文档库 最新最全的文档下载
当前位置:文档库 › C++第七章 动态内存分配习题解答

C++第七章 动态内存分配习题解答

C++第七章 动态内存分配习题解答
C++第七章 动态内存分配习题解答

第七章动态内存分配习题

一、基本概念与基础知识自测题

7.1 填空题

7.1.1 C/C++定义了4个内存区间:(1)、(2)、(3)和(4)。

答案:(1)代码区,存放程序代码;

(2)全局变量与静态变量区,存放全局变量或对象(包括静态);

(3)局部变量区即栈(stack)区,存放局部变量;

(4)动态存储区,即堆(heap)区或自由存储区(free store)。

7.1.2 静态定义的变量和对象用标识符命名,称为(1);而动态建立的称为(2),动

态建立对象的初始化是通过(3)来(4)。

答案:(1)命名对象

(2)无名对象

(3)初始化式(initializer)

(4)显式初始化

7.1.4 当动态分配失败,系统采用(1)来表示发生了异常。如果new返回的指针丢失,

则所分配的堆空间无法收回,称为(2)。这部分空间必须在(3)才能找回,这是因为无名对象的生命期(4)。

答案:(1)返回一个空指针(NULL)

(2)内存泄漏

(3)重新启动计算机后

(4)并不依赖于建立它的作用域

7.1.5 按语义的缺省的构造函数和拷贝构造赋值操作符实现的拷贝称(1),假设类对象

obj中有一个数据成员为指针,并为这个指针动态分配一个堆对象,如用obj1按成员语义拷贝了一个对象obj2,则obj2对应指针指向(2)。

答案:(1)浅拷贝

(2)同一个堆对象

7.2简答题(以下习题题号可能和教材不一致!)

7.2.1用delete删除p所指向的无名对象时,p指针也同时被删除了,对不对?为什么?答:不对。注意这时释放了p所指向的无名对象占用的内存空间,也就是撤销了该无名对象,称动态内存释放(dynamic memory deallocation),但指针p本身并没有撤销,它仍然存在,该指针所占内存空间并未释放。

7.2.2为什么动态建立类对象数组时,类的定义一定要有缺省的构造函数?

答:new后面类(class)类型也可以有参数。这些参数即构造函数的参数。但对创建数组,没有参数,只能调用缺省的构造函数。

7.2.3要实现深拷贝,自定义的拷贝构造函数应该怎样设计?

答:如果类中有一个数据成员为指针,该类的一个对象中的这个指针p,指向了动态分配的一个堆对象。深拷贝时要给新建立的对象独立分配一个堆对象。这时拷贝的构造函数应

该设计为:先拷贝对象主体,再为新建对象的指针分配一个堆对象,最后用原对象的堆对象拷贝新对象的堆对象。即分三步完成。

动态内存分配和回收

实验五可变分区存储管理方式的内存分配和回收 一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验属性 设计 三.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 四.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义 #define m 10 //假定系统允许的空闲区最大为m struct

操作系统内存动态分配模拟算法

实验四存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include using namespace std; //定义存的大小 const int SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //存块结构体,保存存块信息 struct Block{

