粗轧机能力特别大,如太钢1549热连轧线,辅助必要的检测设备,也可达到道次少温降小,中间坯温度稳定的要求。

3

图1(d)中粗轧机是由两架强力四辊可逆式轧机组成,这种布置即提高轧机利用率,又能使轧机数量较少,稳定中间坯凸度,减少温降,故为当前流行方案。

根据任务书要求,本设计采用2架强力四辊可逆轧机组成粗轧机组,第一粗轧机前安装小立辊轧机,对侧边进行有效修正。

3.3 粗轧机的选择:

过去粗轧,为了增大工作辊辊径,提高咬入能力,多选择二辊轧机,但是二辊轧机产生的挠度较大,不能满足凸度控制要求。现代四辊轧机,其工作辊直径已大大提高,并且安装液压平衡弯辊,使轧辊挠度可控。

本设计两架粗轧机详细资料如下:

参考太钢1549及港陆1250生产实际,初步确定轧机各部件相关尺寸如下:

轧机类型:四辊可逆式轧机

工作辊:

轧辊直径: 1020mm

辊身长度: 1650mm

轧辊材料:铸钢

支承辊:

轧辊直径: 1450mm

辊身长度: 1650mm

辊身材料:合金锻钢

其中,第一架采用电动压下,行程大。第二架采用长行程液压缸,且装配弯辊装置,用于控制板凸度,且要求粗轧都达到单位宽度2.5t,两架轧机能力为3200t。第二架粗轧还CVC 窜辊,提高中间坯板形控制能力。

3.4 精轧机的选择:

热轧带钢精轧机普遍采用长行程液压压下、板型控制。板型控制手段除弯辊外还有:CVC 轧机、HC轧机、PC轧机。现将各型轧机简要

介绍如下:

CVC轧机: 轧辊凸度连续可变的轧机—

—CVC(continuously variable crown)轧

机属于一种新型的四辊轧机。这种方式大压

下,大张力时,辊系稳定好,国内外热连轧

市场占70%。

图2为CVC轧机的轧辊原理图,轧辊整

个外廓磨成S型(瓶型)曲线。上下轧辊互

相错位180度布置,形成一个对称的曲线辊

4

缝轮廓。这两根S型轧辊可以轴向移动,其移动方向一般是相反的。由于轧辊具有对称S型曲线。

在轧辊未产生轴向移动时,轧辊构成具有相

同高度的辊缝,其有效凸度等于零(a)图。在上辊

向左移动、下辊向右移动时,板材中心处两个轧辊

轮廓线之间的辊缝变大,此时的有效凸度小于零(b)

图。如果上辊向右移动下辊向左移动的板材中心处

两个轧辊轮廓线之间的辊缝变小,这时的有效凸度

大于零(c)图。CVC轧辊的作用与一般带凸度的轧

辊相同,但其主要优点是凸度可以在最小和最大凸

度之间进行无级调整,这是通过具有S型曲线的轧

辊做轴向移动来实现的。CVC轧辊辊缝调整范围也

较大,与裹辊装置配合使用时如1700板轧机的辊

缝调整量可达600u m左右。由于工作辊具有S型曲

线,工作辊与支撑辊之间是非均匀接触的。实践表

明,这种非均匀接触对轧辊磨损和接触盈余不会产

生太大的影响。

精轧基本遵守比例凸度,各道凸度相对图2 CVC轧机的轧辊原理图

于延伸率是确定值。各道最佳凸度是由轧辊原始凸度,膨胀凸度,弯辊凸度,CVC挠曲凸度,目标凸度根据来料凸度确定。

HC轧机: HC轧机为高性能板型控制轧机的简称。当前用于日本生产的HC轧机是在支持辊和工作辊之间加入中间辊并使之横向移动的六辊轧机,其特点有:(a)HC轧机具有很好的板形控制性,多用于小辊径冷轧;(b)HC轧机可显著提高热带钢的平直度;(c)压下量由于不受板型限制而可适当提高。

PC轧机:对辊交叉轧制技术(Pair Cross Roll)。PC轧机的工作原理是通过交叉上下成对的工作辊和支撑辊的轴线形成上下工作辊间辊缝的抛物线,并与工作辊的辊凸度等效。虽然可以安装在线ORG,但使用效果欠佳,鞍钢1780、唐钢1810采用后证明稳定性稍差。

所以,本设计F1~F5采用当今主流轧制设备CVC轧机。

全部七架四辊精轧机纵向排列,间距为6米;F1~F7均有正弯辊系统,F1~F7实行了长行程液压厚度自动控制(AGC)技术,使带钢误差控制得到全面保证。轧线上装设水雾冷却和除尘系统,小车换辊技术,强力可调层流冷却设备,卷取厚度达到25mm。所有支撑辊采用油膜轴承静动压系统,增大支撑辊辊颈。

3.5 工作辊窜辊系统简介

3.5.1 控制目标

(1)改善轧辊磨损形状,控制边部减薄;

5

(2)改善轧辊磨损,允许自由轧制;提高热装比例,提高单位轧制量;

(3)使用锥形工作辊,实现超平材轧制;

(4)均匀工作辊热膨胀,实现轧制取向硅钢不减产。

这一功能与弯辊功能相联系,可以改善热带钢轧机对板形的控制能力。

3.5.2 工作原理

F4 F7机架工作辊从轧制中心线横向窜动±150 mm。

液压装置允许工作辊在两块带钢轧制的间隙时间进行窜动,窜动最大速度为20 mm/ s ,最小速度为5 mm/ s。

使用行程:300 mm

总行程:370 mm(70 mm超行程)

3.5.3 技术数据

窜动装置数量:每架1套

窜动液压缸: 4个(每工作辊2个),直径220/ 125 mm,行程370 mm

夹紧缸: 2个(出入口各1个),直径125/ 90 mm ,行程500 mm

工作压力:窜动缸的额定压力为9 MPa ,最大压力为50 MPa ;夹紧缸的工作压力为17 MPa 窜动速度:高速20 mm/ s ,低速5 mm/ s

窜动周期:在行程±50 mm、最小压下速度1. 25 mm/ s、最大机架延伸0. 5 mm、PLC和网络响应时间约为0. 25 s时,两块钢之间窜动周期为10 s。

位置传感器的类型是BTL5 - E17 - M500 - B- KA05 ,行程为500 mm。

3.5.4 定义

当工作辊中心线与轧制中心线重合时,称为工作辊处于零位。

上工作辊向工作侧窜动,同时下工作辊向传动侧对称窜动为正向窜动,反之为负向窜动。

3.5.5工作辊窜辊条件

(1)上下工作辊的间隙大于或等于0. 5 mm;

(2)工作辊转动速度大于或等于正常转动速度的10 %。

3.5.6 轴向推进负荷和窜辊力的平衡

如果工作辊的轴向力指向工作侧方向,该力完全由窜辊装置传递给机架平衡;

如果工作辊的轴向力指向传动侧方向,滑动轨道支撑在弯辊块外侧的T型钩上,弯辊块承受轴向力;

在无负荷的情况下,弯辊块的键平衡这些力。

3.5.7 操作方式

通过计算机键盘,有下列两种方式可以选择。

3.5.7.1 手动方式分3种

(1)手动窜辊方式:操作工通过键盘输入窜辊值,上下工作辊以轧制中心线为基准进行对称窜动。

(2)锥度调节方式(边部减薄窜辊方式):工作辊的锥度与带钢的接触宽度保持一个常数。

6

下列参数通过计算机输入:L———工作辊辊身长度; b———工作辊锥体长度; W———带钢宽度

操作工通过计算机键盘键入带钢边缘接触锥体的恒定长度Vu,工作辊窜辊PLC根据下列公式计算出窜辊值:S = L/2- b - W/2+ Vu

一般Vu值在60 100 mm ,当该值超出这一范围,在计算机画面上将有一个提示信息。

(3)周期循环窜辊方式:工作辊在两块钢之间以一个恒定值窜动,该恒定窜辊值通过计算机键盘输入,工作辊窜动达到最大允许位置后,改变窜辊信号,工作辊继续向反向窜动,如此往复进行。

