文档库 最新最全的文档下载
当前位置:文档库 › 2019-2020学年度最新版本高考高中物理复习专题总汇(一)

2019-2020学年度最新版本高考高中物理复习专题总汇(一)

2019-2020学年度最新版本高考高中物理复习专题总汇(一)
2019-2020学年度最新版本高考高中物理复习专题总汇(一)

2019-2020学年度最新版本高考高中物理复习专题总汇

(一)(附参考答案)

直线运动规律及追及问题

一 、 例题

例题 1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( )

A.位移的大小可能小于4m

B.位移的大小可能大于10m

C.加速度的大小可能小于4m/s

D.加速度的大小可能大于10m/s

析:同向时2201

/6/1

410s

m s m t v v a t

=-=-= m

m t v v s t

712104201

=?+=?+= 反向时2202

/14/1

410s m s m t v v a t

-=--=-= m

m t v v s t

312

104202

-=?-=?+= 式中负号表示方向跟规定正方向相反

答案:A 、D

例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( )

A 在时刻t 2以及时刻t 5两木块速度相同

B 在时刻t1两木块速度相同

C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同

D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同

解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。

t 1 t 2 t 3 t 4 t 5 t 6 t 7

由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间

答案:C

例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用

于完成空中动作的时间是多少?(g 取10m/s 2

结果保留两位数字)

解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其

水平方向的运动,因此运动员做的是竖直上抛运动,由g

v

h 22

0=可求出刚离开台面时的速

度s m gh v /32

0==,由题意知整个过程运动员的位移为-10m (以向上为正方向),由202

1

at t v s +=得:

-10=3t -5t 2

解得:t ≈1.7s

思考:把整个过程分为上升阶段和下降阶段来解,可以吗?

例题4.如图所示,有若干相同的小钢球,从斜

面上的某一位置每隔0.1s 释放一颗,在连续释放

若干颗钢球后对斜面上正在滚动的若干小球摄下

照片如图,测得AB=15cm ,BC=20cm ,试求:

(1) 拍照时B 球的速度;

(2) A 球上面还有几颗正在滚动的钢球 解析:拍摄得到的小球的照片中,A 、B 、C 、D …各小球的位置,正是首先释放的某球每隔0.1s 所在的位置.这样就把本题转换成一个物体在斜面上做初速度为零的匀加速运动的问题了。求拍摄时B 球的速度就是求首先释放的那个球运动到B 处的速度;求A 球上面还有几个正在滚动的小球变换为首先释放的那个小球运动到A 处经过了几个时间间隔(0.1s )

(1)A 、B 、C 、D 四个小球的运动时间相差△T=0.1s

∴V B =

T

s s AB BC ?+2=2.035

.0m/s=1.75m/s (2)由△s=a △T 2

得: a=

2T s ??m/s 2=2

1

.015.02.0-=5m/s 2

例5:火车A 以速度v 1匀速行驶,司机发现正前方同一轨道上相距s 处有另一火车B 沿同方向以速度v 2(对地,且v 2〈v 1〉做匀速运动,A 车司机立即以加速度(绝对值)a 紧急刹车,为使两车不相撞,a 应满足什么条件?

分析:后车刹车做匀减速运动,当后车运动到与前车车尾即将相遇时,如后车车速已降到等于甚至小于前车车速,则两车就不会相撞,故取s 后=s+s 前和v 后≤v 前求解

解法一:取取上述分析过程的临界状态,则有

v 1t -

2

1a 0t 2

=s +v 2t v 1-a 0t = v 2

a 0 =s

v v 2)(221-

所以当a ≥s

v v 2)(2

21- 时,两车便不会相撞。

法二:如果后车追上前车恰好发生相撞,则 v 1t -

2

1at 2

= s +v 2t 上式整理后可写成有关t 的一元二次方程,即

2

1at 2

+(v 2-v 1)t +s = 0 取判别式△〈0,则t 无实数解,即不存在发生两车相撞时间t 。△≥0,则有 (v 2-v 1)2

≥4(

2

1

a )s 得a ≤s

v v 2)(2

12-

为避免两车相撞,故a ≥s

v v 2)(2

12-

法三:运用v-t 图象进行分析,设从某时刻起后车开始以绝对值为a 的加速度开始刹车,取该时刻为t=0,则A 、B 两车的v-t

v v

v

图线如图所示。图中由v 1 、v 2、C 三点组成的三角形面积值即为A 、B 两车位移之差(s 后-s 前)=s ,tan θ即为后车A 减速的加速度绝对值a 0。因此有