动态内存分配

浅析动态内存分配及Malloc/free的实现2011-03-18 22:47一、概述: 动态内存分配,特别是开发者经常接触的Malloc/Free接口的实现,对许多开发者来说,是一个永远的话题,而且有时候也是一个比较迷惑的问题,本文根据自己的理解,尝试简单的探究一下在嵌入式系统中,两类典型系统中动态内存分配以及Malloc/Free的实现机制。 二、内存分配方式 Malloc/Free主要实现的是动态内存分配,要理解它们的工作机制,就必须先了解操作系统内存分配的基本原理。 在操作系统中,内存分配主要以下面三种方式存在: (1)静态存储区域分配。内存在程序编译的时候或者在操作系统初始化的时候就已经分配好,这块内存在程序的整个运行期间都存在,而且其大小不会改变,也不会被重新分配。例如全局变量,static变量等。 (2)栈上的内存分配。栈是系统数据结构,对于进程/线程是唯一的,它的分配与释放由操作系统来维护,不需要开发者来 [url=javascript:;]管理[/url] 。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时,这些存储单元会被自动释放。栈内存分配运算内置于处理器的指令集中,效率很高,不同的操作系统对栈都有一定的限制。 (3)堆上的内存分配,亦称动态内存分配。程序在运行的期间用malloc申请的内存,这部分内存由程序员自己负责管理,其生存期由开发者决定:在何时分配,分配多少,并在何时用free来释放该内存。这是唯一可以由开发者参与管理的内存。使用的好坏直接决定系统的性能和稳定。 三、动态内存分配概述 首先,对于支持虚拟内存的操作系统,动态内存分配(包括内核加载,用户进程加载,动态库加载等等)都是建立在操作系统的虚拟内存分配之上的,虚拟内存分配主要包括: 1、进程使用的内存地址是虚拟的(每个进程感觉自己拥有所有的内存资源),需要经过页表的映射才能最终指向系统实际的物理地址。 2、主内存和磁盘采用页交换的方式加载进程和相关数据,而且数据何时加载到主内存,何时缓存到磁盘是OS调度的,对应用程序是透明的。 3、虚拟存储器给用户程序提供了一个基于页面的内存大小,在32位系统中,用户可以页面大小为单位,分配到最大可以到4G(内核要使用1G或2G等内存地址)字节的虚拟内存。 4、对于虚拟内存的分配,操作系统一般先分配出应用要求大小的虚拟内存,只有当应用实际使用时,才会调用相应的操作系统接口,为此应用程序分配大小以页面为单位的实际物理内存。 5、不是所有计算机系统都有虚拟内存机制,一般在有MMU硬件支持的系统中才有虚拟内存的实现。许多嵌入式操作系统中是没有虚拟内存机制的,程序的动态分配实际是直接针对物理内存进行操作的。许多典型的实时嵌入式系统如Vxworks、Uc/OS 等就是这样。 四、动态内存分配的实现 由于频繁的进行动态内存分配会造成内存碎片的产生,影响系统性能,所以在不同的系统中,对于动态内存管理,开发了许多不同的算法(具体的算法实现不想在这里做详细的介绍,有兴趣的读者可以参考Glib C 的源代码和附录中的资料)。不同的操作系统有不同的实现方式,为了程序的可移植性,一般在开发语言的库中都提供了统一接口。对于C语言,在标准C库和Glib 中,都实现了以malloc/free为接口的动态内存分配功能。也就是说,malloc/free库函索包装了不同操作系统对动态内存管理的不同实现,为开发者提供了一个统一的开发环境。对于我们前面提到的一些嵌入式操作系统,因为实时系统的特殊要求(实

《动态分配内存与数据结构》课后习题

《动态分配内存与数据结构》习题 学号姓名 一、选择题 1、是一种限制存取位置的线性表,元素的存取必须服从先进先出的规则。 A.顺序表B.链表C.栈D.队列 2、是一种限制存取位置的线性表,元素的存取必须服从先进后出的规则。 A.顺序表B.链表C.栈D.队列 3、与顺序表相比,链表不具有的特点是。 A.能够分散存储数据,无需连续内存空间 B.插入和删除无需移动数据 C.能够根据下标随机访问 D.只要内存足够,没有最大长度的限制 4、如果通过new运算符动态分配失败,返回结果是。 A.-1 B.0 C.1D.不确定 5、实现深复制中,不是必须自定义的。 A.构造函数B.复制构造函数 C.析构函数D.复制赋值操作符函数 6、分析下列代码是否存在问题,选择合适的选项:。 int main(void) { int *p = new int [10]; p = new int [10]; delete [] p; p = NULL; return 0; } A.没有问题 B.有内存泄漏 C.存在空悬指针 D.存在重复释放同一空间 7、通过new运算符动态分配的对象,存储于内存中的。 A.全局变量与静态变量区 B.代码区 C.栈区 D.堆区 8、下列函数中,可以是虚函数。 A.构造函数 B.析构函数 C.静态成员函数 D.友元函数 9、关于通过new运算符动态创建的对象数组,下列判断中是错误的。 A. 动态创建的对象数组只能调用默认构造函数 B. 动态创建的对象数组必须调用delete []动态撤销 C. 动态创建的对象数组的大小必须是常数或常变量 D. 动态创建的对象数组没有数组名 10、顺序表不具有的特点是 A. 元素的存储地址连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置有关 11、假设一个对象Ob1的数据成员是指向动态对象的指针,如果采用浅复制的方式复制该对象得到对象Ob2,那么在析构对象Ob1和对象Ob2时会的问题。 A. 有重复释放 B. 没有 C. 内存泄漏 D. 动态分配失败 12、假设对5个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCDE,则出栈的先后顺序不可能是。 A. ABCDE B. EDCBA C. EDBCA D. BCADE 13、假设对4个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCD,则出栈的先后顺序不可能是。 A. ABCD B. DCBA C. BCAD D. DCAB 14、通过new运算符动态创建的对象的存放在中。 A. 代码区 B. 栈区 C. 自由存储区 D. 全局数据区 15、链表不具有的特点是。 A. 元素的存储地址可以不连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置无关 16、有关内存分配和释放的说法,下面当中错误的是 A.new运算符的结果只能赋值给指针变量 B.动态创建的对象数组必须调用delete []动态撤销 C.用new分配的空间位置是在内存的栈区 D.动态创建的对象数组没有数组名 17、关于栈,下列哪项不是基本操作 A.删除栈顶元素 B.删除栈底元素 C.判断栈是否为空 D.把栈置空 18、关于链表,说法错误的是