3.5.7.2 自动窜辊方式

窜辊位置由计算机进行设定,操作人员根据工艺需要选择自动窜辊策略。

(1)循环窜辊策略:同手动循环窜辊方式。

(2)单向循环窜辊策略:工作辊经过多次窜动窜至正向最大,然后由正向最大一次窜至负向最大,再由负向最大经过多次窜动至正向最大,如此往复进行。

(3)优化窜辊策略:窜辊按步长窜动,窜动幅度逐渐从小到大,再从大到小,不断重复。

(4)全自动窜辊策略:窜辊位置由计算机计算给出,其计算方法是按工作辊长度2 000 mm

分成40片,每片50 mm ,计算每一片的磨损,根据工作辊各区域最大和最小磨损情况确定最佳窜辊位置。工作辊的磨损计算由弯辊模型计算给出。

(5)边部减薄控制窜辊策略:同手动锥度调节方式

四压下规程设计与辊型设计

4.1 压下规程设计

压下规程设计的主要任务就是要确定由一定的板坯轧成所要求的板、带产品的变形制度,亦即要确定所需采用的轧制方法、轧制道次及每道次压下量的大小,在操作上就是要确定各道次辊缝的位置(即辊缝的开度)和转速。因而,还要涉及到各道次的轧制速度、轧制温度及前后张力制度及道次压下量的合理选择,因而广义地来说,压下规程的制定也应当包括这些内容。

通常在板、带生产中制定压下规程的方法和步骤为:(a)在咬入条件允许的条件下,按经验配合道次压下量,这包括直接分配各道次绝对压下量或压下率、确定各道次压下量分配率(△h/∑△h)及确定各道次能耗负荷分配比等各种方法;(b)制定速度制度,计算轧制时间并确定逐道次轧制温度;(c)计算轧制压力、轧制力矩;(d)校验轧辊等部件的强度和电机功率;(e)按前述制定轧制规程的原则和要求进行必要的修正和改进。

4.2 道次选择确定

轧钢机机架数目的确定与很多因素有关,主要有:坯料的断面尺寸、生产的品种范围、生产数量的大小,轧机布置的形式、投资的多少以及建厂条件等因素。但在其他条件即定的情

7

况下,主要考虑与轧机布置的形式有关。本设计采用连续式布置,因此机架数目应不少于轧制道次即可确定机架数目了。

本设计根据板坯厚度为160mm;成品厚度为5mm,选择平均延伸系数ū=1.35,则轧制总道次N为:

N=log(160/5)/log1.35=11.54

故: 选总12道次,其中粗轧7道次,精轧5道次。

2.3 粗轧机组压下量分配

根据板坯尺寸、轧机架数、轧制速度以及产品厚度等合理确定粗轧机组总变形量及各道次压下量。其基本原则是:

(1)由于在粗轧机组上轧制时,轧件温度高、塑性好,厚度大,故应尽量应用此有利条件采用大压下量轧制。考虑到粗轧机组与精扎机组之间的轧制节奏和负荷上的平衡,粗轧机组变形量一般要占总变形量的70~80%。

(2)提高粗轧机组轧出的带坯温度。一方面可以提高开轧温度,另一方面增大压下可能减少粗轧道次,同时提高粗轧速度,以缩短延续时间,减少轧件的温降。

(3)考虑板型尽量按照比例分配凸度,在粗轧阶段,轧制力逐渐较小使凸度绝对值渐少。但是,第一道考虑厚度波动,压下量略小,第二道绝对值压下最大,但压下率不会太高。

本设计粗轧机组由两架四辊可逆式轧机组成,各道次的压下量分配如下:

表1 粗轧压下量分配

道次R1 R2 R3 R4 R5 R6 R7

延伸系数分配 1.34 1.35 1.36 1.38 1.40 1.39 1.39 入口厚度(mm)160 124 86 62 47 37 29

出口厚度(mm)124 86 62 47 37 29 23

压下量(mm)36 38 24 15 10 8 6

压下率(%)22.5 30.6 27.9 24.2 21.3 21.6 21

2.4 精轧机组的压下量分配

精轧机组的主要任务是在5~7架连轧机上将粗轧带坯轧制成板形、尺寸符合要求的成品带钢,并需保证带钢的表面质量和终轧速度。

1)精轧各架压下量分配

精轧连轧机组分配各架压下量的原则;一般也是利用高温的有利条件,把压下量尽量集中在前几架,在后几架轧机上为了保证板型、厚度精度及表面质量,压下量逐渐减小。为保证带钢机械性能防止晶粒过度长大,终轧即最后一架压下率不低于10%,此外,压下量分配应尽可能简化精轧机组的调整和使轧制力及轧制功率不超过允许值。

依据以上原则精轧逐架压下量的分配规律是:第一架可以留有余量,即考虑到带坯厚度的可能波动和可能产生咬入困难等,使压下量略小于设备允许的最大压下量,中间几架为了充

8

9

分利用设备能力,尽可能给以大的压下量轧制;以后各架,随着轧件温度降低、变形抗力增大,应逐渐减小压下量;为控制带钢的板形,厚度精度及性能质量,最后一架的压下量一般在10~15%左右。精轧机组的总压下量一般占板坯全部压下量的10~25%。 本次设计采用7架连轧,结合设备、操作条件直接分配各架压下量如下:错误!未找到引用源。 精轧机组压下量分配及各项参数如表(2)所示:

表2 精轧机组压下量分配及参数

2.5 校核咬入能力

热轧钢板时咬入角一般为15~22°,低速咬入可取20°,由公式 )1arccos(D

h

?-

=α (1) 将各道次压下量及轧辊直径代入可得各轧制道次咬入角为:

表3 粗轧各道次咬入角的校核

精轧机各架所轧轧件的厚度较小,精轧咬入角校核省略。

2.6 确定速度制度

(1)粗轧速度制度

粗轧为保证咬入,采用升速轧制。根据经验资料,取平均加速度a=40rpm/s ,平均减速度b=60rpm/s 。由于咬入能力很富裕故可采用稳定高速咬入,考虑到粗轧生产能力与精轧生产能力得匹配问题,确定粗轧速度如下:咬入速度为n 1=40rpm/s ,抛出速度为n 2=20rpm/s

道 次 F1 F2 F3 F4 F5 延伸率分配

1.27

1.35 1.34 1.34 1.25 入口厚度(mm ) 23 18 13 10 7

压 下 量(mm ) 5 5 3 3 2 压 下 率(%) 21.7

27.7

23.1

30

28.6

道 次: R1 R2 R3 R4 R5 R6 R7 轧辊直径(mm ) 1020

1020

1020

1020

1020

1020

1020

压下量(mm ) 36 38 24 15 10 8 6 咬入角(°)

15.42

15.84 --

--

--

--

--

10

(2)粗轧轧制延续时间:每道次延续时间 0t t t zh j +=,

其中0t 为间隙时间,zh t 为纯轧制时间, 21t t t zh +=

设v 1为t 1时间内的轧制速度,v 2为t 2时间内的平均速度,则

60/11Dn v π=,

120/)(212n n D v +=π (D 取平均值)

减速时间

b n n t 2

12-=

减速段长 222v t l =,

稳定轧制段长 111v t l =,

122121/)(/)(v v t l v l l t -=-=。

轧制第一二道次时,以第一架为计算标准,n 1=30rpm/s ,n 2=30rpm/s ,轧件长度

m l 96.018.5124

160=?=

,减速时间0600

303212=-=-=b n n t s ,减速时平均速度

s m n n D v /57.1120/60000114.3120/)(212=??=+=π, 2l =0,V1=1.57m/s,

s v v t l v l l t 98.61.57/10.96/)(/)(122121==-=-=。

则轧制延续时间为6.98s 。按照以上公式可求得粗轧各道次轧制时间:

表4 各道次轧制时间

速度梯形图如下:

道 次 R1 R2 R3 R4 R5 R6 R7 轧制时间(S) 7.0

10.0

13.8

12.8

17.4

19.9

18.3

11

图5 可逆轧制速度图

由于两架粗轧机间距7m ,所以轧件尾部从前一架轧机出口到后一架入口所需时间t 12=7/1.7=4.1s 由于轧件较长,取间隙时间t 0=3s 所以粗轧总延续时间

t=6.98+9.95+13.81+12.75+17.39+19.85+3*6=98.73s (3)精轧速度制度确定

确定精轧速度制度包括:确定末架的穿带速度和最大轧制速度;计算各架速度及调速范围;选择加减速度等。

精轧末架的轧制速度决定着轧机的产量和技术水平。确定末架轧制速度时,应考虑轧件头尾温差及钢种等,一般薄带钢为保证终轧温度而用高的轧制速度;轧制宽度大及钢质硬的带钢时,应采用低的轧制速度。本设计典型产品6mm ,故终轧速度设定为12m/s 左右。

末架穿带速度在10m/s 左右,带钢厚度小,其穿带速度可高些。穿带速度的设定可有以下三种方式:

(1)当选用表格时,按标准表格进行设定;

(2)采用数字开关方式时,操作者用设定穿带速度的数字开关进行设定,此时按键值即为穿带速度;

