文档库 最新最全的文档下载
当前位置:文档库 › 因式分解法解一元二次方程练习题及答案 (3)

因式分解法解一元二次方程练习题及答案 (3)

因式分解法解一元二次方程练习题及答案 (3)
因式分解法解一元二次方程练习题及答案 (3)

因式分解法解一元二次方程练习题

1.选择题

(1)方程(x -16)(x +8)=0的根是( )

A .x 1=-16,x 2=8

B .x 1=16,x 2=-8

C .x 1=16,x 2=8

D .x 1=-16,x 2=-8

(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )

A .x =

2

1 B .x =

2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( )

A .x 1=53,x 2=3

B .x =53

C .x 1=-53,x 2=-3

D .x 1=5

3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )

A .y 1=5,y 2=-2

B .y =5

C .y =-2

D .以上答案都不对

(5)方程(x -1)2-4(x +2)2=0的根为( )

A .x 1=1,x 2=-5

B .x 1=-1,x 2=-5

C .x 1=1,x 2=5

D .x 1=-1,x 2=5

(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )

A .1

B .2

C .-4

D .4

(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )

A .5

B .5或11

C .6

D .11

(8)方程x 2-3|x -1|=1的不同解的个数是( )

A .0

B .1

C .2

D .3

2.填空题

(1)方程t (t +3)=28的解为_______.

(2)方程(2x +1)2+3(2x +1)=0的解为__________.

(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.

(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________.

3.用因式分解法解下列方程:

(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0;

(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.

4.用适当方法解下列方程:

(1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0;

(5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9;

(7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;

(9)2x 2-8x =7(精确到0.01); (10)(x +5)2-2(x +5)-8=0.

5.解关于x 的方程:

(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;

(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.

6.已知x 2+3xy -4y 2=0(y ≠0),试求y

x y x +-的值.

7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.

8.请你用三种方法解方程:x (x +12)=864.

9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.

10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.

11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x

2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.

当y =1时,x 2-1=1,x 2

=2,∴x =±2.

当y =4时,x 2-1=4,x 2=5,∴x =±5.

∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.

以上方法就叫换元法,达到了降次的目的,体现了转化的思想.

(1)运用上述方法解方程:x 4-3x 2-4=0.

(2)既然可以将x2-1看作一个整体,你能直接运用因式分解法解这个方程吗?

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

高一数学用因式分解法解下列方程 (1)

高一数学:用因式分解法解下列方程 1.a^4-4a+3 2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n 3.x^2+(a+1/a)xy+y^2 4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b) 答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3) 2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y) 4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c) 5.(c-a)^2-4(b-c)(a-b) = (c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc =c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8 2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8 9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3

解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一 十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 5、十字相乘法解题实例: 1)、用十字相乘法解一些简单常见的题目 例1把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 解:因为1 -2 1 ╳6 所以m2+4m-12=(m-2)(m+6) 例2把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 5 ╳-4 所以5x2+6x-8=(x+2)(5x-4) 例3解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 1 ╳-5

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

用因式分解法解一元二次方程

典型例题一 例 用因式分解法解下列方程 6223362+=+x x x 解:把方程左边因式分解为: 0)23)(32(=-+x x ∴032=+x 或023=-x ∴ 3 2,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。 典型例题二 例 用因式分解法解下列方程。 1522+=y y 解: 移项得:01522 =--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y ∴.3,2 521=-=y y 说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

典型例题三 例 用因式分解法解下列方程 (1)021362=+-x x ; (2)0)23(9)12(322=--+x x ; 分析:一元二次方程化为一般形式后,在一般情况下,左边是一个二次三项式,右边是零.二次三项式,通常用因式分解的方法,可以分解成两个一次因式的积,从而可求出方程的根.但有些问题,可直接用因式分解法求解,例如(2)符合平方差公式的结构特征. 解:(1)原方程可变形为 ,0)2)(16(=--x x 016=-x 或02=-x , ∴2,6 121==x x . (2)原方程可化为 0)633()332(22=--+x x , 即 0)633332)(633332(=+-+-++x x x x , ∴0)363)(6335(=-+-+x x , ∴06335=-+x 或0363=-+x , ∴321,5 13221+=-=x x . 说明:因式分解将二次方程化为一次方程求解,起到了降次的作用.这种化未知为已知的解题思想,是数学中的“化归思想”.事实上,将多元方程组化为一元方程,也是此法. 典型例题四

一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】 把方程ax2+c=0(a≠0), 这解一元二次方程的方法叫做直接开平方法。 例:用直接开平方法解方程: 1.9x2-25=0; 2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3). 解:1.9x2-25=0 9x2=25 2.(3x+2)2-4=0 (3x+2)2=4 3x+2=±2 3x=-2±2

