文档库 最新最全的文档下载
当前位置:文档库 › 考研数学考点与题型归类分析总结-概率部分

考研数学考点与题型归类分析总结-概率部分

考研数学考点与题型归类分析总结-概率部分
考研数学考点与题型归类分析总结-概率部分

概率部分

1.1概率这门课的特点

与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。但与线代一样,概率也常常被忽视,有时甚至被忽略。一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是“记忆量大”。在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

记得当初看到陈文灯复习指南概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格时,感觉其中必然会有很多内容是超纲的、不用细看;但后来复习时才发现,可以省略不看的内容少之又少,由大量的内容需要记忆。所以对于概率部分相当多的内容都只能先死记硬背,然后通过足量做题再来牢固掌握,走一条“在记忆的基础上理解”的路。

记牢公式性质,同时保证足够的习题量,考试时概率部分20%的分值基本上就不难拿到了。

1.2概率第一章《随机事件和概率》

本章内容在历年真题中都有涉及,难度一般不大。虽然对于本章中的古典概型可以出很难的题目,但大纲的要求并不高,考试时难题很少。填空、选择常考关于事件概率运算的

题目,大多围绕形如

)

(

)

(B

A

P

AB

P=、)

|

(

)

|

(A

B

P

A

B

P=、

)

(C

B

A

P+

+这样的式子利用各种概率运算公式求解;其它内容如全概率公式和贝叶斯公式在小题中和大题中都有可能考到。

在“概率事件的关系及运算”部分有很多公式可以借助画集合运算图来辅助做题,比

如事件A若与事件B有包含关系A

B?,则可作图长方形内的点都属

B的范围,圆形则代表A的范围。这样一来即易看出事件包含关系的定义“A发生时B必发生,B发生时A不一定发生”;

事件A 与B 的并B A

?可作图,则B A ?是A 、B 两个圆形(包含相交部分),对于这个大图形中的任意一点来说,不是属于

A 就是属于

B ,体现了B A ? “事件A 与B 至少有一个发生”的定义;同理,事件

A 与

B 的差B A ?表示事件A 与B 同时发生,在上图中所有满足条件的点组成了两圆相交的那一部分。

对于其它的概率运算公式也可用图辅助理解,有的题甚至可以直接通过作图来得到答案。如公式)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=??

可以借助右图表示公式左端的)(C B A P ??等于A 、B 、C 三个圆形各自互不相交的三部分再加上d

c b a ,,,四小部分,而公式右端中的)()()(C P B P A P ++代表的区域包括A 、B 、C 各自互不相交的三部分

)2222(d c b a +++=,比左端多加了一次c b a ,,和两次d ,这时等式是不平

衡的;再减去)]

()()([AC P BC P AB P ++即是c b a d c d a d c b a ++=+-+-+++)()(3222,与公式左端所代表的图形相比只少了一块d ,加上即可,故再加)(ABC P 后等式成立。

区别互斥、互逆、对立与不相容:事件A 与事件B 互斥也叫A 与B 不相容,即φ=?B A ,事件A 与事件B 对立就是A 与B 互逆,即为A 与A 的关系。 公式组??

????=?=-=)3(),()()()()

2()|()()()1()()()(相互独立B A B P A P AB P A B P A P AB P B A P A P AB P 在历年考研真题中频繁用到,

很多题利用这三个公式间的相互转化关系很容易求得答案。这三个公式的含义从直观上就能理解:公式(1)表示事件A 、B 同时发生的概率等于A 发生的概率减去A 发生而B 不

发生的概率;(2)式表示事件A 、B 同时发生的概率等于A 发生的概率乘以在A 发生

的条件下B 也发生的概率;当

A 、

B 相互独立时,也就是指事件A 与事件B 的发生互不影响,此时应该有)()|(B P A B P =、)()|(A P B A P =所以)()()|()()(B P A P A B P A P AB P ==由(2)式即可得出(3)式。出题人从这三个公式意义上的相通性出发可以很灵活地构造题目,在后面的评题中会对这个知识点作更具体的讨论。