(3)其它各架轧制速度的确定:当精轧机末架轧制速度确定后,根据秒流量相等的原则,各架由出口速度确定轧件入口速度。根据各架轧机出口速度和前滑值求出各架轧辊线速度和转速。

各道轧件速度的计算:

已预设末架出口速度为12m/s 由经验向前依次减小以保持微张力轧制(依据经验设前一架出口速度是后一架入口速度的95%)依据秒流量相等得:

s m H h V V h H /47.96.7612/6666=÷?=?= 9.00m/s 9.4795.095.065=?==H h V V

根据以上公式可依次计算得:

表5 各道次精轧速度的确定

(4)精轧机组轧制延续时间

精轧机组间机架间距为6米,各道次纯轧时间为错误!未找到引用源。=250×8.5/6/12=29.5s

道次 F1 F2 F3 F4 F5 入口速度(m/s ) 1.40 1.86 2.67 3.86 5.42 出口速度(m/s)

1.77

2.54

3.67

5.15

6.77

12

间隙时间分别为t j1=6/1.77=3.39s ;t j2=6/2.54=2.36s ;t j3=6/3.67=1.63s ;tj4=6/5.15=1.17s ;t j5=6/6.77=0.89s ; t j6=6/9.00=0.67s 则精轧总延续时间为

s t T j zh 61.9310.1129.5=+=+∑。轧制节奏图表见图6。

2.7 轧制温度的确定

(1)粗轧温度确定

为了确定各道次轧制温度,必须求出逐道次的温度降。高温轧制时轧件温度降可以按辐射散热计算,而认为对流和传导所散失的热量可大致与变形功所转化的热量相抵消。由于辐射散热所引起的温度降在热轧板带时可按下式计算:

41)1000

(9

.12T h Z t =? (2) 有时为简化计算,也可采用以下经验公式

错误!未找到引用源。 (3)

其中 错误!未找到引用源。、错误!未找到引用源。——分别为前一道轧制温度(℃)与轧出厚度,mm ;

Z ——辐射时间即该道次轧制延续时间t j Z=t j ;

T 1——前一道的绝对温度 ,K ; h ——前一道的轧出厚度。

表6 粗轧各道次的温降

道次 R1 R2 R3 R4 R5 R6 R7 温降(℃)

2.6

4.2

8.5

10.9

19.0

28.4

42.2

13

由于轧件头部和尾部温度降不同,为设备安全着想,确定各道次温度降时以尾部为准。根据现场生产经验数据,确定开轧温度为1200℃,带入公式依次得各道次轧制温度:

表7 粗轧各道次的温度

道次 R1 R2 R3 R4 R5 R6 R7 T(℃)

1197

1193

1184

1173

1154

1126

1083.8

(2)精轧机组温度确定

粗轧完得中间板坯经过一段中间辊道进入热卷取箱,再经过飞剪、除鳞机后,再进入精轧第一架时温度降为960℃。由于精轧机组温度降可按下式计算:

)(

1

00--=i i h h C t t n n n h h h

t t C --=00)( (5)

式中 0t 、0h ——精轧前轧件的温度与厚度

n t 、n h ——精轧后轧件的温度与厚度

[3]

代入数据可得精轧机组轧制温度:

根据生产现场经验可以预定终轧温度为860℃,即错误!未找到引用源。=860℃,计算得:

C=18.75, t 1=960-18.75*38/38=941.3;t 2=936.3s ; t 3=927.6s ;t 4=915.5s

表8 精轧各道次轧制温度(℃)

上述计算应当在现场同类车间进行实测验证,本设计为课程设计,没有现场数据验证,待毕业实习到现场实测温度。

2.8 轧制压力的计算

(1)粗轧段轧制力计算 粗轧段轧制力公式:

p Bl P = (4)

道次 F1 F2 F3 F4 F5 温度℃

941

936

928

916

901

14

①求各道次的变形抗力:变形抗力由各道次的变形速度、变形程度,变形温度共同决定。

变形速度按下式计算:

)/(/2h H R h v +?=ε

(5) 式中 R 、v ——轧辊半径及线速度。

根据变形程度、温度、变形速率数据,查Q195高温抗力曲线图,得到Q195变形抗力列入表9。

表9 粗轧各道次轧件的变形抗力

道 次 R1 R2 R3 R4 R5 R6 R7 线速度V (m /S) 1.56 1.56 1.56 2.62 2.62 2.82 2.82 温 度(℃) 1197 1193 1184 1173 1154 1126 1083.8 压下率ε

(%)

22.4 29.9 28.0 27.6 26.8 26.9 21 入口厚度(mm) 160 124 86 62 47 37 29 出口厚度(mm) 124 86 62 47 37 29 23 屈服强度σ

s(MPa)

28

32

37

42

48

54

表10 精轧各道次轧件的变形抗力

②计算各道的平均单位压力:根据克林特里公式计算应力状态影响系数

η=0.785+0.25l /h

道 次 F1 F2 F3 F4 F5 轧件出口速度V (m /S) 1.77

2.54

3.67 5.15 6.77 温 度(℃) 941 936 928 916 901 压下率ε

(%)

21.1 26.7 27.3 25.0 20.0 入口厚度(mm) 23 18 13 10 7 出口厚度(mm) 18 13 10 7 5 屈服强度σ

s(MPa)

80

91

102

114

118

15

其中h 为变形区轧件平均厚度,l 为变形区长度,单位压力大时(300MPa )应考虑轧辊弹性压扁的影响,因为粗轧时变形抗力不会超过这一值,故可不计算压扁影响,此时变形区长度h R l ?=。则平均单位压力为:

)25.0785.0(15.1h

l

p s +=σ, (6)

各道计算p 列入表11。再将轧件宽度、变形区长和平均单位压力数据代入公式(4),可得各道次轧制力(见表11)。

表11 粗轧各道的轧制力

道 次 R1 R2 R3 R4 R5 R6 R7 变形区长度(mm)

167 170 137 116 97 83 出口厚度(mm) 124 86 962 47 37 29 23 屈服强度σ(MPa)s 28 32 37 42 48 54 平均压力(p) 32.2 39.1 48.3 57.6 69.1 82.7 带 宽(mm) 1500 1500 1500 1500 1500 1500 1500 轧制力(P/kN) 5647

6979

6944

7020

7035

7203

(2)精轧段轧制力计算

目前普遍公认的最适合于热轧带钢轧制力模型的SIMIS 理论公式:

T p LcKK BQ P = (7)

式中:P ——轧制力N ; B ——轧件宽度mm ;

Qp ——考虑接触弧上摩擦力造成应力状态的影响系数;

L c ——考虑压扁后的轧辊与轧件接触弧的水平投影长度mm ; K ——决定金属材料化学成分以及变形的物理条件-变形温度、变形速度及变

形程度的金属变形阻力K=1.15s σ;

K T ——前后张力对轧制力的影响系数; 由以上公式可知平均单位压力:T p KK Q p =

16

① 计算p Q 时用西姆斯公式的简化公式克林特里公式m

c p H L Q 27

.075.0+=

其中 2

h

H Hm +=

② K 可以按照粗轧时的计算方法计算,数据如前表 ③K T 按下式计算K

a a K f

b T ττ)1(1-+-

=

因为前张力对轧制力的影响较后张力小,所以a>0.5,本设计中取a=0.7,前后张力均取3MPa 。

④接触弧投影长度计算:

一般以为接触弧长度水平投影长度为

h R Lc ?=

表12 精轧各道的轧制力

道 次: F1 F2 F3 F4 F5 F6 F7 轧制力(KN)

7408

9506

10011

9713

7836

8594

9011

2.9传动力矩

1)传动力矩

轧制力矩按下式计算h R P M z ?=12ψ式中 ψ — 合力作用点位置系数(或力臂系数),中厚板一般ψ取为0.4~0.5,粗轧道次ψ取大值,随轧件的变薄则ψ取小值。各道次的轧制力矩值如下表:错误!未找到引用源。

表15 各道的轧制力矩的计算 (M Z /MNM)

传动工作辊所需要的静力矩,除轧制力矩外,还有附加摩擦力矩m M ,它由以下两部分组成,即

21m m m M M M +=,

其中1m M 在四辊轧机可近似地由下式计算:

道 次 R1 R2 R3 R4 R5 R6 粗 轧 0.85

1.07

0.86

0.73

0.61

0.54

道 次 F1 F2 F3 F4 F5 F6 F7 精 轧

0.42

0.54

0.49

0.39

0.24

0.24

0.23

17

???