21

(v 1-v 2)θ

tan )(21v v -=s 所以 tan θ=a 0=s v v 2)(221-

若两车不相撞需a ≥a 0=s

v v 2)(2

21-

二、习题

1、 下列关于所描述的运动中,可能的是 ( ) A 速度变化很大,加速度很小

B 速度变化的方向为正,加速度方向为负

C 速度变化越来越快,加速度越来越小

D 速度越来越大,加速度越来越小

解析:由a=△v/△t 知,即使△v 很大,如果△t 足够长,a 可以很小,故A 正确。速度变化的方向即△v 的方向,与a 方向一定相同,故B 错。加速度是描述速度变化快慢的物理量,速度变化快,加速度一定大。故C 错。加速度的大小在数值上等于单位时间内速度的改变量,与速度大小无关,故D 正确。

答案:A 、D

2、 一个物体在做初速度为零的匀加速直线运动,已知它在第一个△t 时间内的位移为s ,若 △t 未知,则可求出 ( )

A . 第一个△t 时间内的平均速度

B . 第n 个△t 时间内的位移

C . n △t 时间的位移

D . 物体的加速度 解析:因v =

t

s ?,而△t 未知,所以v 不能求出,故A 错.因

)12(::5:3:1::::-=I∏∏I n s s s s n 有)12(:1:-=I n s s n ,=

-=I s n s n )12((2n-1)s ,故B 正确;又s ∝t 2

所以

s

s n

=n 2

,所以s n =n2s ,故C 正确;因a=

2

t s

?,尽

管△s=s n -s n-1可求,但△t 未知,所以A 求不出,D 错.

答案:B 、C

3 、汽车原来以速度v 匀速行驶,刹车后加速度大小为a,做匀减速运动,则t 秒后其位移为( )

A 221at vt -

B a v 22

C 2

2

1at vt +- D 无法确定

解析:汽车初速度为v ,以加速度a 作匀减速运动。速度减到零后停止运动,设其运动的时间t ,

=

a v 。当t ≤t ,时,汽车的位移为s=22

1at vt -;如果t >t ,,汽车在t ,

时已停止运动,其位移只能用公式v 2

=2as 计算,s=a

v 22

答案:D

4、汽车甲沿着平直的公路以速度v 0做匀速直线运动,当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车,根据上述的已知条件( )

A. 可求出乙车追上甲车时乙车的速度

B. 可求出乙车追上甲车时乙车所走的路程

C. 可求出乙车从开始起动到追上甲车时所用的时间

D. 不能求出上述三者中任何一个

分析:题中涉及到2个相关物体运动问题,分析出2个物体各作什么运动,并尽力找到两者相关的物理条件是解决这类问题的关键,通常可以从位移关系、速度关系或者时间关系等方面去分析。

解析:根据题意,从汽车乙开始追赶汽车甲直到追上,两者运动距离相等,即s 甲= =s 乙=s ,经历时间t 甲=t 乙=t.

那么,根据匀速直线运动公式对甲应有:t v s 0=

根据匀加速直线运动公式对乙有:2

2

1at s =

,及at v t = 由前2式相除可得at=2v 0,代入后式得v t =2v 0,这就说明根据已知条件可求出乙车追上甲车时乙车的速度应为2v 0。因a 不知,无法求出路程和时间,如果我们采取作v -t 图线的方法,则上述结论就比较容易通过图线看出。图中当乙车追上甲车时,路程应相等,即从图中图线上看面积s 甲和s 乙,显然三角形高vt 等于长方形高v 0的2倍,由于加速度a 未知,乙图斜率不定,a 越小,t 越大,s 也越大,也就是追赶时间和路程就越大。

答案:A

5 、在轻绳的两端各栓一个小球,一人用手

拿者上端的小球站在3层楼阳台上,放手后让小球自由下落,两小球相继落地的时间差为

T ,如果站在4层楼的阳台上,同样放手让小球自由下落,则两小球相继落地时间差将 ( )