1.3 第二章《随机变量及其分布》、第三章《随机变量的数字特征》、第四章《大数定律和

中心极限定理》

对于这一部分的复习可说的东西不多,因为在考试中出现的概率题目其实有相当大一部分难度是被解题所用的繁杂公式“分走”了,既然理解、掌握和牢记公式本身就不容易,那么题目的结构相对而言就要简单一些,我们甚至会发现历年真题中的有的题就像是课本上的例题一样。

这种情况有点像我们在英语考试中作阅读理解题,问题本身的含义并不复杂,难就难在文章中的单词“似曾相识”和句子看不懂上。而英国学生考“语文”时做的阅读理解问题肯定要比我们遇到的题目要复杂深入的多——因为考察的重点不一样。所以对于概率部分的复习,有两个步骤即可:首先是牢记公式,然后是把题做熟,在练习过程中透彻理解概念公式和性质定理。

陈文灯复习指南概率第二、三章把知识点列成了大表格,所有东西一目了然,复习时用来记忆和对比很方便。对于第二章的大表格也可以利用各部分之间的联系来对照复习,比如说二维分布的性质基本上与一维分布的性质一一对应(类似于二重积分和定积分性质之间的关系),二维边沿分布的内容与一维分布本质上也是相通的,离散型和连续型分布的各知识点也可互相对比、区别记忆。也就是“一维和二维相联系、离散和连续相对比、随机变量分布和随机变量函数的分布相区别”。

同时对于重要分布如二项、泊松、正态、均匀、指数分布必需记得非常牢,因为考试时会直接拿这些分布做题干来考察各章知识点,万一出现“由于题干中的分布函数不会写或写错而导致整道大题知道怎么做也没法做”的情况将是非常可惜的。

本章的一维连续分布和二维离散分布在历年真题中出现频率最高,最常考分布是均匀、指数和正态分布。对于一维连续型分布的性质可借助图像理解

因为分布函数

}{)()(x X P dx x x F b

≤==?∞-?,所以}{x X P ≤}{b x a P ≤≤分别可用图中的阴影部分表示,容易看出多条性质,包括1)(=?+∞

∞-dx x ?、

)()()()(12212

1x F x F dx x x x x P x x -==≤

图像辅助理解也很有效,比如频繁在真题中出现的正态分布,作图辅助解题的效果更为明显。

陈文灯复习指南第三章《随机变量的数字特征》也是用表格说话的,同样需要认真记好。本章在历年真题中最常出现的题目考察点是几个重点公式,尤其是式子)()())(()(222X E X E X E X E X D -=-=,大\小题都可能利用这一式子的左端或右端出题而以另一端设置答案。还有数学期望EX 与方差DX 的定义及性质也是考察重点,可由下表对比记忆:

数学期望EX 方差DX

?∞-=x dx x x EX )(? (连续型)

)()(22x E x E DX -=

c c E =)(

0)(=c D )()

(X cE cX E = )()(2X D c cX D = c X E c X E +=+)()(

)()(X D c X D =+ )()()(Y E X E Y X E +=+ )()()(Y E X E Y X E -=- ),cov(2)()()(Y X Y D X D Y X D ++=+ 若X 、Y 相互独立,则有

)

()()(Y D X D Y X D +=+、)()()(Y D X D Y X D -=-(历年真题不止一次利

用这个点作为填空和选择题中的小陷阱,因为一不留神就会写

成)()()(Y D X D Y X D -=-,正如

)()()(Y E X E Y X E -=-一样,但实际上

),cov(2)()()(Y X Y D X D Y X D ++=+)

若X 、Y 相互独立,则有)()()(Y E X E XY E =

DX 无对应性质

若X 、Y 相互独立则同时具有以下4条性质:

1. )()()

(Y E X E XY E = 2.)()()(Y D X D Y X D +=+ 3. 0),(=y x ρ 4. 0),cov(=y x ,利用各式定义可以推导出来。

考试大纲对第四章《大数定理和中心极限定理》的要求是:“了解切比雪夫不等式,了解切比雪夫大数定律、伯努利大数定律、辛钦大数定律,了解格林定理和林莫佛定理”。这三个“了解”在历年真题中的体现就是本章内容几乎是不考的,只出现过直接考察公式定义的小题。同时本章的几个公式、定理也不好记,推导就更不是什么简单任务了。即便如此,以上的信息也还是不能成为放弃这一章的理由,因为对于这样“又难、大纲要求又低”的知识点考试时出题的深度也会是最浅的。