? ??=z g

z m D

D Pfd M 1 (8) 式中 f ——支撑辊轴承的摩擦系数,取f = 0.005;

z d ——支撑辊辊颈直径,对于粗轧机:z d =986mm ; 对于精轧机:z d =680mm 。

g D 、z D —— 工作辊及支撑辊直径,对于粗轧机:g D =1000mm , z D =1450mm ;对

于精轧机:g D =500mm ,z D = 800mm

代入后(8)可求的:粗轧机:1m M =3.4P,精轧机:1m M =1.7P ,2m M 可由下

式计算: ))(11

(12m z m M M M +-=η

式中 η—— 传动效率系数,本轧机无减速机及齿轮座,但接轴倾角 3≥α,故可

取η=0.94,故得

()12064.0m z m M M M +=

表16 各道摩擦力矩计算(M m /MNM)

2)轧机的空转力矩

轧机的空转力矩(k M )根据实际资料可取为电机额定力矩的3%~6%,即粗轧机:

()Nm M k 4104.217.1060

5500

975.0)

06.003.0(??=~=~

取k M =0.15MNm ; 精轧机:()Nm M k 4103.162.960

10000

975.0)

06.003.0(??=~=~ 取k M =0.1 MNm

因此电机轴上的总传动力矩为: k m z M M M M ++=

道 次 R1 R2 R3 R4 R5 R6 R7 粗 轧 0.08 0.09 0.08 0.07 0.06 0.06 道 次 F1 F2 F3 F4 F5 精 轧

0.04

0.05

0.05

0.04

0.03

100万吨热连轧轧制规程设计

太原科技大学 课程设计 题目:100万吨热连轧工艺设计 院系:材料科学与工程学院 专业:机械设计及其自动化 班级:机自0911班 学生姓名:张骁康 学号:200812030534 指导老师:杨霞 日期:2013年1月4日

目录 一.题目及要求 二.工艺流程图 三.主要设备的选择 3.1立辊选择 3.2轧机布置 3.3粗轧机的选择 3.4精轧机的选择 3.5工作辊窜辊系统 四.压下规程设计与辊型设计 4.1压下归程设计 4.2道次选择确定 4.3粗轧机组压下量分配 4.4精轧机组压下量分配 4.5校核咬入能力 4.6确定速度制度 4.7轧制温度的确定 4.8轧制压力的计算 4.9传动力矩 五.轧辊强度校核 5.1支撑辊弯曲强度校核 5.2工作辊的扭转强度校核 2

六.参考文献 3

一题目及要求 1.1计题目 已知原料规格为1.5~19.6×1250~1850mm,钢种为Q345A,产品规格为19.6×1250mm。 1.2的产品技术要求 (1)碳素结构钢热轧板带产品标准(GB912-89),尺寸、外形、重量及允许偏差应符合GB-709-88标准 钢板长度允许偏差 切边钢板宽度允许误差 2)表面质量:表面要缺陷少,需要平整,光洁度要好。 1

二工艺流程图 坯料→加热→除鳞→定宽→粗轧→(热卷取→开卷)→精轧→冷却→剪切→卷取 三主要设备的选择 轧钢机是完成金属轧制变形的主要设备,因此,轧钢机能力选取的是否合理对车间生产产量、品种和规格具有非常重要的影响。 选择轧钢设备原则: (1)有良好的综合技术经济指标; (2)轧机结构型式先进合理,制造容易,操作简单,维修方便; (3)有利于实现机械化,自动化,有利于工人劳动条件的改善; (4)备品备件要换容易,并有利于实现备品备件的标准化; (5)在满足产品方案的前提下,使轧机组成合理,布置紧凑; (6)保证获得质量良好的产品,并考虑到生产新品种的可能; 热带轧机选择的主要依据是:车间生产的钢材品种和规格。轧钢机选择的主要内容是:选取轧机的架数、能力、结构以及布置方式。最终确定轧钢机的结构形式及其主要技术参数。 3.1立辊选择 立压可以齐边(生产无切边带材)、调节板坯宽度并提高除磷效果。立压轧机包括:大立辊、小立辊及摆式压力机三种,各自特点如下: 大立辊:占地较多,设备安装在地下,造价高,维护不方便。而其能力较强,用来调节坯料宽度。 小立辊:能力较小,多用于边部齐边。 摆式侧压:操作过程接近于锻造,用于控制头尾形状,局部变形,提高成材率效果较好。缺点是设备地面设备占用场地较多,造价较高。 本设计采用连铸坯调宽,生产不同宽度带卷,选择小立辊齐边。 3.2 轧机布置 现代热带车间分粗轧和精轧两部分,精轧机组大都是6~7架连轧,但其粗轧机数量和布置却不相同。热带连轧机主要区分为全连续式,3/4连续式和1/2连续式,以及双可逆粗轧等。(1)全连续式: 全连续式轧机的粗轧机由5~6个机架组成,每架轧制一道,全部为不可逆式。这种轧制机产量可达500~600万吨/年,产品种类多,表面质量好。粗轧全连轧布置见图1a。但设备多,投资大,轧制流程线或厂房长度增大。而且由于粗轧时坯料短,轧机效率低,连轧操作难度大,效果并不很好,所以一般不采用粗轧连轧设计。 2

热轧带钢课程设计概论

辽宁科技大学 课程设计说明书 设计题目:热轧板带钢轧制规程设计 Q235,2.0×1200mm 学院、系:材冶学院材料科学与工程(材料加工工程)专业班级:材加 学生姓名: 指导教师: 成绩: 2015年 1 月 6 日

目录 摘要 (1) 1、文献综述 (2) 1.1热轧板带钢产品概述 (2) 1.1.1热轧板带钢的种类及用途 (2) 1.1.2板带材的工艺特点及质量要求 (3) 1.2热轧板带钢工艺及设备发展 (3) 1.2.1国外热轧带钢发展 (3) 1.2.2国内热轧带钢生产 (4) 1.3热轧带钢生产设备与新技术 (5) 1.3.1热轧带钢新一代TMCP技术 (5) 1.3.2无酸除鳞技术 (5) 1.3.3热轧带钢无头轧制技术 (6) 1.4热轧板带钢发展趋势 (6) 2、主要设备 (7) 3、轧制工艺及轧制制度的确定 (8) 3.1生产工艺流程 (8) 图3.1 工艺流程图 (8) 3.2压下规程设计 (8) 3.2.1根据产品选择原料 (8) 3.2.2精轧机组压下制度的确定 (9) 3.3速度制度 (10) 3.3.1精轧机轧制速度 (10) 3.3.2、精轧机工作图表 (13) 3.4、温度制度 (13) 3.4.1、精轧温度制度 (14) 3.4.2、卷取温度制度 (15) 3.5、辊型制度 (15) 4、生产设备校核 (17) 4.1、轧制力与轧制力矩 (17) 4.1.1、轧制力的计算 (17) 4.1.2 轧制力矩的计算 (19) 4.1.3、精轧轧制力和轧制力矩的计算 (19) 4.2、轧机设备校核 (20) 4.2.1、精轧机的轧辊强度校核 (20) 4.2.2、电机能力校核 (24) 参考文献 (27)

45钢的正火工艺过程是什么

45钢的正火工艺过程是什么? 浏览次数:2174次悬赏分:20|解决时间:2008-1-19 10:38 |提问者:康宁323 加热温度,保温时间和冷却方式 最佳答案 你把邮件钢的热处理工艺特点是:将钢加热到一定的温度,经一段时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。 1、碳钢的普通热处理工艺方法 1)钢的退火 钢的退火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后缓慢地随炉冷却。此时,奥氏体在高温区发生分解,从而得到比较接近平衡状态的组织。一般中碳钢(如40、45钢)经退火后消除了残余应力,组织稳定,硬度较低(HB180~220)有利于下一步进行切削加工。 2)钢的正火 钢的正火通常是把钢加热到临界温度Ac3或Accm线以上,保温一段时间,然后进行空冷。由于冷却速度稍快,与退火组织相比,组织中的珠光体量相对较多,且片层较细密,故性能有所改善,细化了晶粒,改善了组织,消除了残余应力。对低碳钢来说,正火后提高硬度可改善切削加工性,提高零件表面光洁度;对于高碳钢,则正火可消除网状渗碳体,为下一步球化退火及淬火作好组织准备。3)钢的淬火 钢的淬火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后放入各种不同的冷却介质中快速冷却(V冷>V临),以获得具有高硬度、高耐磨性的马氏体组织。 4)钢的回火 钢的回火通常是把淬火钢重新加热至Ac1线以下的一定温度,经过适当时间的保温后,冷却到室温的一种热处理工艺。由于钢经淬火后得到的马氏体组织硬而脆,并且工件内部存在很大的内应力,如果直接进行磨削加工则往往会出现龟裂,一些精密的零件在使用过程中将会引起尺寸变化从而失去精度,甚至开裂。因此,淬火钢必须进行回火处理。不同的回火工艺可以使钢获得各种不同的性能。 2、碳钢普通热处理工艺 1)加热温度 碳钢普通热处理的加热温度,原则上按加热到临界温度Ac1或Ac3线以上30~50℃选定。但生产中,应根据工件实际情况作适当调整。热处理加热温度不能过高,否则会使工件的晶粒粗大、氧化、脱碳、变形、开裂等倾向增加。但加热温度过低,也达不到要求。 表2-1碳钢普通热处理的加热温度 方法加热温度(℃) 应用范围 退火Ac3+(20~60) 亚共析钢完全退火 Ac1+(20~40) 过共析钢球化退火 正火Ac3+(50~100) 亚共析钢

