文档库 最新最全的文档下载
当前位置:文档库 › Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍

Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍

Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍
Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍

Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍

光通信领域传统的光源均是基于固定波长的激光器模块,随着光通信系统的不断发展及应用推广,固定波长DWDM激光器的缺点逐渐显露出来:一方面,随着技术的发展,DWDM 50GHz 系统中的波长数达到了上百个,在需要提供保护的场合,每个激光器的备份必须由可替换波长的激光器提供,这样导致备份DWDM光模块数量增加,运营成本上升;另一个方面,由于普通DWDM光模块波长固定,使得固定波长DWDM光模块存货数量提高,而且难易预测具体通道的备货数量.

另外,如果要支持光网络中的动态波长分配,提高网络灵活性,需要配备大量不同波长的普通DWDM光模块,但每只光模块的使用率却很低,造成资源浪费。针对这些不足,随着半导体及其相关技术的发展,易飞扬成功地研制出可调光模块(SFP+和XFP封装均可提供),即在同一个光模块可以配置输出不同的DWDM波长,且这些波长值和间隔均满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求。波长可调谐光模块有的灵活选择工作波长的特性,对于其在光纤通信波分复用系统、光分插复用器和光交叉连接、光交换设备、光源的备件等应用中具有非常大的实用价值。

针对这些不足,随着半导体及其相关技术的发展,易飞扬成功地研制出可调光模块(SFP+和XFP封装均可提供),即在同一个光模块可以配置输出不同的DWDM波长,且这些波长值和间隔均满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求。波长可调谐光模块有的灵活选择工作波长的特性,对于其在光纤通信波分复用系统、光分插复用器和光交叉连接、光交换设备、光源的备件等应用中具有非常大的实用价值。

我们公司的可调DWDM光模块采用内置集成激光器和MZ调制器的的芯片,满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求,可调范围基于50GHz频道间隔多达 90个频道,将为设备厂商和运营商提供更大的灵活性,实现对于网络整体性能的优化,也将极大降低现有运营商对于DWDM SFP+模块库存的需求。我们的可调DWDM 10GE SFP+ 光模块功耗小于1.7W,该模块波长稳定,发射光功率在0dBm左右;消光比均大于10dBm,边模抑制比均大于51dB,眼图交叉点在47%~52%之间,该模块灵敏度均可达到-24dBm以上,完全80KM光纤工作距离; 可调DWDM 10GE XFP 光模块分为2种版本,支持FEC编码功能(OTN G.709成帧)和无FEC 编码功能,支持FEC编码功能(OTN G.709成帧)的DWDM可调光模块功耗略大(小于4.5W), FEC编码功能的好处是提高了传输的灵敏度;而不带FEC功能的DWDM可调光模块功耗略小(小于3.5W),两种版本均可满足80KM光纤工作距离,同时满足兼容思科,Juniper等主流设备商的交换机和核心路由器。

同时开发了基于单芯片方案(右图)的50GHz 无热AAWG DWDM 1U 机箱设备(可安装在19”机架),该设备为无源设备,无需送电,80/88/96通道配置可选;同时提供DWDM 升级端口,监控端口。