如在真题中出现过的一个本章的填空题几乎就是直接考察切比雪夫不等式的公式本身,这样的情况对于难度低的知识点和重要知识点来说是绝不可能出现的,比如若你在06

年考研数学试卷上见到一道填空题是让填出

)()(22x E x E DX -=这个公式的话,那你肯定是把题义理解错了。

所以花时间记住这几个公式其实是比较划算的,因为如果考试出一道有关的填空题,4分的得失将完全取决于记没记住公式。这样的4分当然要比在大题中绞尽脑汁得到的4分好拿的多。从另一方面说,这些定理也是可以理解的:本章所有的大数定理都是指在独立同分布且存在数学期望的条件下若干随机变量的平均值依概率收敛到均值的期望,即∑∑==?→?n i n i i P i X n E X n 11

)1(1。因为i X 独立同分布,所以有μ=)(i X E ,故有公式右侧∑====n i i X nE n X E n 1)(1)(1μ,应有

1)1(lim 1

=<-∑=∞→εμn

i i n X n P ,即为辛钦大数定律;若用n Y 表示在n 重伯努利试验中事件A 的发生次数则可得到伯努利大数定律1)(lim =<-∞→εP n

Y P n n 。通过以上的分析可以减少一些死记硬背的难度。

1.4 概率第五章《数理统计的基本概念》、第六章《参数估计》、第七章《假设检验》

数理统计部分在考研数学试卷中占有概率部分1/3的分值,这一部分考点较少,参数估计最为重要,其次是样本与抽样分布,假设检验部分则很少考到。

对于参数估计部分,需要记清楚据估计和极大似然估计各自的步骤,然后通过足量做题来熟练掌握;对于样本与抽样分布,重要的是2χ分布、t 分布和F 分布各自的条件和结论公式 ,在历年真题中考察过;

对于假设检验,大纲要求为:“1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误”。可见大纲对于假设检验的要求还是较高的,但往年出题不多,不知道会不会在以后的考试中加大考察力度。

概率这门课的全称是概率论和数理统计,数理统计是对概率论的实际应用,而概率论则充当了理论基础的角色。数理统计中的统计量如样本均值、样本方差等的概念性质都能在概率论中找到出发点。其实,数理统计就是一个先对随机变量做实际观测得到一系列具体数据,再利用“样本与抽样分布”部分的公式归纳出样本均值、方差等统计量,在此基础上利用参数估计等方法推断出随机变量整体分布和数学特征的过程。 参数估计中的矩估计法就是令总体矩与样本矩相等,建立等式以求出总体矩;极大似然估计中的似然函数)(θL 就是指样本),,(21n X X X ???取观察值)

,,(21n x x x ???的概率

),,(2211n n x X x X x X P =???==,自然应等于∏=n i i x f 1

),(θ,其值越大就

说明θ越有利于使者组样本值出现,故极大似然估计法要求求出使

)(θL 取最大值的θ

作为参数θ的估计量。 分析理解一下概率论和数理统计的前后联系可以起到“在大脑中进行数据压缩”的作用,而且这两部分的题目应该可以相互结合,从近年来的真题中可以隐隐约约感受到这种趋势。