A 不变

B 变大

C 变小

D 无法判断

解析:两小球都是自由落体运动,可在一v-t 图象中作出速度随时间的关系曲线,如图

所示,设人在3楼阳台上释放小球后,两球落

地时间差为△t 1,图中阴影部分面积为△h ,若

人在4楼阳台上释放小球后,

两球落地时间差

△t 2,要保证阴影部分面积也是△h ;从图中可以看出一定有△t 2〈△t 1

答案:C 6、一物体在A 、B 两点的正中间由静止开始运动(设不会超越A 、

B

),其加速度随时间变化如图所示。设向A 的加速度为为正方向,若从

出发开始计时,则物体的运动情况

是( )

A 先向A ,后向

B ,再向A ,又

向B ,4秒末静止在原处

B 先向A ,后向B ,再向A ,又向B ,4秒末静止在偏向A 的某点

C 先向A ,后向B ,再向A ,又向B ,4秒末静止在偏向B 的某点

D 一直向A 运动,4秒末静止在偏向A 的某

解析:根据a-t 图象作出其v-t 图象,如右图所示,由该图可以看出物体的速度时大

时小,但方向始终不变,一直向A 运动,又因v-t 图象与t 轴所围“面积”数值上等于物体在t 时间内的位移大小,所以4秒末物体距A 点为2米

答案:D

v v v 1 2 v v 1v 2-1

1

0 1

1

7、天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度背离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v 和它们离我们的距离r 成正比,即v=Hr 。式中H 为一常量,称为哈勃常数,已由天文观察测定,为解释上述现象,有人提供一种理论,认为宇宙是从一个大爆炸的火球开始形成的,假设大爆炸后各星体即以不同的速度向外匀速运动,并设想我们就位于其中心,则速度越大的星体现在离我们越远,这一结果与上述天文观测一致。 由上述理论和天文观测结果,可估算宇宙年龄T ,其计算式如何?根据近期观测,哈勃

常数H=3×10-2

m/(s 光年),其中光年是光在一年中行进的距离,由此估算宇宙的年龄约为多少年?

解析:由题意可知,可以认为宇宙中的所有星系均从同一点同时向外做匀速直线运动,由于各自的速度不同,所以星系间的距离都在增大,以地球为参考系,所有星系以不同的速度均在匀速远离。则由s=vt 可得r=vT ,所以,宇宙年龄:T=v r =Hr r =H

1 若哈勃常数H=3×10-2

m/(s 光年) 则T=

H

1=1010

年 思考:1 宇宙爆炸过程动量守恒吗?如果爆炸点位于宇宙的“中心”,地球相对于这个“中心”做什么运动?其它星系相对于地球做什么运动?

2 其它星系相对于地球的速度与相对于这个“中心”的速度相等吗?

8、摩托车在平直公路上从静止开始起动,a 1=1.6m/s2,稍后匀速运动,然后减速,a 2=6.4m/s2,直到停止,共历时130s ,行程1600m 。试求:

(1) 摩托车行驶的最大速度v m ;

(2) 若摩托车从静止起动,a 1、a 2不变,直到停止,行程不变,所需最短时间为多

少?

分析:(1)整个运动过程分三个阶段:匀加速运动;匀速运动;匀减速运动。可借助v-t 图象表示。

(2)首先要回答摩托车以什么样的方式运动可使得时间最短。借助v-t 图象可以证

明:当摩托车以a 1匀加速运动,当速度达到v /

m 时,紧接着以a 2匀减速运动直到停止时,行程不变,而时间最短

解:(1)如图所示,利用推论v t 2-v 02

=2as 有:122a v m +(130-21a v a v m m )v m +2

2

2a

v

m

=1600.

其中a 1=1.6m/s 2

,a 2=6.4m/s 2

.解得:

v m =12.8m/s (另一解舍去).

v

(2)路程不变,则图象中面积不变,当v 越大则t 越小,如图所示.设最短时间为t min ,则

t min =

2

/1/a v a v m

m + ①

2

2

/

12

/22a v a v m

m +

=1600 ② 其中a 1=1.6m/s 2

,a 2=6.4m/s 2

.由②式解得v m =64m/s ,故t min =

s s s 504

.664

6.164=+.既最短时间为50s.

答案:(1)12.8m/s (2)50s

9一平直的传送以速率v=2m/s 匀速行驶,传送带把A 处的工件送到B 处,A 、B 两处相距L=10m ,从A 处把工件无初速度地放到传送带上,经时间t=6s 能传送到B 处,欲使工件用最短时间从A 处传送到B 处,求传送带的运行速度至少应多大?