动态内存分配(C语言)

实验报告 实验课程名称:动态内存分配算法 年12月1日

实验报告 一、实验内容与要求 动态分区分配又称为可变分区分配,它是根据进程的实际需要,动态地为之分配内存空间。在实验中运用了三种基于顺序搜索的动态分区分配算法,分别是1.首次适应算法2.循环首次适应算法3.最佳适应法3.最坏适应法分配主存空间。 二、需求分析 本次实验通过C语言进行编程并调试、运行,显示出动态分区的分配方式,直观的展示了首次适应算法循环首次适应算法、最佳适应算法和最坏适应算法对内存的释放和回收方式之间的区别。 首次适应算法 要求空闲分区链以地址递增的次序链接,在分配内存时,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止,然后在按照作业的大小,从该分区中划出一块内存空间,分配给请求者,余下的空余分区仍留在空链中。 优点:优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区,为以后到达的大作业分配大的内存空间创造了条件。 缺点:低址部分不断被划分,会留下许多难以利用的、很小的空闲分区即碎片。而每次查找又都是从低址部分开始的,这无疑又会增加查找可用空闲分区时的开销。

循环首次适应算法 在为进程分配内存空间时,不是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。 优点:该算法能使内存中的空闲分区分布得更均匀,从而减少了查找空闲分区时的开销。 最佳适应算法 该算法总是把能满足要求、又是最小的空闲分区分配给作业,避免大材小用,该算法要求将所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。 缺点:每次分配后所切割下来的剩余部分总是最小的,这样,在存储器中会留下许多难以利用的碎片。 最坏适应算法 最坏适应算法选择空闲分区的策略正好与最佳适应算法相反:它在扫描整个空闲分区或链表时,总会挑选一个最大的空闲区,从中切割一部分存储空间给作业使用。该算法要求,将所有的空闲分区,按其容量以大到小的顺序形成一空闲分区链。查找时,只要看第一个分区能否满足作业要求即可。 优点:可使剩下的空闲区不至于太小,产生碎片的可能性最小,对中小作业有利,同时,最坏适应算法查找效率很高。 缺点:导致存储器中缺乏大的空闲分区 三、数据结构 为了实现动态分区分配算法,系统中配置了相应的数据结构,用以描述空闲分区和已分配分区的情况,常用的数据结构有空闲分区表和空闲分区链 流程图

动态内存分配

动态内存分配 一、实验目的 动态分区分配是根据进程的实际需要,动态地为之分配内存空间,而在分配时,须按照一定的分配算法,从空闲分区表或空闲分区链中选出一分区分配给该作业。在本实验中运用了四种分配算法,分别是1.首次适应算法,2.循环首次适应算法,3.最坏适应算法4.最佳适应算法。 二、实验要求及功能介绍 1.实验要求 1.在实现关于内存管理的内存首选适应算法和最佳适用算法。 2.实现关于内存管理的内存动态分区分配布局初始化。 3.实现关于内存管理的内存动态分区分配申请分配。 4.实现关于内存管理的内存回收等基本功能操作函数。 2.功能介绍 (1)首次适应算法 在首次适应算法中,是从已建立好的数组中顺序查找,直至找到第一个大小能满足要求的空闲分区为止,然后再按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空间令开辟一块新的地址,大小为原来的大小减去作业大小,若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 (2)循环首次适应算法 该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 (3)最坏适应算法 最坏适应分配算法是每次为作业分配内存时,扫描整个数组,总是把能满足条件的,又是最大的空闲分区分配给作业。 (4)最佳适应算法 最坏适应分配算法是每次为作业分配内存时,扫描整个数组,总是把能满足条件的,又是最小的空闲分区分配给作业。 三、实验流程图