看我是怎么整理考研数学笔记的

得数学者得天下,数学的重要性不言自明,一定要好好准备,我高中,大学数学底子还不错,自己也努力了,感觉数学里面最容易的还是线性代数和概率论和数理统计,因为题型有限,变化不大,对比历年真题就会发现。真正难的是高数,因为花样太多了,虽然考点有限,但是怎么个综合法,你就不知道了,所以高数题目要多见识,今年考研高数证明题我就看过很类似的,所以很快就做出来了,没见过的同学都不知道怎么下手。我今年数学考得不太好的 原因是我线性代数和概率论各算错一道题目,后悔死了,所以大家在准备考研时,别忘记提 醒自己时刻细心做题。数学的辅导书我很反感陈文登的,比较支持李永乐的,蔡遂林的也不错。 我数学资料做了一大批。要不我把做过的辅导书点评下,仅供参考! 2008数学大纲解析:由于2009没出版,只能用2008的,这是本好书,都是真题,分析透彻,建议买。 轻轻松松考高分线代概率历年真题分类解析——李永乐,这本书对历年真题对比分析, 让你知道考研真正考什么?该准备什么。强烈推荐。 2006考研数学历年真题解析与指导--高教,图书馆借的,现在不出版了,也是分析真题, 像大纲解析,如果图书馆有的话,可以看看。 2009数学考试分析--高教,近3年的试题分析,数一到数四都包括,花2天时间琢磨出题的变化,觉得不错,你会发现一些规律。 武钟祥的历年真题分析,这是我认为真题分析最全面最好的书,里面涵盖了所以年份的试题,数一到数四的都有,大家要知道,数学题目经常是今年数学一考了,明年后年可能数学三考,只是变换出题的方式,大家不要只看数学一的题目。强烈推荐。其实上面这么多 书我觉得最好的还是这本,有一本就够了。 线性代数辅导讲义--李永乐,这本书要多看几遍,越看越好,越看越懂,然后做真题。强烈推荐。 概率论与数理统计辅导讲义--龚兆仁,还可以,有些地方有些繁琐,有些根本不会考的也作了详细介绍。 数学基础过关660题--李永乐。不是很必要买,做了没什么感觉。 陈文登的复习指南,我不推荐买,原因就不说了,你们在网上搜搜看评价,本人用过,的确不怎么样。 李永乐的全书,贴合实际,但是稍显繁琐,很多同学到了11月底才看完,根本没时间去想,思 考。感觉知识点是全,是细,但是你记起来就不容易了。数学的记不像政治,数学 要练习,多思考才能有体会,才能记得深刻,最后才能灵活用。如果买全书的话,要注意时

高数部分考研必备:超经典的考研数学考点与题型归类分析总结

高数部分考研必备:超经典的考研数学考点与 题型归类分析总结 1、1 高数第一章《函数、极限、连续》 1、2 求极限题最常用的解题方向: 1、利用等价无穷小; 2、利用洛必达法则,对于型和型的题目直接用洛必达法则,对于、、型的题目则是先转化为型或型,再使用洛比达法则; 3、利用重要极限,包括、、; 4、夹逼定理。 1、3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分的结果可以写为 F(x)+1,1指的就是那一分,把它折弯后就是中的那个C,漏掉了C

也就漏掉了这1分。第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异出题人在定积分题目中首先可能在积分上下限上做文章:对于型定积分,若f(x)是奇函数则有=0;若f(x)为偶函数则有=2;对于型积分,f(x)一般含三角函数,此时用的代换是常用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质、。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1、4 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用以下这组逻辑公式来作模型:假如有逻辑推导公式AE、(AB) C、(CDE)F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出 A、 B、D,求证F成立。为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类: 1、已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的AE就可能有AH、A(IK)、(AB)

考研数学十真题题型总结考研必备

考研数学十年真题题型总结! 高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)|考研|考研网:y/f S,Z H \%\题型 1 求1∞型极限(一(1),2003) 题型 2 求0/0型极限(一(1),1998;一(1),2006)|考研|考研网 D!V \ k [ g u 题型 3 求∞-∞型极限(一(1),1999) 题型 4 求分段函数的极限(二(2),1999;三,2000) 题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)|考研|考研网 n1g:z1~ q9`*M m 题型 6 无穷小的比较或确定无穷小的阶(二(7),2004) 题型 7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)https://www.wendangku.net/doc/068818240.html, u6t I+N+v r ` 题型 8 求n项和的数列极限(七,1998) 题型 9 函数在某点连续性的判断(含分段函数)(二(2),1999) 第二章一元函数微分学考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕 X I!P R5m;i$^ U w

(①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)5432考研论坛是考研人的网上考研家园,主要提供考研资料下载,学习讨论等 x*x F4as.E%s&Z.e 题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕#G:w X K1V S O R 题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005) 题型 3 求函数或复合函数的导数(七(1),2002)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕.m!n;l y(`*O.O u 题型 4 求反函数的导数(七(1),2003) 题型 5 求隐函数的导数(一(2),2002) n8U C G+J k B.R3w 题型 6 函数极值点、拐点的判定或求解(二(7),2003) 题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002) 题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,MBA,法硕/E+?;g CW u$Q 题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,