相比interleaver 方案,具有插损低和成本低的优势。

下图是可调光模块(SFP+/XFP )和 50GHz DWDW 1U 机箱设备组合方案示意图,供大家参考。

易飞扬通信(https://www.wendangku.net/doc/07447301.html, )︱ 全球光互连技术革新者

DWDM 可调XFP 光模块内置FEC 编码示意图

Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍

Tunable可调光模块和50GHz DWDM密集波分复用解决方案介绍 光通信领域传统的光源均是基于固定波长的激光器模块,随着光通信系统的不断发展及应用推广,固定波长DWDM激光器的缺点逐渐显露出来:一方面,随着技术的发展,DWDM 50GHz 系统中的波长数达到了上百个,在需要提供保护的场合,每个激光器的备份必须由可替换波长的激光器提供,这样导致备份DWDM光模块数量增加,运营成本上升;另一个方面,由于普通DWDM光模块波长固定,使得固定波长DWDM光模块存货数量提高,而且难易预测具体通道的备货数量. 另外,如果要支持光网络中的动态波长分配,提高网络灵活性,需要配备大量不同波长的普通DWDM光模块,但每只光模块的使用率却很低,造成资源浪费。针对这些不足,随着半导体及其相关技术的发展,易飞扬成功地研制出可调光模块(SFP+和XFP封装均可提供),即在同一个光模块可以配置输出不同的DWDM波长,且这些波长值和间隔均满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求。波长可调谐光模块有的灵活选择工作波长的特性,对于其在光纤通信波分复用系统、光分插复用器和光交叉连接、光交换设备、光源的备件等应用中具有非常大的实用价值。 针对这些不足,随着半导体及其相关技术的发展,易飞扬成功地研制出可调光模块(SFP+和XFP封装均可提供),即在同一个光模块可以配置输出不同的DWDM波长,且这些波长值和间隔均满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求。波长可调谐光模块有的灵活选择工作波长的特性,对于其在光纤通信波分复用系统、光分插复用器和光交叉连接、光交换设备、光源的备件等应用中具有非常大的实用价值。 我们公司的可调DWDM光模块采用内置集成激光器和MZ调制器的的芯片,满足ITU-T(50GHz DWDM ITU-T Full C-band)的要求,可调范围基于50GHz频道间隔多达 90个频道,将为设备厂商和运营商提供更大的灵活性,实现对于网络整体性能的优化,也将极大降低现有运营商对于DWDM SFP+模块库存的需求。我们的可调DWDM 10GE SFP+ 光模块功耗小于1.7W,该模块波长稳定,发射光功率在0dBm左右;消光比均大于10dBm,边模抑制比均大于51dB,眼图交叉点在47%~52%之间,该模块灵敏度均可达到-24dBm以上,完全80KM光纤工作距离; 可调DWDM 10GE XFP 光模块分为2种版本,支持FEC编码功能(OTN G.709成帧)和无FEC 编码功能,支持FEC编码功能(OTN G.709成帧)的DWDM可调光模块功耗略大(小于4.5W), FEC编码功能的好处是提高了传输的灵敏度;而不带FEC功能的DWDM可调光模块功耗略小(小于3.5W),两种版本均可满足80KM光纤工作距离,同时满足兼容思科,Juniper等主流设备商的交换机和核心路由器。

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

第二章密集波分复用(DWDM)传输原理

第二章密集波分复用()传输原理 [ : 雨丝] 一、填空题 系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器地高容量系统. 系统地工作方式主要有双纤单向传输和(单纤双向传输). 光纤有两个应用窗口,即和,前者每公里地典型衰耗值为,后者为(). 光纤又称做色散位移光纤是通过改变折射率地分布将附近地零色散点,位移到()附近,从而使光纤地低损耗窗口与零色散窗口重合地一种光纤. 在~之间光纤地典型参数为:衰减<();色散系数在·之间. .克尔效应也称作折射率效应,也就是光纤地折射率随着光强地变化而变化地(非线性)现象. .在多波长光纤通信系统中,克尔效应会导致信号地相位受其它通路功率地(调制),这种现象称交叉相位调制. .当多个具有一定强度地光波在光纤中混合时,光纤地(非线性)会导致产生其它新地波长,就是四波混频效应. .光纤通信中激光器间接调制,是在光源地输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)地作用. .恒定光源是一个连续发送固定波长和功率地(高稳定)光源. .电光效应是指电场引起晶体(折射率)变化地现象,能够产生电光效应地晶体称为电光晶体. .光耦合器地作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现. .光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长地光信号. 系统中λ中心波长是(). 系统中λ中心频率是(). 二、单项选择题 .光纤明线技术中地模拟技术,每路电话(). 、、、、 .光纤中地小同轴电缆路模拟技术,每路电话(). 、、、、 .光纤中地中同轴电缆路模拟技术,每路电话(). 、、、、 .光纤中地光纤通信系统,数字技术,每路电话(). 、、、、 .光纤中地光纤通信系统,数字技术,每路电话(). 、、、、 .光纤中地光纤通信×系统,数字技术光频域模拟技术,每路电话(). 、、、、 光纤可以将速率地信号无电再生中继传输至少()公里左右. 、、、、 .由于随长度而积累,因而是采用.光纤地单波长系统地基本非线性损伤,门限功率大约为().