解析:物体在传送带上先作匀加速运动,当速度达到v=2m/s 后与传送带保持相对静止,作匀速运动.设加速运动时间为t ,加速度为a ,则匀速运动的时间为(6-t )s ,则:

v=at ①

s 1=

2

1at 2

② s 2=v(6-t) ③ s 1+s 2=10 ④

联列以上四式,解得t=2s,a=1m/s

2

物体运动到B 处时速度即为皮带的最小速度

由v 2

=2as 得v=522=as m/s

传送带给物体的滑动摩擦力提供加速度,即,,g a ma mg μ

μ==此加速度为物体运动的最大加速度.要使物体传送时间最短,应让物体始终作匀加速运动

10、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2

的加速度开始行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边赶过汽车。试求:

(1) 汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时

距离是多少?

(2) 什么时候汽车追上自行车,此时汽车的速度是多少?

解析:解法一:汽车开动后速度由零逐渐增大,而自行车的速度是定值。当汽车的速度还小于自行车速度时,两者的距离将越来越大,而一旦汽车速度增加到超过自行车

v m

min

速度时,两车距离就将缩小。因此两者速度相等时两车相距最大,有自汽v at v ==,所以,s a v t 2==自 m at t v s 62

=-=?自

解法二:用数学求极值方法来求解

(1) 设汽车在追上自行车之前经过t 时间两车相距最远, 因为2

12at t v s s s -=-=?自

所以362

t t s -=?,由二次函数求极值条件知,s a

b

t 22=-=时,s ?最大 即()m t t s m

622326362

2

=?-?=-=? (2)汽车追上自行车时,二车位移相等,则22

''at vt =

2

362''t t = , s t 4'

= s

m at v /12'

'== 解法三:用相对运动求解更简捷

选匀速运动的自行车为参考系,则从运动开始到相距最远这段时间内,汽车相对此参考系的各个物理量为:

初速度v 0 = v 汽初-v 自 =(0-6)m/s = -6m/s 末速度v t = v 汽末-v 自 =(6-6)m/s = 0

加速度 a = a 汽-a 自 =(3-0)m/s 2 = 3m/s 2

所以相距最远 s=a

v v t 22

2- =-6m (负号表示汽车落后)

解法四:用图象求解

(1)自行车和汽车的v-t 图如图,由于图线与横坐标轴所包围的面积表示位移的大小,所以由图上可以看出:在相遇之前,在t 时刻两车速度相等时,自行车的位移(矩形面积)与汽车的位移(三角形面积)之差(即斜线部分)达最大,所以

t=v 自/a=

3

6

s=2s △s= vt -at 2

/2 =(6×2-3×22

/2)m= 6m (2)由图可看出:在t 时刻以后,由v 自或与

v 6

v 汽线组成的三角形面积与标有斜线的三角形面积相等时,两车的位移相等(即相遇)。所以由图得相遇时,t ’= 2t = 4s ,v ’= 2v 自=12m/s

答案 (1)2s 6m (2)12m/s

摩擦力专题

一、 明确摩擦力产生的条件

(1) 物体间直接接触 (2) 接触面粗糙

(3) 接触面间有弹力存在

(4) 物体间有相对运动或相对运动趋势

这四个条件紧密相连,缺一不可.显然,两物体不接触,或虽接触但接触面是光滑的,则肯定不存在摩擦力.但满足(1)、(2)而缺少(3)、 (4)中的任意一条,也不会有摩擦力.如一块砖紧靠在竖直墙,放手后让其沿墙壁下滑,它满足条件(1)、(2)、(4),却不具备条件(3),即相互间无压力,故砖不可能受到摩擦力作用.又如,静止在粗糙水平面上的物体它满足了条件(1)、 (2)、(3),缺少条件(4),当然也不存在摩擦力.

由于不明确摩擦力产生的条件,导致答题错误的

事是经常发生的.