考研数学三大题型答题技巧总结

考研数学三大题型答题技巧总结 考研数学的题量较大,时间却是有限的,想要在有限的时间内取得最高的分数,除了自己的实力之外,应用答题技巧是十分必要的。按照科学的答题顺序作答,对最后成绩也是很有好处的! 一、选择题答题技巧 在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。 代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。 演算法:它适用于题干中给出的条件是解析式子。 图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。 排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。 反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。 如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。 二、填空题答题技巧 填空题的答案是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。 这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。 填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。 三、解答题的答题技巧 解答主观大题目一定要学会放弃不会做的题,每道题思考时间一般不应超过10分钟,否则容易导致概率和线性代数等部分的题目无法解答,不要为了一道题目耽误了后面20~30分的内容。

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上与个人线代心得

高等数学 (数二 > 一. 重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 . 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2. 函数连续的概念、函数间断点的类型 3 . 判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1. 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 . 函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3. 闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 . 积分上限的函数及其导数变限积分求导问题★★★★★ 2. 有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1. 隐函数、偏导数、的存在性以及它们之间的因果关系 2. 函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 . 多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1.二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则( 单调有界准则和夹逼准则 >、未定式的极限、主要的等价无穷 小、函数 间断点的判断以及分类,还有闭区间上连续函数的性质( 尤其是介值定理 >,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近 线 ,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问 题 。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用 到 不定积分 / 定积分的基本性质、换元积分法、 分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终 答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用( 数二有要求 >,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及, 考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质, 以及 直角坐标与极坐标的相 互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/ 非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1.矩阵的运算 2.求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量

考研数学近十真题题型总结

考验数学十年真题题型总结! 高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)|考研|考研网 \%\ 题型 1 求1∞型极限(一(1),20**) 题型 2 求0/0型极限(一(1),1998;一(1),20**)|考研|考研网\ k[ 题型 3 求∞-∞型极限(一(1),1999) 题型 4 求分段函数的极限(二(2),1999;三,20**) 题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),20**)|考研|考研网n11~ q9`* 题型 6 无穷小的比较或确定无穷小的阶(二(7),20**) 题型 7 数列极限的判定或求解(二(2),20**;六(1),1997;四,20**;三(16),20**).54326 r ` 题型 8 求n项和的数列极限(七,1998) 题型 9 函数在某点连续性的判断(含分段函数)(二(2),1999) 第二章一元函数微分学考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,法硕5$^

U w (①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)5432考研论坛是考研人的网上考研家园,主要提供考研资料下载,学习讨论等 x*4 题型 1 与函数导数或微分概念和性质相关的命题(二(7),20**)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,法硕11 R 题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),20**;二(7),20**) 题型 3 求函数或复合函数的导数(七(1),20**)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,法硕 y(`* 题型 4 求反函数的导数(七(1),20**) 题型 5 求隐函数的导数(一(2),20**) n83w 题型 6 函数极值点、拐点的判定或求解(二(7),20**) 题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),20**;二(3),20**) 题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)考研,考研网,考研论坛,考研资料,考研资讯,考研英语考研数学考研政治,考研医学,金融联考,法硕$Q

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二> 一.重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2 .函数连续的概念、函数间断点的类型 3 .判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1 .导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 .积分上限的函数及其导数变限积分求导问题★★★★★ 2 .有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1 .隐函数、偏导数、的存在性以及它们之间的因果关系 2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1. 二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用(数二有要求>,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1. 矩阵的运算 2. 求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量 1. 向量组的线性相关及无关的有关性质及判别法 2. 向量组的线性相关性★★★★★ 3. 线性组合与线性表示判定向量能否由向量组线性表示★★★★