光波分复用(WDM)技术复习过程

光波分复用(WDM)技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在 发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、波分复用技术的优点 WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点: (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。 (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。 (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。 (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。 三、波分复用技术目前存在的问题 以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。 1.网络管理 目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

密集波分复用器的设计

得分:_______ 光纤通信技术实验 (一)密集波分复用器的设计 实验报告 学生姓名: 学号: 专业班级: E-mail: 电话: 指导教师:柯昌剑 完成日期:

一、实验目的 1、完成基于双光纤准直器、单光纤准直器和介质膜滤光片的密集波分复用器滤波单元的结构设计和优化。 2、完成4波长密集波分复用器件的结构设计和优化。 3、完成密集波分复用器件的构建,并进行相关性能参数的测试。 二、实验原理与背景知识 1、密集波分复用器与光滤波器 密集波分复用器是密集波分复用(DWDM)系统中一种重要的无源光纤器件。由它所构成的合波和分波部分是系统的基本组成之一,它直接决定了系统的容量、复用波长稳定性、插入损耗大小等性能参数的好坏。密集波分复用器还可以衍生为其它多种适用于DWDM的重要功能器件,如波长路由器——用于宽带服务和波长选址的点对点服务的全光通讯网络;上路/下路器——用于指定波长的上/下路;梳状滤波器——用于多波长光源的产生和光谱的测量;波长选择性开关——不同波长信号的路由等,因此对于密集波分复用器的研究和制作具有重要的理论意义和良好的市场前景。 密集波分复用器的核心是窄带光滤波技术。目前常见的光通信用滤波器主要有以下几种:介质膜滤光片、光纤光栅、阵列波导光栅、M-Z干涉仪和F-P标准具等。 2、基于介质膜滤光片的密集波分复用器 2.1介质膜滤光片 介质膜滤光片由两个或者两个以上的用反射介电薄膜层来分隔的腔所构成的,实际上就是多个法布里-白洛标准具叠加的结果,其腔体附近的反射面是通过使用多层反射介电薄膜镀层来实现的。这种器件可以用作带通滤波器,即通过某一个特定的波长而反射其它的波长。滤光片的透射中心波长由腔的长度和入射光线的角度而定。随着腔的增加,介质膜滤光片通带的顶部将变得更加平坦,带尾则更加陡峭,这些都是光通信中所期望的特性。 2.2 光纤准直器

色散平坦光纤设计在密集波分复用系统的研究

色散平坦光纤设计在密集波分复用系统的研究 光通讯发展至今,长距离的光纤传输仍有一个问题存在,此问题就是色散(Dispersion)。色散对密集波分复用(DWDM,Dense Wavelength-Division Multiplexing)系统而言,由于色散的积累,各通道的色散都会随传输距离的增长而增大。然而,由于色散斜率的作用,各通道的色散积累量是不同的,其中位于两侧的边缘信道间的色散积累量差别最大。当传输距离超过一定值后,具有较大色散积累量通道的色散值超标,从而限制整个DWDM系统的传输距离。 将研究如何设计色散平坦光纤(DFF,Dispersion Flattened Fiber),可以使用在DWDM系统上。DWDM使用波段为C-Band和L-Band,其波长使用分别为1520—1570nm和1570—1620nm,我们将利用OptiFbert这软件,将此波长范围的色散值,当色散等于零时,会有非线性现象,如四波混合,故本研究为设计接近零值且平坦斜率的光纤,在设计上,我们有考虑制造成本,故不做复杂的Profiles设计,故不需做多层镀膜,我们利用四包层折射率分布(Quadruple-Clad Index Profile)。 标签:色散平坦光纤;DFF;Dispersion Flattened Fiber 1引言 高速率讯号和超长传输距离的光通讯系统中,传送距离越远,光功率就会不断的减弱,然而色散则会使讯号脉冲波形变形。因为光纤的非线性效应会降低DWDM系统的讯号质量,通常有大量残余的色散,即使是传输过程中使用色散补偿技术,如色散补偿光纤,被扩大的脉冲波行可以在接收端放放后置色散补偿(Post-Dispersion Compensation,PDC)还原波形。另外还有一种方式就是使用光弧子系统,因为光弧子系统作为全光非线性方案是消除色散的一种方式,长距离传输且不变形。在未来的光纤网络系统中,可以使用色散平坦光纤,因为这些光纤可以提供非常低色散在很宽的光谱范围。在单模光纤的色散作用起因是从光纤结构特性的波导以及玻璃材料的色散特性,因此本研究会设定不同参数,来观察材料色散与波导色散的相对关系,此关系会影响最终的色散值。色散平坦光纤却是将从1300nm到1650nm的较宽波段的色散,都能作到很低,几乎达到均匀零色散的光纤称作DFF。由于DFF要作到1300nm-1650nm范围的色散都减少。如果想要控制色散的特性,就需要对光纤的折射率分布进行复杂的设计,它又称为Depressed Cladding Fiber,核心外围有厚度较薄且折射率低的外壳层,更外面一层为折射率稍高的外壳,这种光纤可适用于1300nm-1650nm范围的光波长。 不过这种光纤对于高密度分波多任务系统(DWDM)的线路却是很适宜的。 2色散平坦光纤的设计原理 典型的色散平坦光纤有复杂的Profiles,这个Profiles包括有多个steps,去调整它的折射率来减少损失,大部份的色散平坦设计是基于相当简单的W-Profiles,W-Profiles的设计往往能得到在广大的波长范围有低色散的一段平坦