例1 (1994年全国考题)如图1所示,C 是水平地

面,A 、B 是两个长方形物块,F 是作用在物块上沿水

平方向的力,物体A 和B 以相同的速度作匀速直綫运

动,由此可知,A 、B 间的动摩擦因数1μ和B 、C 间的动摩擦因数2μ有可能是

(A)=1μ 0,=2μ 0 (B) =1μ0,≠2μ 0 (C) ≠1μ0,=2μ0 (D) ≠1μ0,≠2μ0

解析:本题中选A 、B 整体为研究对象,由于受推力的作用做匀速直线运动,可知地面对的摩擦力一定水平向左,故≠2μ 0,对A 受力分析可知,水平方向不受力,1μ可能为0,可能不为0。正确答案为(B)、(D). 二、了解摩擦力的特点

摩擦力具有两个显著特点:(1)接触性; (2)被动性.所谓接触性,即指物体受摩擦力作用物体间必直接接触(反之不一定成立)。这种特点已经包括在摩擦力产生的条件里,这里不赘述。对于摩擦力的被动性,现仔细阐述。所谓被动性是指摩擦力随外界约束因素变化而变化.熟知的是静摩擦力随外力的变化而变化。

例2 (1992年全国考题)如图2所示,一木块放在水平桌面上,在水平方向共受到三个力,即1F 、

2F 和摩擦力作用,木块图2处于

图1

静止状态,其中

1F =10N 、2

F =2N ,若撤去力1F ,则木块在水平方向受到的

合力为

(A)10N ,方向向左 (B)6N ,方向向右 (C)2N ,方向向左 (D)零

解析;

1F 没有撤去时,物体所受合外力为零,此时静摩擦力大小为8N ,方

向向左.撤去1F 以后,物体在2F 作用下不可能沿水平方向发生运动状态的改

变,物体仍保拧静止.此时地面对物体的静摩擦力大小为2N ,方向向右.从上述分析可见静摩擦力是被动力.答案应为(D).对于滑动摩擦力同样具有被动性. 三、 把握摩擦力大小和方向的计算和判断

中学物理只谈静摩擦和滑动摩擦两种(滚动摩擦不讲).其中静f 没有具体的计算公式,是随外力变化的范围值o ≤静f ≤max f ,一般根据(1)平衡条件求;(2)根据物体运动状态,由牛顿运动定律求.而静f 不但可根据上述的 (1)、(2)方法求,还可以用公式N f μ=滑计算

例3 如图3所示,质量为m 、带电量为+q 的小物体,放在磁感应强度为B 的匀强磁场中,粗糙挡板ab 的宽度略大于小物体厚度.现给带电体一个水平冲量I ,试分析带电体所受摩擦力的情况. 解析:带电体获得水平初速m I v /0=它在.它在 磁场中受洛仑兹力m qBI B qv f /0==洛

和重力mg G =,若 G f =洛,则带电体作匀速直线运动,不受摩擦力作用. 若G f >洛,则带电体贴着a 板前进,滑动摩擦力

)(mg qvB N f -==μ

μ滑

,速度越来越小,滑f 变小,当v 减小到0v ,又有mg B

qv =0,它又不受摩擦力作用而匀速前进. 若G f <洛,则带电体贴着b 板前逆。滑动摩擦力;)(qvB mg N f -==μ

μ滑,它减速运动动直至静止,而滑f 却是变大的.

这充分说明滑f 也是具有被动性,所以摩擦力是被动力.了解摩擦力的上述

特点在解题时就能因题致宜,灵活地思考,少走弯路,避免出错.

对于滑动摩擦力的大小,还必须了解其与物体运动状态无关,与接触面积大小无关的特点.

例4 如图4所示,一质量为m 的货物放在倾角为α的传送带上

随传送带一起向上或向下做加速运动.设加速度大小为α,试求两种

情况下货物所受的摩擦力.

解析:物体m 向上加速运动时,由于沿斜面向下有重力的分力,所

以要使物体随传送带向上加速运动,传送带对物体的摩擦力必定沿传

送带向上.物体沿斜面向下加速运动时,摩擦力的方向要视加速度的

图3 a

b

图4

大小而定,当加速度为某一合适值时,重力沿斜面方向的分力恰好提供了所需的合外力,则摩擦力为零;当加速度大于此值时,摩擦力应沿斜面向下;当加速度小于此值时,摩擦力应沿斜面向上.

向上加速运动时,由牛顿第二定律,得:所以F-mgsina=ma ,方向沿斜面向上 向下加速运动时,由牛顿第二定律,得: mgsina —F =ma(设F 沿斜面向上) 所以F=mgsina-ma

当a0.与所设方向相同——沿斜面向上. 当a =gsina 时,F=0.即货物与传送带间无摩擦力作用. 当a>gsina 时,F<0.与所设方向相反——沿斜面向下.