动态分配内存管理源代码及讲解

动态分配内存算法以及源程序讲解 整体思路: 动态分区管理方式将内存除操作系统占用区域外的空间看成一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所采用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于minsize。则把空闲区分成两部分,一部分用来装入作业,另外一部分仍为空闲区。这时只要修改原空闲区的长度,且把新装人的作业登记到已分配区表中。 内存的回收: 在动态分区方式下回收内存空间时,先检查是否有与归还区相邻的空闲区(上邻空闲区,

C51单片机动态内存分配

Keil51动态内存分配问题经验 动态内存一般分配在堆中,而静态的内存一般分配在栈中;Keil51中提供了一个建立堆的函数,就是init_mempool(首地址,大小),首地址被定义为xdata 的地址空间,这个函数可以在xdata中定义一个可以动态分配的堆;因为在51中,data区域的空间太小,要动态分配空间,考虑到程序的运行,是不合理的,所以必须在xdata中建立可以动态分配的堆。 STC12C5A60S2内部集成了256字节的RAM,存储类型为data,地址是00H~FFH。其中低128字节是工作寄存器组,包括R0~R7,地址为00H~1FH,20H~2FH地址区为位寻址区,30H~7FH为普通RAM区;高128字节为普通的RAM区。内部RAM中,30H~FFH都是普通用户RAM和堆栈区,可以用来进行内存分配,总共208字节;实际在程序运行中,要在这208字节分配一个堆栈进行动态的内存分配,对于其他的程序运行会有很多不便。 STC12C5A60S2可用的内部扩展RAM的地址空间是:0x000~0x3ff这一地址空间,存储类型为xdata,这部分空间总共占1K字节,可以用来作为堆栈区,进行内存动态分配。 STC12C5A60S2可以扩展64K外部xdata,在没有进行扩展外部存储器的情况下,最好使用上述内部扩展的1K字节,地址为0x000~0x3ff的存储器。 对于其他的51单片机,用户可以参考芯片手册查看系统内部的以及扩展的RAM空间大小和地址,确定data和xdata范围,根据需要自行定义。 目前,我使用STC12C5A60S2总结了两种动态定义的方式。 方式一:给定地址区域 init_mempool(0x0000,0x03ff);//内部扩展1K字节的空间, //都可以作为堆栈空间进行内存分配; 数据结构: typedef struct STU{ uint8id; struct STU*next; }*PSTU,STU_t; 注意:一定在使用init_mempool函数之后使用malloc calloc,,realloc realloc,,free等 malloc,,calloc 函数,因为只有先确定了堆,才能在堆中执行相应的操作; 定义并分配堆空间: PSTU stu; init_mempool(0x0100,500);//内部只能用0x300~0x3ff这一地址空间; 初始化: stu=(PSTU)malloc(sizeof(STU_t)); stu->id=8; stu->next=NULL; 函数:void insertlist(PSTU phead,uint8pos,PSTU stu); 方式二:让系统随机分配

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16) 最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28)

引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。 编写程序实现连续动态分区内存管理方式,该程序管理一块虚拟内存,实现内存分配和回收功能。分析并实现四种内存分配算法,即最先适应算法,下次最先适应算法,最优适应算法,最坏适应算法。内存分配算法和回收算法的实现。 需求分析 动态分区分配是根据进程的实际需要,动态地为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。常用的数据结构有动态分区表和动态分区链。在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),在动态分区存储管理方式中主要实现内存分配和内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接等相关的内容 概要设计 本程序采用机构化模块化的设计方法,共分为四大模块。 ⑴最先适应算法实现 从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配 给作业,这种方法目的在于减少查找时间。为适应这种算法,空闲分区表(空闲 区链)中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲 区,在低址空间造成许多小的空闲区,在高地址空间保留大的空闲区。 ⑵下次适应分配算法实现 该算法是最先适应算法的变种。在分配内存空间时,不再每次从表头(链首) 开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满 足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作 业。该算法能使内存中的空闲区分布得较均匀。