WDM OTN试题库

WDM/OTN试题库 一、填空题 1、影响波分系统传输性能的主要因素有:衰耗、色散、信噪比、 非线性。 2、 OptiX BWS 1600G 80波(C+L)系统中相邻通道的频率间隔是50GHz 。 3、 OptiX BWS 1600G设备的FIU单板主要用于实现主信道与光监控信道的合波 与分波功能。 4、 V40输入的相邻波长频率间隔是__100______ GHz。 5、 OptiX OSN 6800采用主从子架方式管理,最多支持1个主子架管理7 个从子 架 6、 OptiX OSN 6800设备如果只有1块主控板,此单板只能插放在IU18 板位 7、 OSN 8800设备I型子架共有32 个业务槽位,每槽位到集中交叉板容量是 40G 。 8、 DWDM信号在光纤中传送,产生的非线性效应最主要跟入纤光功率和信号传输距 离相关 9、工作站在OK状态下发命令从光盘引导系统的命令是boot cdrom 10、对于solaris8 和solaris10系统都可以通过uname –a 命令来查看solaris版本 11、 UNIX系统异常关机可能造成文件系统的损坏。此时在系统启动后,应该取得超级用户 权限,执行如下命令# fsck -y ,系统将检查文件系统,发现错误将自动进行修复。 该命令可以多运行几次,有时一次不能解决问题 12、在UNIX操作系统下,查看网卡MAC地址的命令:ifconfig –a 13、频率为192.2THZ的波长在800G系统中波长编号为78 ,在320GV3R2系统中波长 编号为 2 14、 FIU板的TM口光纤应和SSE1TC1板的__RM______(TM、RM)口相连。OBU的 输出口尾纤应该和FIU的____RC____(TC、RC)口相连。 15、 MCA的最多可以监控___8_____路信号。 16、 FIU单板____否____(是/否)可以检测上报输入、输出光功率;FIU的MON口监控 的是FIU的_____OUT___(IN、OUT)口信号。 17、 LWF的波分侧输入光口名称是___IN_____(RX、IN); 18、目前我国大量铺设的光纤为G.652 光纤,适合传输低速信号,如果速率达到10G

密集波分复用系统(2)-思考题及参考答案

密集波分复用系统(2)-思考题及参考答案 (1)简述何为NRZ和RZ?它们分别有何特点? 答:不归零码(NRZ,Not Return to Zero) 数字信号可直接采用基带传输,所谓基带就是指基本频带。基带传输就是在线路中直接传送数字信号的电脉冲,这是一种最简单的传输方式,近距离通信的局域网都采用基带传输。 基带传输时,需要解决数字数据的数字信号表示以及收发两端之间的信号同步问题。对于传输数字信号来说,最简单最常用的方法是用不同的电压电平来表示两个二进制数字,也即数字信号由矩形脉冲组成。按数字编码方式,可以划分为单极性码和双极性码,单极性码使用正(或负)的电压表示数据;双极性码是二进制码,1为反转,0为保持零电平。根据信号是否归零,还可以划分为归零码和非归零码,归零码码元中间的信号回归到0电平,而非归零码遇1电平翻转,零时不变。常见的几种基本的数字信号脉冲编码方案如下:单极性不归零码,无电压(也就是元电流)用来表示"0",而恒定的正电压用来表示"1"。每一个码元时间的中间点是采样时间,判决门限为半幅度电平(即0.5)。也就是说接收信号的值在0.5与1.0之间,就判为"1"码,如果在O与0.5之间就判为"0"码。每秒钟发送的二进制码元数称为"码速"。 双极性不归零码,"1"码和"0"码都有电流,但是"1"码是正电流,"0"码是负电流,正和负的幅度相等,故称为双极性码。此时的判决门限为零电平,接收端使用零判决器或正负判决器,接收信号的值若在零电平以上为正,判为"1"码;若在零电平以下为负,判为"0"码。 以上两种编码,都是在一个码元的全部时间内发出或不发出电流(单极性),以及发出正电流或负电流(双极性)。每一位编码占用了全部码元的宽度,故这两种编码都属于全宽码,也称作不归零码NRZ (Non Return Zero)。如果重复发送"1"码,势必要连续发送正电流;如果重复发送"0"码,势必要连续不送电流或连续发送负电流,这样使某一位码元与其下一位码元之间没有间隙,不易区分识别。归零码可以改善这种状况。 单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然完全不发送电流,所以称这种码为单极性归零码。 双极性归零码,其中"1"码发正的窄脉冲,"0"码发负的窄脉冲,两个码元的间隔时间可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。 非归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带就较宽。 单极性码会积累直流分量,这样就不能使用变压器在数据通信设备和所处环境之间提供良好绝缘的交流藕合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的。 NRZ特点: 主要应用于LH、VLH系统; 在10 Gbit/s及以下系统中,普遍采用非归零(NRZ)码调制格式; 最常见的是用DFB激光器和外部调制器对信号进行编码; NRZ只需一个高速外部调制器,实现简便; 优势在于设计简单、调制解调器成本低。 符合G.709标准 RZ 为(return to zero)归零制。