小结:当物体加速运动而摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论

例5 如图5所示,质量M=10Kg 的木楔ABC 静止于水平地面上,动摩擦因数μ=0.02,在木楔的倾角θ为300的斜面上有一质量m =1.0 kg 的物块由静止开始沿斜面下滑.当滑行路程S =1.4m 时,其速度s =1.4m /s ,在此过程中木楔没有动.求地面对木楔的摩擦力的大小和方向(g 取10 m /s ’)

解析:地面对木楔的摩擦力为静摩擦力,但不一定为最大静摩擦力,所以不能由F μ=μF Ν,来计算求得,只能根据物体匀运动情况和受力情况来确定. 物块沿斜面匀加速下滑,由as v v t 22

02

=

-可求得物块下滑的加速度222

/5s i n /7.02s

m g s m s

v a t

=<==θ 可知物块受到摩塔力的作用.

此条件下,物块与木楔受力情况分别如图6.7所示.

物块沿斜面以加速度Q 下滑,对它沿斜面方向和垂直于斜面方向由牛顿第二定律有mgsin θ一F μ1=ma mgcos θ—F N1=0 .

木楔静止,对它沿水平方向和竖直方向由牛顿第二定律,

并注意F μ1ˊ与F μ1,F N 1与F N1,等值反向,有F μ2+ F μ1cos θ—F N1sin θ=0

01

12=---θ

θμSin F COS F Mg F N N 由上面各式解得地面对木楔的摩擦力

F μ1 F N1 mg

图6

图7

N

N ma ma mg mg COS F F F N 61.02

37.00.1cos sin )sin (sin cos sin 112=??==--=-=θθθθθθθμμ

此力方向与所设方向相同,由C 指向B 。

另外由以上几式联立还可以求出地面对木楔的支持力

g

m M N N N ma mg Mg ma mg mg Mg F N )(65.1092

17.00.11011sin sin )sin (cos 2

2

+<=??-?=-+=-++=θθθθ

显然,这是由于物块和木楔系统有向下的加速度而产生了失重现象。

对此题也可以系统为研究对象。在水平方向,木楔静止,加速度为零,物块加速度水平分量为θcos a a x =

。对系统在水平方向由牛顿第二定律,有N ma F 61.0cos 2

==θμ 答案:0.61 N 方向由C 一B

小结:(1)静摩擦力的大小是个变量,它的大小常需要根据物体的运动状态及摩擦力与物体所受其他力的关系来确定.

(2)由此题可看出,研究对象的选取对解题步骤的简繁程度有很大的影响。

练习

1、如图8所示,位于斜面上的物块m 在沿斜面向上的力F 作用下,处于静止状态,则斜面作用于物块的静摩擦力 ①方向可能沿斜面向上 ②方向可能沿斜面向下 ③大小可能为零 ④大小可能等于F 以上判断正确的是………………………………( )

A .只有①②

B .只有③④

C .只有①②③

D .①②③④都正确

D

2、(2004年连云港第二次调研题)某人在乎直公路上骑自行车,见到前方较远处红色交通信号灯亮起,他便停止蹬车,此后的一段时间内,自行车前轮和后轮受到地面的摩擦力分别为前f 和后f ,则… ( )

A .前f 向后,后f 后向前

B .前f 向前,后f 向后

C .前f 向后,后f 向后

D .前f 向前,后f 向前

C

3、如图9所示,重6N 的木块静止在倾角为300

的斜面上,若用平行于斜面沿水平方向,大小等于4N 的力F 推木块,木块仍保持静止,则木块所受的摩擦力大小为……………………………(

)

8

图9

A .4 N

B .3 N

C .5 N

D .6 N

C

4、(2004年乐山调研题)如图10所示, 质量为m 的木块P 在质量为M 的长木板A 上滑行,长木板放在水平地面上,一直处于静止状态.若长木板A 与地面间的动摩擦因数为1μ,木块P 与长板A 间的动摩擦因数为2μ,则长木板ab 受到地面的摩擦力大小为 ( )