∴x1=x2=3. 4.(2x+3)2=3(4x+3) 4x2+12x+9=12x+9 4x2=0 ∴x1=x=0. 【配方法解一元二次方程】 将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如 x2+ 例:用配方法解下列方程: 1.x2-4x-3=0;2.6x2+x=35; 3.4x2+4x+1=7;4.2x2-3x-3=0. 解:1.x2-4x-3=0 x2-4x=3 x2-4x+4=3+4 (x-2)2=7 2.6x2+x=35

3.4x2+4x+1=7 4.2x2-3x-3=0 【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a

广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法 =0(a≠0)的求根公式。 例:用公式法解一元二次方程: 2.2x2+7x-4=0; 4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x). 2.2x2+7x-4=0 ∵a=2,b=7,c=-4. b2-4ac=72-4×2×(-4)=49+32=81

因式分解法解一元二次方程

因式分解法解一元二次方程 因式分解法解一元二次方程的一般步骤 因式分解法解一元二次方程的一般步骤是: (1)移项 把方程的右边化为0; (2)化积 将方程的左边分解为两个一次因式的乘积; (3)转化 令每个因式等于0,得到两个一元一次方程; (4)求解 解这两个一元一次方程,得到一元二次方程的两个解. 例1. 用因式分解法解方程:x x 32=. 解:032=-x x ()03=-x x ∴0=x 或03=-x ∴3,021==x x . 例2. 用因式分解法解方程:()()01212 =---x x x . 解:()()0211=---x x x ()()()()0 11011=+-=---x x x x ∴01=-x 或01=+x ∴1,121-==x x . 例3. 解方程:121232-=-x x . 解:0121232=+-x x ()()0230 44322=-=+-x x x ∴221==x x . 例4. 解方程:332+=+x x x . 解:()0332=+-+x x x ()()()()0310 131=-+=+-+x x x x x

∴01=+x 或03=-x ∴3,121=-=x x . 因式分解法解高次方程 例5. 解方程:()()013122 2=---x x . 解:()()031122=---x x ()()()()()()022*******=-+-+=--x x x x x x ∴01=+x 或01=-x 或02=+x 或02=-x ∴2,2,1,14321=-==-=x x x x . 例6. 解方程:()()034322 2=+-+x x . 解:()()043322=-++x x ()()()()()0113013222=-++=-+x x x x x ∵032>+x ∴()()011=-+x x ∴01=+x 或01=-x ∴1,121=-=x x . 用十字相乘法分解因式解方程 对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=?≥0且?的值为完全平方数时,可以用十字相乘法分解因式解方程. 例7. 解方程:0652=+-x x . 分析:()124256452 =-=?--=?,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x ∴02=-x 或03=-x ∴3,221==x x .

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

用因式分解法解方程

课题:2.3 用因式分解法求解一元二次方程 学情分析 学生已经学习了解方程的方法,也学习了因式分解的方法,掌握了配方法和公式法解方程。具备一定的合作与交流的能力。 教学目标1.掌握用因式分解法解一元二次方程. 2.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键 1.重点:用因式分解法解一元二次方程. 2.?难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 一、复习引入 (学生活动)解下列方程. (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? 上面两个方程中都没有常数项;左边都可以因式分解:2x2+x=x(2x+1),3x2+6x=3x(x+2)因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=- . (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,?另一边为0的形式解:(1)移项,得:4x2-11x=0 因式分解,得:x(4x-11)=0 于是,得:x=0或4x-11=0 x1=0,x2= (2)移项,得(x-2)2-2x+4=0 (x-2)2-2(x-2)=0 因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0 于是,得x-2=0或x-4=0 x1=2,x2=4 例2.已知9a2-4b2=0,求代数式的值.

24解一元二次方程的方法练习

知识要点 ★直接开平方法:对于形式如()n m x =+2 (n ≥0)的方程,根据平方根的意义,即两边同时开平方,变形为n m x ±=+,得到两个一次方程,解一次方程得到未知数的值。 ★配方法:把一元二次方程通过配成完全平方式的方法转化为()n m x =+2 的形式,从而得到这个一元二次方程的根。步骤如下: (1)把常数项移到方程的右边; (2) 把二次项系数化为1,(如果二次项系数不是1,给方程两边同除以二次项系数) (3) 给方程两边都加上一次项系数的一半的平方 (4) 方程左边是一个完全平方式,将方程变形为()n m x =+2 的形式 在()n m x =+2中,当0>n 时,方程有两个不相等的实数根n m x n m x --=+-=21,。 当0=n 时,方程有两个相等的实数根m x x -==21。 当0