中厚板轧制制造执行系统的设计与实现

中厚板轧制制造执行系统的设计与实现 中厚板轧制过程计算机控制系统通常采用三级结构设计。一级为基础自动化级,二级为过程控制级,三级为生产管理级。过程控制级(二级机)系统,亦即中厚板轧制制造执行系统MES处于厂级生产管理控制系统(三级机)和电气与仪表基础自动化系统(一级机)之间。中厚板轧制MES是连接一级和三级系统的重要环节,它们一起协同工作实现对中厚板整个轧制过程的自动化控制。本文建立了中厚板轧制过程MES 系统的过程处理模型,分析和构建了系统的体系结构,对其中的数据管理、信息处理和稳定的数据通信技术进行了研究。 1过程处理模型 中厚板轧制MES系统连接基础自动化级系统、人机界面(Huma nMachi ne In terface ,HMI)、生产管理级系统。系统主要包括以下以下几个功能模块:轧制规程计算模块、冷却控制计算模块、模型自学习模块、过程跟踪调度模块以及数据管理模块等等。该系统的过程处理模型如图1所示。

H耳版初ME马 1― 亂屈現fifil ff 卫卉罹臨诉出 理 图1中厚板轧制MES系统过程处理模型 轧制规程计算模块根据生产调度人员输入的原料数据和轧制目标等信息计算出对应的轧制规程,包括轧制总道次数、每道次相对辊缝、每道次轧制力(矩)、每道次出口厚度等等,这些数据为理论数据或经验数据。该模块同时根据实际轧制过程中产生的数据对轧制规程进行修正。 冷却控制计算模块根据轧制参数以及控冷需求等信息计算出 对应的冷却方式,包括集管开启方式、开启数量、喷水量等,这些数据为理论数据或经验数据。该模块同时根据轧制结束后实际的辊道速度信息及轧件温度信息等来对冷却方式进行修正。数据管理模块对生产原料数据、轧制过程数据以及轧制规程数据等等一系列数据进行管理,实现对数据库的操作。过程跟踪调度模块则主要是负责与数据通讯模块之间进行数据交换,对中厚板的轧制现场传回的数据(包括热金属检测仪

1450四辊热带钢粗轧机组压下规程设计及四辊组轧机座辊系设计

1450四辊热带钢粗轧机组压下规程设计及四辊组轧机座辊系设计 一、设计技术参数: 1、原料:180—200mm ×1300mm ;产品:30—50×1260mm 2、材质:Q235、Q195、08F 、20 3、工作辊采用四列圆锥滚子轴承,支承辊采用滚动轴承 4、出炉温度1100℃—1150℃,精轧机组开轧温度930℃—950℃ 二、设计要求 1、制定轧制规程:设计轧制道次压下量,压下率,轧制力,轧制力矩 2、确定四辊轧机辊系尺寸 3、绘制辊系装配图和轧机零件图 三、工作量 1、完成CAD 设计图2张 2、完成设计计算说明书 3、查阅文献5篇以上 四、工作计划 11.14——11.15 准备参考资料 11.15——11.25 计算,画草图 11.28 中期检查 11.28——12.07 画电子图,写说明书 12.08——12.09考核答辩 一、1450四辊热带钢粗轧机组的L/D1、L/D2及D2/D1初定 由《轧钢机械》(第三版)诌家祥主编教材表3—3可知: L=1450mm ,其中L/D1=1.5—3.5(常用比值为1.7—2.8)取L/D1=2.0 ∴D1=L/2.0=1450/2.0=725mm L/D2=1.0—1.8(常用比值为1.3—1.5)取L/D2=1.4 ∴D2=L/1.4=1450/1.4=1035.7mm,取D2=1040mm. 二、1450四辊热带钢粗轧机组压下规程设计 从设计技术参数中提供的数据可以看出,Q235、Q195和08F 属于普通碳素钢,查《金属塑性变形抗力》教材可知,Q235的变形抗力最大。而20号钢为优质碳素结构钢,其变形抗力也比较大,故在制定压下规程的时候制定了两个,来综合考虑。限假定轧制原料为180mm ×1300mm ,产品为50×1300mm 。 轧制道次 n = λ log log log 1 F F o - =35 .1log 130050log 1300200log )()(?-? =5.20 取n=5 1、粗轧机组压下规程满足的要求: ⑴为保证精轧坯要求的温度,尽可能的减少粗轧的轧制道次和提高粗轧机组的轧制速度 ⑵为简化精轧机组的调整,粗轧机组提供的精轧坯厚度范围尽可能小,一般精轧坯厚度为20—65mm

中厚板轧制规程设计课程设计

前言 板钢轧制制度的确定要求充分发挥设备潜力、提高产量、保证制度,并且操作方便、设备安全。合理的轧制规程设计必须满足下列原则和要求:在设备允许的条件下尽量提高产量,充分发挥设备潜力提高产量的途径不外是提高压下量、减少轧制道次、确定合理速度规程、缩短轧制周期、提高作业率、合理选择原料增加坯重等。在保证操作稳定的条件下提高质量,为保证钢板操作的稳定,要求工作辊缝成凸型,而且凸型值愈大操作愈稳定。 压下规程是钢板轧制制度中最基本的核心内容,它直接关系着轧机的产量和产品的质量。轧制制度中得其他内容如温度制度、速度制度都是以压下制度为核心展开的。反过来,温度制度、速度制度也影响到压下速度。

目录 1·制定生产工艺和工艺制度………………………………………………………… 1·1制定生产工艺流程…………………………………………………………… 1·2制定生产工艺制度……………………………………………………………2·压下规程制定…………………………………………………………………… 2·1坯料的选择……………………………………………………………………… 2·2确定轧制方法…………………………………………………………………… 2·3轧制道次的确定,分配各道次压下量………………………………………… 2·4咬入能力的校核…………………………………………………………………3·速度制度确定…………………………………………………………………………4·温度制度确定…………………………………………………………………………5·压下规程表的制定……………………………………………………………………6·各道次变形程度和变形速率的制定………………………………………………… 6.1 变形程度的确定………………………………………………………………… 6.2 变形速率的确定…………………………………………………………………7·轧制压力的制定………………………………………………………………………… 7.1 变形抗力的确定………………………………………………………………… 7.2 平面变形抗力的确定…………………………………………………………… 7.3 计算平均压力p………………………………………………………………… 7.4 轧制压力的确定…………………………………………………………………8·电机输出力矩的制定………………………………………………………… 8.1 传动力矩的计算……………………………………………………… 8.2 附加摩擦力矩的确定………………………………………………… 8.3 空转力矩的计算……………………………………………………… 8.4 动力矩的计算………………………………………………………… 8.5 电机输出力矩的计算………………………………………………… 8.6 电机额定力矩的计算…………………………………………………9·电机的校核………………………………………………………………… 9.1 主电机能力的限制…………………………………………………

热轧带钢轧制规程设计(DOC)

热轧带钢轧制规程设计 摘要 钢铁行业是国民经济的支柱产业,而热轧带钢生产是钢铁生产中的主要环节。热轧带钢工艺的成熟,为冷轧生产提供了优质的原料,大大地满足了国民生产和生活的需要。本车间参考鞍钢1700ASP生产线,本设计中主要包括六部分,第一部分从热轧带钢机的发展、国外带钢生产先进技术以及我国带钢发展等几个方面阐述了热轧带钢发展情况;第二部分参考了鞍钢ASP1700生产线以及实际设计情况确定了车间的轧钢机械设备及参数;第三部分以典型产品Q235,3.8×1200mm为例从压下规程、轧制速度、轧制温度等方面确定了生产工艺制度;第四部分以典型产品为例进行了轧制力和力矩计算;第五部分根据设备参数和实际制定的生产工艺进行了咬入、轧辊强度的校核;第六部分本次设计总结。 关键词:热轧带钢,轧制工艺制度,轧辊强度