不看后悔——详解动态分配内存的函数

动态内存分配函数解析 引言:对于指针,正确的分配动态内存是十分重要的,本文将着重阐述动态内存分配函数malloc,calloc,realloc 以及memset的用法。 i.对于malloc,在linux终端输入 #:man malloc可以知道函数原型是 Void *malloc(size_t size) ,包含在库函数 stdlib.h中,作用是在内存的堆区分配一个大小为size 的连续空间,如果分配内存成功,函数返回新分配内存的首地址,否则,返回NULL,注意:鉴于上述这点,一般在写程序需要判断分配内存是否成功,如下程序语句: int *p; p=(int *)malloc(sizeof(int)); if(p!=NULL) .................................//需要执行的语句 else .........................//打印分配内存不成功出错信息 通常造成内存分配失败的原因如下: 1、内存访问越界 2、所需连续的内存空间不足 ii.对于函数calloc用法大致与malloc相同,函数原型为: void *callo(size_t num,size_t size),作用是在内存中分配连续大小为num*size的空间,这一点在动态数组内存分配有所体现,返回值以及判断返回是否成功与上面相同,下面重点来讨论 malloc与calloc区别: 1、后者在返回指向内存的指针之前把它初始化为0。 2、请求内存数量的方式不同。malloc的参数仅仅是需要分配的内存字节数;calloc的参数包括元素的数量和每个元素的字节数。 为了说明第一点,请看如下程序:程序

操作系统内存动态分配模拟算法

实验四内存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验内容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其内存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include usingnamespace std; //定义内存的大小 constint SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //内存块结构体,保存内存块信息 struct Block{

我讲解一下c语言中动态分配内存的函数 (2)

我讲解一下c语言中动态分配内存的函数,可能有些初学c语言的 人不免要问了:我们为什么要通过函数来实现动态分配内存呢?系统难道不是会自动分配内存吗?? 既然有人会问这样的问题,那么我在这里好好的讲解一下吧! 首先让我们熟悉一下计算机的内存吧!在计算机的系统中有四个内存区域:1)栈:在栈里面储存一些我们定义的局部变量以及形参(形式参数);2)字符常量区:主要是储存一些字符常量,比如:char *p_str=”cgat”;其中”cgat”就储存在字符常量区里面;3)全局区:在全局区里储存一些全局变量和静态变量;4)堆:堆主要是通过动态分配的储存空间,也就是我们接下需要讲的动态分配内存空间。 什么时候我们需要动态分配内存空间呢?举一个例子吧。int *p;我们定义了一个指向int类型的指针p;p是用来储存一个地址的值的,我们之所以要为p 这个变量分配空间是让它有一个明确的指向,打个比方吧!你现在做好了一个指向方向的路标,但是你并没有让这个路标指向一个确切的方位,也就是说现在的这个路标是瞎指向的,这样我们就不能够通过它来明确到底哪里是东,哪里是西,何为北,何为南了。虽然我们在计算机的内存里定义了一个指针变量,但是我们并没有让这个变量指示一个确切int类型变量的地址,所以我们就必须要让它有一个明确的指示方向。这样我们就要通过动态分配内存的方式来认为的规定它的方向! 我们在刚刚接触指针的时候遇到过这样的情况,int *p;p=&a;这种方法不是指针的动态分配内存,这个叫做指针变量的初始化!初始化同样也可以让指针变量有方向可指。 int *p;p=malloc(n*sizeof(类型名称));我们通过malloc()函数为一个指针变量p分配了地址,这样我们从键盘上键入的值就这样存储在p里面了,接下来我们就可以对这个p进行具体的操作了,比如scanf(“%s”,p)等等。当我们对p结束操作的时候还要释放p的内存空间。为什么要释放内存空间呢?在上面我已经讲过动态分配的变量时储存在堆里面,但是这个堆的空间并不是无限大的,也许当我们编一个小的程序的时候可能我们并不能够发现什么,但是对于那些大的程序,如果我们比及时释放堆的空间的时候会放生内存泄露。所谓内存泄露是因为堆的空间北我们动态分配用完了,这样当我们再去使用动态分配堆的空间的时候就没有足够的空间让我们使用了,这样就需要占有原来的空间,也就是会把其他的空间来储存我们键入的值,这样会导致原来储存的数据被破坏掉,导致了内存的泄露了。 同时当我们使用malloc()函数的时候还应该注意当我们释放完空间的时候还要将原先的指针变量赋予一个NULL,也就是赋予一个空指针,留着下次的时候使用它!如果我们不赋予|NULL行不行呢??答案是:不行的!如果我们不赋予一个空指针这样会导致原先的指针变量成为了一个野指针!何谓野指针?野指针就是一个没有明确指向的指针,系统不知道它会指向什么地方,野指针是很危险的,因此当我们每次使用完malloc()函数的时候都必须将指针赋予一个空指针!相对于malloc()函数,calloc()函数就不需要我们赋予NULL了,这是因为在每次调用完calloc()函数的时候系统会自动将原先的指针赋予一个空指