一元二次方程的解法 有哪些简便解题步骤

一元二次方程怎么解呢,有哪些解题的步骤呢,下面小编为大家提供一元二次方程有 哪些解题方法,仅供大家参考。 一元二次方程的解题方法有哪些 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=±根号下n+m . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法: 用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b^2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方) 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法: 把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0

用因式分解法解一元二次方程---详细答案

用因式分解法解一元二次方程 【主体知识归纳】 1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法. 2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0. 【基础知识讲解】 1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法. 2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法. 【例题精讲】 例1:用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3. (3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=2 3. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了. (2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:

(完整版)解一元二次方程配方法练习题

解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1 ; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1 ?用适当的数填空: ①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2; ③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 2 2 .将二次三项式2X2-3X-5进行配方,其结果为 ? 3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ . 4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b 的形式为_______ , ?所以方程的根为___________ . 5. 若x2+6x+m2是一个完全平方式,则m的值是() A . 3 B . -3 C.± 3 D .以上都不对 6. 用配方法将二次三项式a2-4a+5变形,结果是( ) A. (a-2) 2+1 B. (a+2) 2-1 C. (a+2) 2+1 D . ( a-2) 2-1 7. 把方程X+3=4X配方,得() A . ( X-2 ) 2=7 B . ( X+2)2=21 C. (X-2 ) 2=1 D . ( X+2)2=2 &用配方法解方程X2+4X=10的根为() A. 2± \10 B. -2 ±14 C. -2+ 10 D. 2- -10 9. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D .可能为负数 10. 用配方法解下列方程: (1) 3X2-5X=2 . (2) X2+8X=9 (5) 6X2-7X+仁0 (6) 4X2-3X=52 11.用配方法求解下列问题 (1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。 12.将二次三项式 A . ( 2X—2) 2+3 C. (2X+2 ) 2 4X2—4X+1配方后得( B. (2X— 2) 2—3 D. (X+2)2—3 13 .已知X2—8X+15=0 ,左边化成含有X的完全平方形式, 其中正确的是( ) A . X2—8X+ (—4) 2=31 B . X2—8X+ (—4) 2=1 C . X2+8X+42=1 D . x2—4X+4=— 11 14 .已知一元二次方程X2— 4x+1+m=5请你选取一个适当 的m的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m的值是;(2)解这个方程. 15 . 如果X2— 4x+y2+6y+ 71 +13=0 ,求(xy) z的值 (3) X2+12X-15=0 (4)X2-X-4=0 4 1

因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题 姓名: 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2 -(52+1)x +10=0; (9)2x 2-8x =7; (10)(x +5)2-2(x +5)-8=0.

一元二次方程的解法知识点汇总

一元二次方程的解法知识点汇总 知识点一:直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。一般地,对于形如x=a(a≧0)的方程,根据平平方根的定义,可解的x =,x=-。 知识点二:用因式分解法解一元二次方程 1.因式分解法的意义:因式分解法就是利用因式分解求出方程的解的 方法,如对于方程x-4=0,左边分解因式可得(x+2)(x-2)=0, 则必有x+2=0或x-2=0,所以x=-2,x=2,这种解法叫做因式分解 法,即利用因式分解法的方法解方程称为因式分解法。 2.因式分解法一元二次方程的一般步骤: ①将方程的右边化为0 ②将方程的左边分解为两个一次因式的乘积 ③令每一个因式分别为零,就得到两个一元一次方程 ④解这两个一元一次方程,它们的解就是原方程的解 知识点三:配方法 把一个一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 知识点四:公式法

1.一般地,对于一元二次方程ax+bx+c=0(a≠0),如果b-4ab≥0, 那么方程的两个根为x=-b±/2a。 这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二次方程的系数a、b、c的值,直接求得方程的解,这种解一元二次方程的方法叫做求根公式法。 2.一元二次方程的求根公式的推导过程 一元二次方程的求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax+bx+c=0(a≠0)的过程。 解:a≠0,方程两边都除以a,得x+bx/a+c/a=0 移项,得x+bx/a=- c/a, 配方,得x+2*x*b/2a+(b/2a)=(b/2a)- c/a 即(x+ b/2a)=b-4ac/4a ∵a≠0,∴4a>0,当b-4ac≥0时,直接开平方,得 x+ b/2a=±/2a ∴x=- b/2a±/2a, 即x=-b±/2a