目录 1综述 (1) 1.1引言 (1) 1.2 热轧带钢机的发展现状 (1) 1.3热轧板带钢生产的工艺流程 (2) 1.4 热轧板带钢生产的生产设备 (3) 1.5ASP1700热轧板带钢生产的新技术 (3) 2 主要设备参数 (4) 3 典型产品轧制工艺确定 (6) 3.1 生产工艺流程图 (6) 3.2 坏料规格尺寸的选定 (7) 3.3 轧制工艺制定 (7) 3.3.1 加热制度 (7) 3.3.2 初轧和精轧各自压下制度 (7) 3.3.3 精轧轧制速度 (9) 3.3.4 精轧温度制度 (10) 4力能参数计算 (10) 4.1 精轧各机架轧制力计算 (10) 4.2 精轧各机架轧制力矩的计算 (13) 5设备强度及能力校核 (13) 5.1 精轧机咬入角校核 (13) 5.2 轧辊强度校核 (14) 5.2.1 辊身弯曲强度校核 (17) 5.2.2 辊颈弯曲和扭转强度校核 (19) 5.2.3 辊头扭转强度校核 (20) 5.2.4接触应力的校核 (20) 6结语 (22) 参考文献 (23)

45号钢热处理工艺研究

45钢热处理工艺研究 在从石器时代进展到钢器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。 太钢六轧厂生产的优质碳素结构钢45钢主要用于汽车和航空工业等行业,由于45钢球化处理后可以显著提高塑性和韧性,便于机械加工和防止冲压变形开裂,因此用户对45钢的球化要求非常严格。针对六轧厂煤气罩式退火炉的设备状况和特点,对45钢的球化问题进行分析研究,确定了较为可行的热处理工艺。 对于45号钢推荐热处理温度:正火850度,淬火840度,回火600度。

45号钢为优质碳素结构用钢,硬度不高易切削加工,模具中常用来做模板,梢子,导柱等,但须热处理。 1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58)。 2. 45号钢不要采用渗碳淬火的热处理工艺。 调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度。 渗碳处理一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。 如果用45号钢渗碳,淬火后芯部会出现硬脆的马氏体,失去渗碳处理的优点。现在采用渗碳工艺的材料,含碳量都不高,到0.30%芯部强度已经可以达到很高,应用上不多见。可以采用调质+高频表面淬火的工艺,耐磨性较渗碳略差。

压下规程

200706040210 大学冶金与能源学院课程设计题目:热轧窄带钢压下规程设计专班业:材料成型与控制工程成型()级:07 成型(2)学生姓名:学生姓名:XX 指导老师:指导老师:XXX 日期:2011 年3 月10 日热轧窄带钢压下规程设计一、设计任务1、任务要求(1)、产品宽度300mm,厚度3.5mm (2)、简述压下规程设计原则(3)、选择轧机型式和粗精轧道次,分配压下量(4)、校核咬入能力(5)、计算轧制时间(6)、计算轧制力(7)、校核轧辊强度2、坯料及产品规格依据任务要求典型产品所用原料:坯料:板坯厚度:120mm 钢种:Q235 最大宽度:300mm 长产品规格:厚度:3.5mm 度:7m 板凸度:6 坯料单重:2t 二、压下规程设计1、产品宽度300mm,厚度 3.5mm 2、设计原则压下规程设计的主要任务就是要确定由一定的板坯轧成所要求的板、带产品的变形制度,亦即要确定所需采用的轧制方法、轧制道次及每道次压下量的大小,在操作上就是要确定各道次辊缝的位置(即辊缝的开度)和转速。因而,还要涉及到各道次的轧制速度、轧制温度及前后张力制度及道次压下量的合理选择,因而广义地来说,压下规程的制定也应当包括这些内容。通常在板、带生产中制定压下规程的方法和步骤为:(a)在咬入条件允许的条件下,按经验配合道次压下量,这包括直接分配各道次绝对压下量或压下率、确定各道次压下量分配率(△h/∑△h)及确定各道次能耗负荷分配比等各种方法; 2

热轧窄带钢压下规程设计(b)制定速度制度,计算轧制时间并确定逐道次轧制温度;(c)计算轧制压力、轧制力矩;(d)校验轧辊等部件的强度和电机功率;(e)按前述制定轧制规程的原则和要求进行必要的修正和改进。板带轧制规程设计的原则要求是:充分发挥设备能力,提高产量和质量,并使操作方便,设备安全。3、粗精轧道次,分配压下量粗精轧道次,3.1、轧制道次的确定有设计要求可知板坯厚度为120mm;成品厚度为 3.5mm,则轧制的总延伸率为:?∑ = 式中H 120 = = 34.28 h 3.5 ? ∑ 总延伸率H 坯料原始厚度h 产品厚度平均延伸系数取 1.36 则轧制道次的确定如下N= log ? ∑ log 34.28 = = 12(取整) log ? p log1.36 ? ps由此得实际的平均延伸系数为:= 12 ? ∑ =1 .3 4 ? ∑ 7 34.28 = =1.3 1.45 ?cp 5 由上面计算分配轧制道次,和粗精轧平均延伸洗漱如下:I :取粗轧 5 道次,平均道次延伸系数为 1.40。II :精轧为7 道次连轧,各道次平均延伸系数为按? 分配原则我们将粗、精轧的延伸系数如下:道次延伸系数粗轧? jp = 7 精轧 1.4 1.42 1.45 1.38 1.35 1.32 1.35 1.32 1.30 1.28 1.27 1.26 3.2、粗轧机组压下量分配根据板坯尺寸、轧机架数、轧制速度以及产品厚度等合理确定粗轧机组总变形量及各道次压下量。其基本原则是: 3 热轧窄带钢压下规程设计 (1)、由于在粗轧机组上轧制时,轧件温度高、塑性好,厚度大,故应尽量应用此有利条件采用大压下量轧制。考虑到粗轧机组与精扎机组之间的轧制节奏和负荷上的平衡,粗轧机组变形量一般要占总变形量的60%--80% (2)、提高粗轧机组轧出的带坯温度。一方面可以提高开轧温度,另一方面增大压下可能减少粗轧道次,同时提高粗轧速度,以缩短延续时间,减少轧件的温降。(3)、考虑板型尽量按照比例分配凸度,在粗轧阶段,轧制力逐渐较小使凸度绝对值渐少。但是,第一道考虑厚度波动,压下量略小,第二道绝对值压下最大,但压下率不会太高。本设计粗轧采用四分之三式,轧机配置为四架,粗轧制度为:第一架轧机为二辊不可逆,轧制一道次;第二架轧机为四辊可逆,轧制三道次;第三架轧机为四辊不可逆,轧制一道次(预留一架)。由此计算粗轧压下量分配数据如下表:道次延伸系数分配出口厚度(mm)压下量(mm)34.3 25.3 18.7 11.5 7.8 压下率(%)28.6 29.5 31.0 27.6 25.8 轧件长度(mm)9800 13900 20144 27815 37500 R1 R2 R3 R4 R5 1.40 1.42 1.45 1.38 1.35 85.7 60.4 41.7 30.2 22.4 3.3、精轧机组的压下量分配精轧连轧机组分配各架压下量的原则;一般也是利用高温的有利条件,把压下量尽量集中在前几架,在后几架轧机上为了保证板型、厚度精度及表面质量,压下量逐渐减小。为保证带钢机械性能防止晶粒过度长大,终轧即最后一架压下率不低于10%,此外,压下量分配应尽可能简化精轧机组的调整和使轧制力及轧制功率不超过允许值。依据以上原则精轧逐架压下量的分配规律是:第一架可以留有余量,即考虑到带坯厚度的可能波动和可能产生咬入困难等,使压下量略小于设备允许的最大压下量,中间几架为了充分利用设备能力,尽可能给以大的压下量轧制;以后各架,随着轧件温度降低、变形抗力增大,应逐渐减小压下量;为控制带钢的板形,厚度精度及性能质量,最后一架的压下量一般在10-15%左右。精轧机组的总压下量一般占板坯全部压下量的10-25%。4

45号钢热处理工艺

45号钢热处理工艺 1 45号钢要求硬度HRC40-50,是不是要淬火+低温回火, 换算成布氏硬度大约是380,470HB,根据一般热处理规范,热处理制度与硬度关系大致如下: 淬火温度:840?水淬 回火温度:150?回火,硬度约为57HRC;200?回火,硬度约为55HRC;250?回火,硬度约为53HRC;300?回火,硬度约为48HRC;350?回火,硬度约为45HRC;400?回火,硬度约为43HRC;500 ? 回火,硬度约为33HRC;600?回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点 (?) 20钢 735-855 (?) 45钢 724-780 (?) T8钢 730 -770(?) T12钢 730-820 (?) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900?,45号钢正火温度850?左右。