考研数学篇:典型题型归纳总结

考研数学篇:典型题型归纳总结 近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学地重中之重,如何备考高等数学已经成为广大考生普遍关心地重要问题,要特别注意以下三个方面. 第一,按照大纲对数学基本概念、基本方法、基本定理准确把握(也即三基地重要性务必引起重视).数学是一门逻辑学科,靠侥幸押题是行不通地.只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题地突破口和切入点.分析近几年考生地数学答卷可以发现,考生失分地一个重要原因就是对基本概念、定理理解不准确,数学中最基本地方法掌握不好,给解题带来思维上地困难.资料个人收集整理,勿做商业用途 第二,要加强解综合性试题和应用题能力地训练,力求在解题思路上有所突破.在解综合题时,迅速地找到解题地切入点是关键一步,为此需要熟悉规范地解题思路,考生应能够看出面前地题目与他曾经见到过地题目地内在联系.为此必须在复习备考时对所学知识进行重组,搞清有关知识地纵向与横向联系,转化为自己真正掌握地东西.解应用题地一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解.建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等.资料个人收集整理,勿做商业用途 第三,重视历年试题地强化训练.统计表明,每年地研究生入学考试高等数学内容较之前几年都有较大地重复率,近年试题与往年考题雷同地占左右,这些考题或者改变某一数字,或改变一种说法,但解题地思路和所用到地知识点几乎一样.通过对考研地试题类型、特点、思路进行系统地归纳总结,并做一定数量习题,有意识地重点解决解题思路问题.对于那些具有很强地典型性、灵活性、启发性和综合性地题,要特别注重解题思路和技巧地培养.尽管试题千变万化,其知识结构基本相同,题型相对固定.提练题型地目地,是为了提高解题地针对性,形成思维定势,进而提高考生解题地速度和准确性.资料个人收集整理,勿做商业用途 下面以数学一为主总结一下高数各部分常见题型. 一、函数、极限与连续 求分段函数地复合函数;求极限或已知极限确定原式中地常数;讨论函数地连续性,判断间断点地类型;无穷小阶地比较;讨论连续函数在给定区间上零点地个数,或确定方程在给定区间上有无实根.资料个人收集整理,勿做商业用途 二、一元函数微分学 求给定函数地导数与微分(包括高阶导数),隐函数和由参数方程所确定地函数求导,特别是分段函数和带有绝对值地函数可导性地讨论;利用洛比达法则求不定式极限;讨论函数极值,方程地根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面地最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线. 资料个人收集整理,勿做商业用途 三、一元函数积分学 计算题:计算不定积分、定积分及广义积分;关于变上限积分地题:如求导、求极限等;有关积分中值定理和积分性质地证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题.(注;高数中解答题地最后一步往往是求解一个积分,故积分地各种求解方法务必熟练再熟练!)资料个人收集整理,勿做商业用途 四、向量代数和空间解析几何 计算题:求向量地数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间

考研必备:超经典的考研数学考点与题型归类分析总结

2011考研必备:超经典的考研数学考点与题型归类分析总结 1高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞ ∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞ ∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞ →)1(1lim ;4.夹逼定理。 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分

?+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于?-a a dx x f )(型定积分,若f(x)是奇函数则有? -a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于?20)(π dx x f 型积分,f(x)一般含三角函数,此时用x t -=2π 的代换是常 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=?-a a 奇函数 、??=-a a a 02偶函数偶函数。在处理完积分上下 限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。

考研数学常规题型和陌生题型解答方法

考研数学常规题型和陌生题型解答方法 考研数学不仅要熟练掌握常规题型,面对陌生题型也要沉着应对,使用一些小技巧和方法 化解。 为大家精心准备了考研数学常规题型及陌生题型解答秘诀,欢迎大家前来阅读。 考研数学常规题型及陌生题型解答技巧一、 考研数学常规题型?1.选择题对于选择题来说, 大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。 如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有 25%的 正确性。 选择题属于客观题,答案是唯一的,并且考研数学考试中的多选题也是以单选的形式出现 的,最终的答案只有一个,评分是不偏不倚的。 选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项 的题目。 选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、 判断、计算和比较即可。 所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这 32 分 要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。 ?2.填空题填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导过程, 同样也是答对得满分,答错或者不答得 0 分,不倒扣分。 这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。 题目的难度与选择题不相上下,也是适中。 填空题总共有 6 个,一般高数 4 个,线代和概率各 1 个,主要考查的是考研数学中的三基 本:基本概念、基本原理、基本方法以及一些基本的性质。 做这 24 分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。 ?3.解答题解答题的分值较多,占总分的 60%多,类型也较复杂,有计算题、证明题、实 际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解 法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考 试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的 时间以及考核目标是有关系的。 综合性较强、推理过程较多、或者应用性的题目,分值较高;基本的计算题、常规性试题 和简单的应用题分值较低。 解答题属主观题,其答案有时并不唯一,要能看到出题人的考核意图,选择合适的方法解 答该题。 计算题的正确解答需要靠自己平时对各种题型计算方法的积累及掌握的熟练程度。 如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系, 以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象