CWDM标准与关键技术

CWDM 1 CWDM的技术标准 CWDM是指信道之间的波长间隔较大的一种波分复用,即人们所称的粗波分复用。CWDM(粗波分复用)技术的出现使运营商找到一种低价格、高性能的传输解决方案,由于CWDM具有低成本、低功耗、小体积等诸多优点,在城域传送网已经有了一定应用。许多国内外制造商也开始研发和陆续推出产品,ITU也在加速其标准化进程。CWDM技术提高了光纤利用率,给运营商和用户以更大的灵活性。 ITU-T的CWDM建议。 “针对WDM应用的光谱间隔:CWDM波长间隔”。在1270~1610nm范围内,建议了波长间隔20nm的18个可用波长,可以在光纤上使用,如图所示。 IEEE的10GbE系列标准。 该系列主要包括850nm窗口的10GBaseSX-4 CWDM和1310nm窗口的10GBaseLX-4CWDM两个标准。10GBaseLX-4 CWDM同]TU-T建议1310nm窗口的标准相似,只是其波长间隔为,即WWDM。由于仅采用了4个波长,波长间隔较大的信道之间能够容许更大的色散,每个信道传输速率可以达到s,传输距离超过10km。在1310nm 窗口建议的可选信道波长为:(~);(~);(~):(~)。 0IF的VSR-5标准。 在40Gb/s的VSR5中的4×10CWDM方案中,4路传输速率为s至s的并行数据信号,分别驱动4个波长在至的激光器。每个激光器的中心波长间隔为,同IEEE的标准一致。从这些激光器发出的光经一个光复用器耦合到一根普通的单模光纤中,复用后的光信号以s至s的速率在光纤链路上传输。

以上几个国际建议标准,趋向于统—采用波长间隔的IEEE和0IF建议。这样在1260~1625nm的波长范围内,可用波长数为17个,16个波长可以在城域网或者局域网的范围内分配给用户使用,剩余一个波长用做管理信道。 2 CWDM系统优点 CWDM系统的最大的优势在于成本低,其主要表现在器件、功耗、集成度几个方面。 器件成本低 CWDM技术将大大降低建设和运维成本,特别是激光器和复用器/解复用器成本。对于波长间隔小于50GHz DWDM系统,激光器需要采用精密的温度控制电路来控制波长,有时需要采取波长锁定器等来保证波长的准确性和稳定性。光复用器(滤波器型)则需要精确的上百层多层介质膜器件,为了防止同频和异频串扰,还必须采用多次滤波等。而CWDM则不需要激光器制冷、波长锁定和精确镀膜等复杂技术,大大降低了设备成本。 功耗低 DWDM系统激光器集成了Peltier致冷器,采用的温度检测和控制电路消耗较大的功率,每波长需要消耗4W左右,CWDM的无致冷激光器及其控制电路每波长只需要约左右。对于多波长和高速率的DWDM系统,单盘功耗控制是系统设计中的一个困难问题。采用无致冷激光器的CWDM系统的低功耗减少电源备用蓄电池,降低成本。 体积小,集成度高 CWDM激光器物理尺寸上远小于DFB激光器。DWDM光发射机尺寸是CWDM光发射机的5倍左右。由于CWDM激光器结构和简单的控制电路,单个模块可以实现多路光收发,目前商用器件已经做到4路transceiver集成在一个尺寸仅为16cm′9cm′的模块,相当于一路DWDM系统光转发器大小。CWDM系统不使用光放大器,因此有