4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5 Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960?空冷 + 700,720?回火,空冷。最终热处理工艺: 1、淬火: 第一次预热:300,500?, 第二次预热840,860?; 淬火温度:1020,1050?; 冷却介质:油,介质温度:20,60?, 冷却至油温;随后,空冷,HRC=60,63。 、回火: 2 经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下: 加热温度400,425?,得到HRC=57,59。 说明:在480--520度之间回火正好是这种钢材的脆性回火区,在这个区间回火容易使模具出现崩刃。最为理想的回火区间在380--400?,这个区间回火,韧性最好,并且有良好的耐磨性。如果淬火后,采用深冷处理(理想的温度是零下120)与中温回火相结合,会得到良好使用效果和高寿命。Cr12MoV的回火脆性温度范围在325~375?。CR12MoV380-400回火后硬度在56-58HRC做冷冲模冲韧性好的材料具有不易开裂的优点,特别是在原材料质量不是很好的情况下,用此方法经济实惠。

中厚板生产压下规程课程设计-轧制规程设计

《塑性成型工艺(轧制)》课程设计说明书 课题名称15×2100×9000mm轧制规程设计指导教师 专业小组 小组成员 2013年06月15日

《塑性成型工艺(轧制)》课程设计任务书 10级材料成型与控制工程专业 设计小组:第12小组成员: 设计课题:中厚板轧制规程设计指导教师:张金标 设计小组学生学号产品牌号产品规格/mm 1Q23510×2000×9000 24510×1900×10000 312CrNi3A12×1800×10000 44Cr1313×1700×9000 5Q23512×2100×12000 6458×1800×13000 712CrNi3A14×2000×9000 84Cr1312×2000×8000 9Q2359×2050×12000 104510×2300×12000 1112CrNi3A13×1900×12000 124Cr1315×2100×9000 二、设计条件 机组:双机架串列式可逆机组(二辊可逆轧机粗轧,四辊可逆轧机精轧)。 主电机:二辊轧机主电机型号ZD250/120,额定功率25002kw,转速0~40~80rpm,过载系数2.25,最大允许传递扭矩1.22MN.m;四辊轧机主电机型号ZD250/83,额定功率20502kw,转速0~60~120rpm,过载系数2.5,最大允许传递扭矩0.832MN.m。 三、设计内容 制定生产工艺及工艺制度;确定轧制方法;确定轧制道次,分配道次压下量;设计变形工具;计算力能参数;校核轧辊强度及主电机负荷;绘制轧辊零件图、轧制表。 四、设计时间 设计时间从2013年06月03日至2013年06月14日,为期两周。 五、设计要求 每个设计小组提供6个以上设计方案,1成员完成1个设计方案的全部设计工作;组内分析、评价各个方案的设计结果,以最佳方案作为本组设计方案;小组提交最佳方案的设计说明书1份,组员提交个人的设计小结(简述方案、设计思路、计算过程和结果评价)。 材料成型教研室

45号钢等热处理

45号钢要求硬度HRC40-50,是不是要淬火+低温回火? 换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下: 淬火温度:840℃水淬 回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点(℃) 20钢735-855 (℃) 45钢724-780 (℃) T8钢730 -770(℃) T12钢730-820 (℃) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。 4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5 Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960℃空冷+ 700~720℃回火,空冷。 最终热处理工艺: 1、淬火:

45钢的正火工艺过程

将钢加热到一定的温度,经一段时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。 1、碳钢的普通热处理工艺方法 1) 钢的退火 钢的退火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后缓慢地随炉冷却。此时,奥氏体在高温区发生分解,从而得到比较接近平衡状态的组织。一般中碳钢(如40、45 钢)经退火后消除了残余应力,组织稳定,硬度较低(HB180-220)有利于下一步进行切削加工。 2) 钢的正火 钢的正火通常是把钢加热到临界温度Ac3或Accm线以上,保温一段时间,然后 进行空冷。由于冷却速度稍快,与退火组织相比,组织中的珠光体量相对较多,且片层较细密,故性能有所改善,细化了晶粒,改善了组织,消除了残余应力。对低碳钢来说,正火后提高硬度可改善切削加工性,提高零件表面光洁度;对于高碳钢,则正火可消除网状渗碳体,为下一步球化退火及淬火作好组织准备。 3) 钢的淬火 钢的淬火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后放入各种不同的冷却介质中快速冷却(V冷〉V临),以获得具有高硬度、高耐磨性的马氏体组织。 4) 钢的回火 钢的回火通常是把淬火钢重新加热至Ac1 线以下的一定温度,经过适当时间的保温后,冷却到室温的一种热处理工艺。由于钢经淬火后得到的马氏体组织硬而脆,并且工件内部存在很大的内应力,如果直接进行磨削加工则往往会出现龟裂,一些精密的零件在使用过程中将会引起尺寸变化从而失去精度,甚至开裂。因此,淬火钢必须进行回火处理。不同的回火工艺可以使钢获得各种不同的性能。 2、碳钢普通热处理工艺 1 )加热温度 碳钢普通热处理的加热温度,原则上按加热到临界温度Ac1或Ac3线以上30? 50C选定。但生产中,应根据工件实际情况作适当调整。热处理加热温度不能过高,否则会使工件的晶粒粗大、氧化、脱碳、变形、开裂等倾向增加。但加热温度过低,也达不到要求。 表2-1 碳钢普通热处理的加热温度 方法加热温度「C)应用范围 退火Ac3+(20~60) 亚共析钢完全退火 Ac1+(20~40) 过共析钢球化退火 正火Ac3+(50~100) 亚共析钢 Accm+(30~50) 过共析钢 淬火Ac3+(30~70) 亚共析钢 Ac1+(30~70) 过共析钢 回火低温回火150~250 刃具、模具、量具、高硬度零件 中温回火350~500 弹簧、中等硬度零件 高温回火500~650 齿轮、轴、连杆等综合机械性能零件 表2-2 常用碳钢的临界点 钢号临界点(C ) Ac1 Ac3 Accm

中厚板压下规程设计

第一章选择坯料 1.1制定生产工艺 产品牌号:45钢 产品规格:l ?=10?1900?10000mm b h? 本次所设计的产品为中厚板,连铸坯节能,组织和性能好,成材率高,主要用于生产厚度小于80mm中厚板,所以坯料选用连铸坯。 根据车间设备条件及原料和成品的尺寸,确定生产工艺过程如下:原料的加热→除鳞→轧制(粗轧、精轧)→矫直→冷却→划线→剪切→检查→清理→打印→包装。 板坯加热时宜采用步进式连续加热炉,加热温度应控制在1200℃左右,以保证开轧温度达到1150℃的要求。另外,为了消除氧化铁皮和麻点以提高加热质量,可采用“快速、高温、小风量、小炉压”的加热方法。该法除能减少氧化铁皮的生成外,还提高了氧化铁皮的易除性。 板坯的轧制有粗轧和精轧之分,对双机架轧机通常将第一架称为粗轧机,第二架称为精轧机。粗轧阶段主要是控制宽度和延伸轧件。精轧阶段主要使轧件继续延伸同时进行板形、厚度、性能、表面质量等控制。精轧时温度低、轧制压力大,因此压下量不宜过大。 1.2 确定坯料尺寸 所设计的产品的尺寸为l ?=10?1900?10000mm,加上切边余量,将宽度设计为 b h? 1950mm,长度暂时不定,设计坯料的尺寸。 产品的厚度h为10mm,首先选取压缩比,压缩比由经验值选取,选取的最低标准为6-8,因此压缩比选取9,则坯料厚度H为90mm,由b=1950mm,坯料L=b-600, 取坯料长度L=1350mm,由于体积不变,坯料在轧制过程中会产生废料,选择烧损为98%,切损设计为98%,所以成材率K=98%×98%=96%,则 h? ?=K b l H? ? ? H B 计算得到B=1680mm,最终确定坯料尺寸为:L ?=90?1680?1350mm 。 H? B

热轧窄带钢压下规程设计

201224050120 河北联合大学轻工学院 课程设计 题目:12mm热轧窄带钢压下规程设计 专业:金属材料工程 班级:12轧钢 学生姓名:赵凯 指导老师:李硕 日期:2015年12月3日