考研高等数学真题十年总结

高等数学 (①10 年考题总数:117 题②总分值:764 分③占三部分题量之比重:53%④占三部分分值之比重:60%第一章函数、极限、连续 (①10 年考题总数:15 题②总分值:69 分③占第一部分题量之比重:12%④占第一部分分值之比重:9%) 题型 1 求1∞型极限(一(1),2003) 题型 2 求 0/0 型极限(一(1),1998;一(1),2006) 题型 3 求∞-∞型极限(一(1),1999) 题型 4 求分段函数的极限(二(2),1999;三,2000) 题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004) 题型 6 无穷小的比较或确定无穷小的阶(二(7),2004) 题型 7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006) 题型 8 求 n 项和的数列极限(七,1998) 题型 9 函数在某点连续性的判断(含分段函数)(二(2),1999) 第二章一元函数微分学 (①10 年考题总数:26 题②总分值:136 分③占第一部分题量之比重:22%④占第一 部分分值之比重:17%) 题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006) 题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005) 题型 3 求函数或复合函数的导数(七(1),2002) 题型 4 求反函数的导数(七(1),2003) 题型 5 求隐函数的导数(一(2),2002) 题型 6 函数极值点、拐点的判定或求解(二(7),2003) 题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004) 题型 10 函数单调性的判断或讨论(八(1),2003;二(8),2004) 题型 11 不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004) 题型 12 在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000; 七(1),2001;三(18),2005) 题型 13 方程根的判定或唯一性证明(三(18),2004)

考研数学:易出证明题的知识点总结

2018考研数学:易出证明题的知识点总结要命的考研数学每年都会难倒一大批考研党,各位2018考研党可得在数学上多下功夫了。今天文都网校考研频道整理了一下容易出证明题的知识点与小伙伴儿们分享,希望对大家有所帮助。 考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下: 一、数列极限的证明 数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。 二、微分中值定理的相关证明 微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理: 1.零点定理和介质定理; 2.微分中值定理; 包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。 3.微分中值定理 积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。 三、方程根的问题 包括方程根唯一和方程根的个数的讨论。 四、不等式的证明 五、定积分等式和不等式的证明 主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。 六、积分与路径无关的五个等价条件 这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。 以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。 2018考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索文都网校进入考研频道,查看2018考研辅导课程,咨询专业老师考研相关内容。 考研不是你一个人在战斗,漫漫考研路上,文都网校考研老师会一直陪伴在同学们左右。祝2018考研学子备考顺利,考研成功!