21.2.1直接开平方法解一元二次方程练习题1

21.2.1 直接开平方法解一元二次方程 要点感知1 对于方程x 2=p.(1)当p>0时,方程有_______的实数根,_______;(2)当p=0时,方程有_______的实数根,_______0;(3)当p<0,方程_______. 预习练习1-1 下列方程可用直接开平方法求解的是( ) A.9x 2=25 B.4x 2-4x-3=0 C.x 2-3x=0 D.x 2-2x-1=9 1-2若x 2-9=0,则x=_______. 要点感知2 解形如(mx+n)2=p(p ≥0)的一元二次方程,先根据_______的意义,把一元二次方程“_______”转化为两个_______元_______次方程,再求解. 预习练习2-1 方程(x-2)2=9的解是( ) A.x 1=5,x 2=-1 B.x 1=-5,x 2=1 C.x 1=11,x 2=-7 D.x 1=-11,x 2=7 知识点 用直接开平方法解一元二次方程 1.下列方程能用直接开平方法求解的是( ) A.5x 2+2=0 B.4x 2-2x+1=0 C.(x-2)2=4 D.3x 2+4=2 2.方程100x 2-1=0的解为( ) A.x 1=101,x 2=101- B.x 1=10,x 2=-10 C.x 1=x 2=101 D.x 1=x 2=10 1- 3.(丽水中考)一元二次方程(x+6)2=16可化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( ) A.x-6=4 B.x-6=-4 C.x+6=4 D.x+6=-4 4.(鞍山中考)已知b <0,关于x 的一元二次方程(x-1)2=b 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有两个实数根 5.关于x 的一元二次方程2x 2-3x-a 2+1=0的一个根为2,则a 的值为( ) A.1 B.3 C.-3 D.±3 6.一元二次方程ax 2-b=0(a ≠0)有解,则必须满足( ) A.a 、b 同号 B.b 是a 的整数倍 C.b=0 D.a 、b 同号或b=0 7.对形如(x+m)2=n 的方程,下列说法正确的是( ) A.用直接开平方得x=-m ±n B.用直接开平方得x=-n ±m C.当n ≥0时,直接开平方得x=-m ±n D.当n ≥0时,直接开平方得x=-n ±m 8.若代数式(2x-1)2的值是25,则x 的值为_______ 9.完成下面的解题过程: (1)解方程:2x 2-8=0; (2)解方程:3(x-1)2-6=0. 解:原方程化成_______, 解:原方程化成_______, 开平方,得_______, 开平方,得_______, 则x 1=_______,x 2=_______ .则x 1=_______,x 2=_______. 10.用直接开平方法解下列方程: (1)x 2-25=0; (2)4x 2=1; (3)3(x+1)2=31 ; (4)(3x+2)2=25. 11.方程2x 2+8=0的根为( )

用适当的方法解一元二次方程(习题课)

用适当的方法解一元二次方程 九()班姓名: 学习目标:灵活运用开方法、配方法、公式法、因式分解法解一元二次方程方法回顾: 开方法:如果方程能化成x2=p 或(mx+n)2=p (p≥0)的形式,方可用此法. 配方法:要先把方程化成x2+bx=p的形式之后,才能用此法。 公式法:要先把方程化成一般形式:ax2+bx+c=0 (a≠0) 若b2-4ac≥0 则方程的解是: z ac b b x 2 4 2- + - = 因式分解法:如果方程的左边可以化成两个因式的乘积,右边化成0,方可用此法。【例题】用适当方法解方程: (1)x2-9=0 (2)3x2=4x (3)x2-4x+4=0 (4)x2-6x+5=0 (5)9(2-x)2 =4 (6)2x2+5x-3=0 (7)8y2-2=4y (8)x(x-6)=8 (9) (2x-3)2=(2x-3)

【练习】用适当的方法解下列方程 (1)22x -6=0; (2)018)1(2=--x (3)x x 4)1(2=+; (4)5x =42x (5)32x =4x ; (6)x (x -1)+3(x -1)=0 (7)2x(x+3)=4(x+3) (8)32)5(-x =2(5-x ) (9)22)32()1(-=+x x (10)210160x x -+= (11)2304x x --= (12)22+13x x =

(13)23640x x -+= (14)2+49211x x x -=- (15)()4812x x x +=+ 【拓展知识】 巧解一元四次方程 阅读下面的材料,回答问题: 解方程x 4-5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2-5y+4=0 ①,解得y 1=1,y 2=4. 当y=1时,x 2 =1,∴x=±1; 当y=4时,x 2=4,∴x=±2; ∴原方程有四个根:x 1=1,x 2=-1,x 3=2,x 4=-2. (1)在由原方程得到方程①的过程中,利用_______法达到______的目的,?体现了数学的转化思 想. 【针对练习】 1.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 2.解方程(x 2+x )2-4(x 2+x )-12=0.

相关文档
相关文档 最新文档