动态内存分配实验报告

动态内存分配实验报告 一、实验目的 动态分区分配弄明白动态分区的的相关概念及工作流程,让自己通过编码来模拟实际电脑里动态分区是怎样工作的。掌握存储管理中的动态分区分配算法。 二、实验要求 1.在实现关于内存管理的内存首选适应算法和最佳适用算法两个可选一个,但最佳适用算法必须实现。 2.实现关于内存管理的内存动态分区分配布局初始化。 3.实现关于内存管理的内存动态分区分配申请分配。 4.实现关于内存管理的内存回收等基本功能操作函数 三、实验内容 在本实验中,我采用了循环首次适应算法和最佳适应算法。设计和实现内存回收函数:若回收分区与其它空闲分区相邻接,则采取合并措施小基于不同的内存分配策略形成不同版本的内存管理器,并根据内存平均利用率和分配查找分区比较次数等指标展开测试和对不同分配策略的内存管理器性能进行评估间长短将其与基于Windows 互斥信号量的线程同步机制的效率展开比较。本实验是要做一个模拟程序,来模拟动态分区算法的分配和回收过程,并不是真正的去分配和回收内存。利用书上的提供的几个算法的工作流程去编写相应的代码,实现循环首次适应算法和最佳适应算法来模拟动态分区算法的分配和回收过程。 四、实验结果 选择,1:分配内存,2:回收内存,3:显示内存

给进程1分配内存空间100,进程2分配内存空间130 显示内存: 回收内存: 回收后显示内存:

五、实验小结 所谓动态内存分配(Dynamic Memory Allocation)就是指在程序执行的过程中动态地分配或者回收存储空间的分配内存的方法。动态内存分配不象数组等静态内存分配方法那样需要预先分配存储空间,而是由系统根据程序的需要即时分配,且分配的大小就是程序要求的大小 此部分内容说实话,上课的时候我是真的没有怎么掌握,通过此次实验,我才明白什么是动态内存分配,以及程序在运行时是怎么分配内存的。上课时只靠理论和仅有的一点想象能力是不够的,动手操作能力也是必需的,最起码它让我们切身体会并明白了所要学习的知识。实验课对于大学生,特别是对于我们即将面临毕业的大三学生是十分必要的。 希望以后的时间里还有机会让我们能锻炼锻炼自己,接下来还有两周的课程设计,希望自己能把握好机会,让自己的能力,更上一层楼··· 六、附录 #include #include //#include //using namespace std; #define Max 10 int free_p; int used_p; struct table { int address; int len; int flag; int run_id;

实验5 动态申请内存

实验5 动态申请内存 【实验目的】 (1)掌握linux中动态申请内存的方法。 (2)了解操作系统对于高级语言程序设计所提供的环境支撑。 【实验原理/实验基础知识】 为了提高内存利用率,用户程序常采用动态请求内存的方式使用内存。Linux 提供了3种动态内存分配方式,3种动态内存分配方式下申请内存空间后,可以调整空间大小,使用完毕后需释放申请到的内存空间。 1.第一种动态内存分配方法 第一种动态内存分配方法作为高级语言的库函数直接提供给用户使用。使用方法如下: 1)用malloc()申请一块内存; 2)用realloc()调整内存大小; 3)用free()释放内存。 [例]:申请、使用、释放内存。 #include #include #include Int main(void) { Char *str; If((str=(char*)malloc(10))==null) { Printf(“Not enough memory to allocate buffer\n”); Exit(1); } Strcpy(str,”hello”);