目录 1 任务要求 (3) 1.1 任务要求 (3) 1.2 原料及产品规格 (3) 2 压下规程设计 (3) 2.1 产品规格 (3) 2.2 设计原则 (3) 2.3 粗精轧道次,分配压下量 (4) 2.3.1轧制道次的确定 (4) 2.3.2 粗轧机组压下量分配 (4) 2.3.3 精轧机组的压下量分配 (5) 2.4 咬入能力的校核 (6) 2.5 计算轧制时间 (6) 2.5.1 粗轧速度制度 (6) 2.5.2 精轧速度制度 (7) 2.5.3 各道轧件速度的计算 (8) 2.6 轧制压力的计算 (9) 2.6.1 粗轧温度的确定 (9) 2.6.2 精轧机组温度确定 (10) 2.6.3 粗轧段轧制力计算 (10) 2.6.4 精轧段轧制力计算 (13) 2.7 轧辊强度校核 (14) 2.7.1 支撑辊弯曲强度校核 (15) 2.7.2 工作辊的扭转强度校核 (16) 3 设计总结 (19)

一、设计任务 1、任务要求 (1)、产品宽度1650mm,厚度12mm (2)、简述压下规程设计原则 (3)、选择轧机型式和粗精轧道次,分配压下量 (4)、校核咬入能力 (5)、计算轧制时间 (6)、计算轧制力 (7)、校核轧辊强度 2、坯料及产品规格 依据任务要求典型产品所用原料: 坯料:板坯厚度:120mm 钢种:Q235 最大宽度:300mm 长度:7m 产品规格: 厚度:12mm 板凸度:6错误!未找到引用源。 坯料单重:2t 二、压下规程设计 1、产品宽度300mm,厚度12mm 2、设计原则 压下规程设计的主要任务就是要确定由一定的板坯轧成所要求的板、带产品的变形制度,亦即要确定所需采用的轧制方法、轧制道次及每道次压下量的大小,在操作上就是要确定各道次辊缝的位置(即辊缝的开度)和转速。因而,还要涉及到各道次的轧制速度、轧制温度及前后张力制度及道次压下量的合理选择,因而广义地来说,压下规程的制定也应当包括这些内容。 通常在板、带生产中制定压下规程的方法和步骤为:

45号钢的正火工艺

文章编号:1009-9700(2002)06-0019-04 45号钢的正火工艺 黄 锐,吕佐明,黄 鹭 (广东省韶关钢铁集团有限公司技术研究中心,广东 曲江 512123) 摘 要:韶钢炼轧厂生产的45号钢在常规生产检验中发现材料规格对力学性能初检合格率有影响.为此,随机抽取 16、18、28、30mm 4个规格、11个炉号的45号钢进行正火工艺试验,探讨了正火工艺对45号钢力学性能的影响.结果表明:直径小于25mm 的45号钢,正火工艺采用GB/T 699-1999标准推荐的工艺执行,即850 40min,力学性能达到标准要求;直径大于或等于25mm 的45号钢,正火工艺采用880 30~60min 也可达标.金相检验表明:这两种工艺处理试样的金相组织均为块状铁素体和大小均匀的珠光体,这种组织能够满足强度和塑性的理想配合. 关键词:正火;强度;塑性;金相组织中图分类号: TF701.3 文献标识码:B On the normalization of 45steel HU AN G Rui,L U Zuo_ming ,HUA NG Lu (Shao guan Iron &Steel G roup Co.Ltd,Qujiang 512123,Guangdong ) Abstract :Routine inspect ions and tests showed that the mechanical pro perties of the 45steel bar produced by the Continu ous Casting and Rolling Plant of SISG Co.varied with its size.T o investigate this phenomenon,steel bars in diameters of 16,18,28and 30mm w ere rando mly sampled fro m 11heats and normalized w ith different pr ocedures.It was found that bars in diameter smaller than 25mm normalized w ith the procedur e recommended by GB/T 699-1999Standard,i.e.heating at 850(C for 40min,followed by air coo ling,could meet the requirements for mechanical propert y,while those in diameter lar ger than 25mm had to be normalized by heating at 880 for 30~60min in or der to meet the requirements.M etallog raphy of the nor malized steel bars demonstrated that a microstr ucture composed of massive ferrite and evenly_sized pearlite was generated by the normalization,which possessed the r equired strength and ductility.Key words :normalizat ion;streng th;ductility;microstructure 收稿日期:2002-07-09;修订日期:2002-08-07 作者简介:黄 锐(1964-),男,1987年毕业于东北大学金属材料及热处理专业,金属材料工程师. 广东省韶关钢铁集团有限公司炼轧厂(以下简称我厂)CONSTEEL 电炉、DAN IELI 小型连轧,即 四位一体 生产线新开发生产的45号钢棒材,按GB/T 699-1999标准检验,断面收缩率较低,与标准 % 40%相比,富余量较少,甚至在生产较大规格( 25~35mm)时,初检合格率偏低,且不够稳定,个别炉号重取复检均不合格,造成钢材判废.为把好最后一道材质检验关,提高45号钢棒材断面收缩合格率,降低损失,对45号钢正火工艺进行了初步摸索,探讨不同的加热温度与不同的加热保温时间对力学性能的影响,确定适合实际生产情况的试样热处理工艺. 1 试验 1.1 试验样的来源 我厂 四位一体 生产线是2000年12月2日投产的,年生产棒材60万t,投产至今,生产钢种以HRB335为主.2002年1月,45号钢作为品种钢的首个开发产品,半年期间试产近4000t,规格从 16~35mm. 1.2 试验样的选取及化学成分 从试产的45号钢中,有选择性地抽取大、小4个规格、11个炉号进行正火工艺试验,化学成分见表1,试验按GB/T699-1999标准执行. 总第129期南方金属Sum.1292002年12月 SOU TH ERN METALS December 2002

中厚板生产课程设计指导书..

目录

1 产品标准和技术要求 1.1.1钢材的尺寸、外形及允许偏差 钢板和钢带的尺寸、外形及允许偏差见国标GBT/709-2006《热轧钢板和钢带的尺寸、外形、重量及允许偏差》(国标可从网上下载,下同)。 1.1.2技术要求 合金牌号和化学成分可查国标,如碳素结构钢可查GB/T700-2006,低合金结构钢可查GB/T1591,优质碳素结构钢 GB/T 699-1999等 另外,技术要求可查找GB 3524-2005《碳素结构钢和低合金结构钢热轧钢带》,GB/T4237-2007《不锈钢热轧钢板和钢带》,GB/T8749-2008《优质碳素结构热轧钢带》等。 (1)钢的牌号、化学成分和力学性能见表1-6。

2 生产工艺流程及主要设备参数 2.1生产工艺流程 根据车间设备条件及原料和成品的尺寸,生产工艺过程一般如下:原料的加热→除鳞→轧制(粗轧、精轧)→矫直→冷却→划线→剪切→检查→清理→打印→包装。 板坯的轧制有粗轧和精轧之分,但粗轧与精轧之间无明显的划分界限。在单机架轧机上一般前期道次为粗轧,后期道次为精轧;对双机架轧机通常将第一架称为粗轧机,第二架称为精轧机。粗轧阶段主要是控制宽度和延伸轧件。精轧阶段主要使轧件继续延伸同时进行板形、厚度、性能、表面质量等控制。精轧时温度低、轧制压力大,因此压下量不宜过大。 中厚板轧后精整主要包括矫直、冷却、划线、剪切、检查及清理缺陷,必要时还要进行热处理及酸洗等,这些工序多布置在精整作业线上,由辊道及移送机纵横运送钢板进行作业,且机械化自动化水平较高。 2.2 主要生产工艺 (1)加热 板坯加热目的:中厚板加热目的是提高钢的塑性,降低变形抗力,利于轧制;生成表面氧化铁皮,去除表面缺陷;加热到足够高的温度,使轧制过程在奥氏体化温度区域内完成;在可能的下并可以溶解在后阶段析出的氮化物和碳化物。 一般厚板加热炉的型式有两种:连续式和半连续式。比较而言,连续式加热炉的产量高、热效率高,装入,抽出方便间歇式加热炉产量一般在10~20t/h,热效率也低。这里采用的加热炉为步进梁式加热炉。 中厚板加热工艺的特点:由于厚板的产品种类较多,板坯的规格变化大,所以加热温度的变化范围较广,一般在950~1250°C左右,这与热连轧的情况不完全一样,由于生产的批量小,炉内板坯的温度变化频繁,这样就造成加热炉的热负荷变化较大,加热温度的控制要求较高。 (2)轧制 中厚板轧制过程包括除鳞、粗轧、精轧三个阶段。随控制轧制技术的应用,为满足控制轧制时的温度条件,在粗轧过程中或粗轧后还有一个控制钢板温度的阶段。轧制过程主要包括以下几个阶段: 1)除鳞:钢板表面质量是钢板重要的质量指标之一,加热时高温下生成的氧

相关文档
相关文档 最新文档