WDM 技术和要求

第1章WDM概述 1.1 WDM技术的产生背景 1.1.1 光网络复用技术的发展 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长 距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所 谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多 路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要 作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用 (WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数, 投资效益较差;TDM技术的应用很广泛,缺点是线路利用率较低;WDM技术在 1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的 SDH系统(经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用 (WDM)三个阶段),以及近来风起云涌的DWDM系统,乃至将来的智能光网 络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔 实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM (1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。 但是到90年代中期,WDM系统发展速度并不快. 从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。 WDM WDM又叫波分复用技术,是新一代的超高速的光缆技术,所谓波分复用技术, 就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍 增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将 不同规定波长的光载波进行合并,然后传入单模光纤。在接收部分将再由分波器 将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双

密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

光纤通信波分复用系统的研究与设计

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

密集波分复用(DWDM)传输原理试题

第二章密集波分复用(DWDM)传输原理 一、填空题 1. DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个低损耗窗口, 在传输过程中共享光纤放大器的高容量WDM系统。 2. DWDM系统的工作方式主要有双纤单向传输和单纤双向传输。 3. G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB, 后者为0.2dB 。 4. G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位 移到1550 nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5. G.655在1530~1565nm之间光纤的典型参数为:衰减< 0.25 dB/km;色散系数在1~ 6ps/nm·km之间。 6. 克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的非线性现象。 7. 在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的调制,这种现象 称交叉相位调制。 8. 当多个具有一定强度的光波在光纤中混合时,光纤的非线性会导致产生其它新的波长,就 是四波混频效应。 9. 光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器 实际起到一个开关的作用。 ⒑恒定光源是一个连续发送固定波长和功率的高稳定光源。 ⒒电光效应是指电场引起晶体折射率变化的现象,能够产生电光效应的晶体称为电光晶体。 ⒓光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器来实现。 ⒔光栅型波分复用器属于角色散型器件,是利用角色散元件来分离和合并不同波长的光信号。 ⒕DWDM系统中λ1中心波长是1548.51nm 。 ⒖DWDM系统中λ2中心频率是193.5THz 。 二、单项选择题 ⒈光纤WDM明线技术中的FDM模拟技术,每路电话( B)。 A、2kHz B、4kHz C、6kHz D、8kHz ⒉光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话( B )。 A、2kHz B、4kHz C、6kHz D、8kHz ⒊光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话( B )。

第二章密集波分复用(DWDM)传输原理

第二章密集波分复用(DWDM)传输原理 [ 2006-11-3 13:42:00 | By: 雨丝] 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

波分复用的概念

光通信系统可以按照不同的方式进行分类。如果按照信号的复用方式来进行分类,可分为频分复用系统(FDM-Frequency Division Multiplexing )、时分复用系统(TDM-Time Division Multiplexing)、波分复用系统(WDM- Wavelength Division Multiplexing)和空分复用系统(SDM-Space Division Multiplexing)。所谓频分、时分、波分和空分复用,是指按频率、时间、波长和空间来进行分割的光通信系统。应当说,频率和波长是紧密相关的,频分也即波分,但在光通信系统中,由于波分复用系统分离波长是采用光学分光元件,它不同于一般电通信中采用的滤波器,所以我们仍将两者分成两个不同的系统。 波分复用是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号。光波分复用的实质是在光纤上进行光频分复用(OFDM),只是因为光波通常采用波长而不用频率来描述、监测与控制。随着电-光技术的向前发展,在同一光纤中波长的密度会变得很高。因而,使用术语密集波分复用(DWDM-Dense Wavelength Division Multiplexing),与此对照,还有波长密度较低的WDM系统,较低密度的就称为稀疏波分复用(CWDM-Coarse Wave Division Multiplexing)。 这里可以将一根光纤看作是一个“多车道”的公用道路,传统的TDM系统只不过利用了这条道路的一条车道,提高比特率相当于在该车道上加快行驶速度来增加单位时间内的运输量。而使用DWDM技术,类似利用公用道路上尚未使用的车道,以获取光纤中未开发的巨大传输能力。 2.1.2 WDM技术的发展背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 l 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 l 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH的一次群至四次群的复用,到如今SDH

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

相关文档
相关文档 最新文档