Printf(“string is %s\n”,str); Free(str); Return 0; } 2.第二种动态内存分配方法 第二种动态内存分配的方法是逆向栈方式,栈中可以存放任意多个大小不同的存储块,存取方式为后进先出。使用方法如下: 1)使用obstack_init()初始化一个逆向栈; 2)使用obstack_blank()在栈中加入新的可用空间; 3)使用obstack_copy()对该地址空间进行操作; 4)使用obstack_free()释放栈中空间。 3.第三种动态内存分配方法 第三种内存动态分配方法是半自动式,程序员只需要给出申请空间的大小就可以使用内存空间,使用完之后也不需要释放,而是由系统自动释放。使用方法很简单,只需要使用alloca()完成空间申请,使用完后由系统自动释放。 【实验环境】VMware Workstation、RedHat 【实验步骤】 (1)使用键盘命令以字节为单位显示当前系统中内存使用情况,特别是当前系统中的空闲内存大小。 (2)编写一个程序申请两块大小为10的内存,分别存放字符串“123456789”和“987654321”,并输出字符串及存放地址,然后重新调整内存大小为20,再次输出地址。 (3)再次显示系统中的内存使用情况,对比前后系统中的空闲内存大小有无变化。 【实验报告】 填写《信息技术学院学生上机实验报告》。 【思考题】

动态分区分配存储管理系统

操作系统原理 课程设计报告 题目:动态分区分配存储管理系统 所在学院: 班级: 学号: 姓名: 指导教师: 2014年3月18

目录 1 引言 (1) 2 需求分析 (1) 3 概要设计 (1) 4 详细设计 (1) 4.1问题描述和分析 (1) 4.2程序流程图 (2) 4.3数据结构体分析 (3) 4.4主要程序代码分析 (4) 5 调试与操作说明 (14) 5.1初始界面 (14) 5.2模拟内存分配 (14) 5.3回收内存界面 (15) 5.4最佳适应算法的实现 (15) 5.5最坏适应算法的实现 (16) 6总结与体会 (16)

1 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 2 需求分析 动态分区分配是根据进程的实际需要,动态地为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。常用的数据结构有动态分区表和动态分区链。在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(最佳适应算法,最坏适应算法),在动态分区存储管理方式中主要实现内存分配和内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接等相关的内容。 3 概要设计 本程序采用机构化模块化的设计方法,共分为两大模块。 1.最佳适应算法实现 它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。 2.最坏算法实现 最坏适应分配算法要扫描整个空闲分区或链表,总是挑选一个最大的空闲分区分割给作业使用。该算法要求将所有的空闲分区按其容量从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。 4 详细设计 4.1 问题描述和分析 系统应利用某种分配算法,从空闲分区链表中找到所需大小的分区,如果空闲分区大小

动态分区分配存储管理报告

淮北师范大学 程序设计课程设计 动态分区分配存储管理系统 学院计算机科学与技术 专业计算机科学与技术 学号 学生姓名 指导教师姓名 2012年3月20 日

一、课题要求 课程设计的目的: 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 ● 进一步巩固和复习操作系统的基础知识。 ● 培养学生结构化程序、模块化程序设计的方法和能力。 ● 提高学生调试程序的技巧和软件设计的能力。 ● 提高学生分析问题、解决问题以及综合利用C 语言进行程序设计的能力。 设计内容: 用高级语言编写和调试一个动态分区内存分配程序,演示实现下列两种动态分区分配算法 1. 首次适应算法 2. 循环首次适应算法 设计要求: 1. 内存中有0-100M 的空间为用户程序空间,最开始用户空间是空闲的 2. 作业数量、作业大小、进入内存时间、运行时间需要通过界面进行输入 3. 可读取样例数据(要求存放在外部文件中)进行作业数量、作业大小、进入内存 时间、运行时间的初始化 4. 根据作业进入内存的时间,采用简单的先进先出原则进行从外存到内存的调度, 作业具有等待(从外存进入内存执行)、装入(在内存可执行)、结束(运行结束, 退出内存)三种状态。(为了简化,不考虑CPU 的调度与切换,运行时间为作业 在内存中驻留的时间) 5. 能够自动进行内存分配与回收,可根据需要自动进行紧凑与拼接操作,所有过程 均有动态图形变化的显示 6. 采用可视化界面,可随时暂停显示当前内存分配和使用情况图。 设计结束需提交下列资料: 1、课程设计报告。报告中至少应包括:相关操作系统的知识介绍,程序总的功能说明、程序各模块的功能说明、程序设计的流程图、源程序清单。 2、源程序和编译连接后的可执行程序文件。 时间安排: 分析设计贮备阶段(1 天) 编程调试阶段(7 天) 写课程设计报告、考核(2 天)

相关文档