(完整版)考研高等数学各题型总结,推荐文档

题型总结 第一章极限与连续 题型一极限的概念 1)无穷一定无界,无界不一定无穷。 2)极限存在或连续》》左右极限存在且相等 题型二不定型极限的计算 1)0比0型,考虑等价无穷小、马克劳林公式、罗必达 2)遇到ln 用ln(1+a)~a等等 3)遇到x.sinx,tanx,arctanx,arcsinx任意两个相减时,用马克劳林 题型三连加或连成的式子求极限 1)拆项 2)使用夹逼 3)利用公式。(常常需要先夹逼后用公式) 题型四极限存在性问题 1)存在》》1、有界(夹逼等方法求解)2、单调(用导数或前项-后项证) 题型五中值定理法求极限 当看到两项相减,且各项的结构相同时(即可由一个函数表示出来),此时用中值定理:构造一个函数,原题即可表示为f(a)-f(b)=f`(§)(a-b) 题型六含变积分限的函数极限 1)换元2)再利用罗必达去积分号 题型七间断点及其分类 1)0点的连续》》f(0+0)=f(0-0) 题型八闭区间上的连续函数 看到【】闭区间的函数证明题,考虑介值定理:m<=f(§)<=M 第二章导数与微分 题型一导数 1)可导》》f`+=f`- 2)绝对值不影响函数的连续性,但是可能导数,在f(a)=0处受影响 3)可导等价于可微,注意两者表示公式,易考选择题 4)判断某点处的可导3条件:①保两侧都趋于0②导数公式分子第二项必为f(a) ③导数公式的分子分母必须为同阶无穷小 题型二基本求导类型 1)显函数求导2)隐函数求导3参数方程函数求导4)分段函数求导 题型三高阶导数 1)公式法2)归纳法3)泰勒公式法 第三章一元函数微分学的应用 题型一证明f``(§)=0 1)证f`(§)=0,先由介值定理或零点定理找到两个相等点,再用罗尔证。 2)证f``(§)=0,先用两次拉格朗日定理找出两个点,再用罗尔。 题型二待证结论中出了§没有其他字母 1)还原法,即找出辅助函数(原函数):将结论中§变成x、去分母、移项,整理成g(x)=0,再还原是哪个函数的导数。 2)分组构造法,即“还原法”,两项和为一项,方法与1一样;

2009年考研数学高数典型题型归纳

2009年考研数学高数典型题型归纳 一、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 二、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 四、向量代数和空间解析几何 计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,

考研数学考前必备重点题型函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函 数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、 右极限之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极 限求极限的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小 求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类 型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的 性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示.

元素: 组成集合的事物称为集合的元素. a 是集合M 的元素表示为a ?M . 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, × × ×, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ×××, n , ×××}. N +={1, 2, ×××, n , ×××}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={×××, -n , ×××, -2, -1, 0, 1, 2, ×××, n , ×××}. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x ?A , 则必有x ?B , 则称A 是B 的子集, 记为A ìB (读作A 包含于B )或B éA . 如果集合A 与集合B 互为子集, A ìB 且B ìA , 则称集合A 与集合B 相等, 记作A =B . 若A ìB 且A 1B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R . 不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A èB , 即 A è B ={x |x ?A 或x ?B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即 A ? B ={x |x ?A 且x ?B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B ={x |x ?A 且x ?B }. 如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则: 设A 、B 、C 为任意三个集合, 则 (1)交换律A èB =B èA , A ?B =B ?A ; (2)结合律 (A èB )èC =A è(B èC ), (A ?B )?C =A ?(B ?C );

考研数学高数必考题型总结

考研数学高数必考题型总结 考研数学高数必考题型总结 第一:求极限。 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题 目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能 需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、 重要极限等中的几种方法,有时考生需要选择其中简单易行的组合 完成题目。另外,分段函数个别点处的导数,函数图形的渐近线, 以极限形式定义的函数的连续性、可导性的研究等也需要使用极限 手段达到目的,须引起注意! 第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。 证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式 的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中 值定理的使用是一个难点,但考查的概率不大。 第三:一元函数求导数,多元函数求偏导数。 求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求 导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显 函数,也可能是隐函数(包括方程组确定的隐函数)。 另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。

第四:级数问题。 常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级 数展开在考试中常占有较高的分值。 第五:积分的计算。 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面 积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以 对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对 一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公 式的反用,对称性的使用等。 第六:微分方程问题。 解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式, 注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程 求通解或特解,现在给出通解或特解求方程。这需要考生对方程与 其通解、特解之间的关系熟练掌握。 整个数学复习,高等数学是占分值最大的,复习的时候,要以高等数学为主。同时线性代数和概率为辅,不管原来熟悉不熟悉,必 须要把线性代数和概率统计要复习好。高等数学它比较灵活的地方,主要集中在几章,一个是所谓的未定式极限的运算,再有一个是微 分中值定理,还有积分的应用,特别是定积分在几何上的应用,高 等数学的下半部分多元函数微分法、求偏导数,还有数学的线面积分,这都是我们特别应该注意的,应该出大题。 线性代数的大题主要是参数问题,第一步是用证明的方法求参数,第二步就用书上例题的基本办法来计算。概率统计大家不要只依靠 记忆公式,要把公式定理和题目有机的结合起来。

相关文档
相关文档 最新文档