A Mg 1μ

B .g M m )(1+μ

C mg 2μ

D mg Mg 21μμ+

C

5、(2004年黄冈调研题)如图11所示,在粗糙水平面上有一个三角形木 块,在它的两个粗糙斜面上分别放两个质量为m 1和m 2的小木块,21m m >已知三

A .没有摩擦力作用

B

.有摩擦力作用,摩擦力方向水平向右 C .有摩擦力作用,摩擦力方向水平向左 D .有摩擦力作用,但其方向无法确定,因为m 1、m 2、 21θθ和的数值并未给出

A

6、(2004

年宁波期末试题)某空间存在

着如图l2所示的水平方向的匀强磁场,A 、B 两个物块叠放在一起,并置于光滑的绝缘水平地面上,物块A 带正电,物块B 为不带电的绝缘块;水平恒力F 作用在物块B 上,使A 、B 一起由静止开始水平向左运动.在A 、B 一起水平向左运动的过程中,关于A 、B 受力情况的以下说法,正确的是……( )

A .A 对

B 的压力变小 B .B 对A 的摩擦力保持不变

C 。A 对B 的摩擦力变大

D .B 对地面的压力保持不变

B

7、如图13所示,一直角斜槽(两槽面夹角为90°),对水平面夹角为30°,一个横截面为正方形的物块恰能沿此槽匀速下滑,假定两槽面的材料和表面情况相同,问物块和槽面间的动摩擦因数为多少?

解析:因为物块对直角斜槽每一面的正压力为mgcos α.cos45°,所以当物体匀速下滑时,有平衡方程:mgsin α=2μmgcos αcos45°=

图11

图12

图10

如图13

2μmgcos α,所以μ=6

6)3

3(21tan 2

1==α.

8、质量m=1.5Kg 的物块(可视为质点)在水平恒力F 的作用下,从水平面上A 点

由静止开始运动,运动一段距离撤去该力,物体继续滑行t=2.0s 停在B 点.已知AB 两点间的距离S=5.0m,物块与水平面间的动摩擦因数20

.0=μ,求恒力F 为多大?(g=10m/s 2

)

解析:设撤去力F 前物块的位移为1S ,撤去力F 时物块的速度为v ,物块受到的滑动摩擦力mg F μ

=1 对撤去力后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v

S S 2

1=

= 对物块运动的全过程应用动能定理011=-S F FS 由以上各式得2

22gt

s mgs

F μμ-=

代入数据解得N F 15=

9.如图14所示,静止在水平面上的纸带上放一质量m 为的小金属块(可视为质点), 金属块离纸带右端距离

为L, 金属块与纸带间动摩擦因数为μ.现用力向左将纸带从金属块下水平抽出,设纸带加速过程极短,可认为纸带在抽动过程中一直做匀速运动.求:

(1) 属块刚开始运动时受到的摩擦力的大小和方向;

(2)要将纸带从金属块下水平抽出,纸带的速度v 应满足的条件.

解析:(1)金属块与纸带达到共同速度前,金属块受到的摩擦力为:mg f μ= ,方向向左。

(2) 出纸带的最小速度为0v 即纸带从金属块下抽出时金属块速度恰好等于

0v 。

v

图14

对金属块:ma f = at v =0

金属块位移:2

12

1at s =

纸带位移:t v s 02= 两者相对位移:l S S =-12解得:gl v μ20= 故要抽出纸带,纸带速度gl v μ2>

10.如图15所示,物块和斜面体的质量分别为m.M,物块在平行于斜面的推力F 作用下沿斜面加速度a 向上滑动时,斜面体仍保持静止.斜面倾角为θ,试求地面对斜面体的支持力和摩擦力.

解析:由于小物块沿斜面加速上升,所以物块与斜面不能看成一个整体,应分别对物块与斜面进行研究。 (1) 取物块为研究对象,受力分析如图16所示: 由题意得: θcos 1mg F N =

① m F mg F f =--1

sin θ② 由②得:m mg F F f --=θ

sin 1

③ (2) 取斜面为研究对象,受力分析如图17得:

θ

θ

cos sin 112N f N F Mg F F '+='+④ θ

θ

sin cos 1

12N f f F F F '+'=⑤ 又因为1

f F

与1f F '是作用力与反作用力,1n F 与1n F '是作用

力与反作用力

由牛顿第三定律得:m mg F F F f f --=='θ

sin 1

1⑥ θ

cos 1

1mg F F N N =='⑦ 由④⑤⑥⑦解得:θ

sin )()(2

ma F g m M F N --+=

图15

图16

图17

θ

cos )(2

mg F F f -=

牛顿运动定律总结

(一)牛顿第一定律(即惯性定律)

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(1)理解要点:

①运动是物体的一种属性,物体的运动不需要力来维持。

②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。

③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。

④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。

③由牛顿第二定律定义的惯性质量m=F/a 和由万有引力定律定义的引力质量

mF r G M

=2

/严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对

物体的作用,惯性和力是两个不同的概念。

(二)牛顿第二定律 1. 定律内容

物体的加速度a 跟物体所受的合外力F 合成正比,跟物体的质量m 成反比。

=

2. 公式:F m a

理解要点:

是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时

①因果性:F

消失;

都是矢量,方向严格相同;

②方向性:a与F

是该时刻作用在该物体上的合

③瞬时性和对应性:a为某时刻某物体的加速度,F

外力。

(三)力的平衡

1. 平衡状态

指的是静止或匀速直线运动状态。特点:a=0。

2. 平衡条件

F0。

共点力作用下物体的平衡条件是所受合外力为零,即∑=

3. 平衡条件的推论

(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;

(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;

(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。

(四)牛顿第三定律

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公=-'。

式可写为F F

、、(在国际制单位中)

(五)力学基本单位制:k g m s

①确定研究对象;

②分析研究对象的受力情况画出受力分析图并找出加速度方向;

③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上;

④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;

⑤统一单位,计算数值。

3. 解决共点力作用下物体的平衡问题思路

(1)确定研究对象:若是相连接的几个物体处于平衡状态,要注意“整体法”和“隔离法”的综合运用;

(2)对研究对象受力分析,画好受力图;

(3)恰当建立正交坐标系,把不在坐标轴上的力分解到坐标轴上。建立正交坐标系的原则是让尽可能多的力落在坐标轴上。

(4)列平衡方程,求解未知量。

4. 求解共点力作用下物体的平衡问题常用的方法

(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程求解)——平衡法,也可从力的分解的观点求解——分解法。两种方法可视具体问题灵活运用。

(2)相似三角形法:通过力三角形与几何三角形相似求未知力。对解斜三角形的情况更显优势。

(3)力三角形图解法,当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理。

5. 处理临界问题和极值问题的常用方法

涉及临界状态的问题叫临界问题。临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。

临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。

例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球。当滑块以2g加速度向左运动时,线中拉力T等于多少?

解析:当小球和斜面接触,但两者之间无压力时,设滑块的加速度为a'

此时小球受力如图2,由水平和竖直方向状态可列方程分别为: T m a T m g c o s 's in 45450?=?-=?

?

?

解得:a g '=

由滑块A 的加速度a g a =>2',所以小球将飘离滑块A ,其受力如图3所示,设线和竖直方向成β角,由小球水平竖直方向状态可列方程

T m a T m g s in ''c o s ββ=-=?

?

?

解得:()()T m a m g m g '=+=

2

2

5

例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。如果突然把两

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

高中物理专题复习-电路

专题复习------电路 本专题是高中物理的主干知识之一,是历年高考的热点内容。涉及到电流、电阻、电动势、电功、电功率、交变电流的“四值”等基本概念,涉及到欧姆定律、闭合电路的欧姆定律、电阻定律、焦耳定律以及串并联电路的性质等基本规律,涉及到电路结构分析、电路的动态分析、电路故障分析、含容电路分析、含理想变压器的动态分析等技巧。命题题材广泛,一般以选择题形式命题。 一、恒定电流 1、 电路的动态分析: 当电路中开关的开闭、滑动变阻器滑片的移动、热敏(光敏、压敏、磁敏等)电阻阻 值变化或者某处出现故障,都会引起电路中的电流、电压发生变化,可谓“牵一发而动全身”。 分析一个闭合电路,我们既要弄清楚外电路的串、并联结构,还要确定电流表、电压表测量的对象。 当外电路中的某处发生变化时,我们首先要知道这一变化对总电阻的影响,无论是串联还是并联,只要其中一个电阻增大(减小),总电阻就增大(减小)。再根据闭合电路的欧姆定律r R E I +=干来判断干路电流的增减,根据r 干I E U -=,确定路端电压的增减,最后根据串并联的电路特点、欧姆定律和有关物理公式判断电表示数的变化、灯泡亮度的变化以及其他物理量的变化。 例1、如图1所示的电路,a 、b 、c 为三个相同的灯泡,其电阻大于电源内阻,两电表均为理想电表,当变阻器R 的滑动触头P 向上移动时,下列判断中正确的是( )., A .A 、V 两表示数都变大 B .A 表示数增大,V 表示数减小 C .三个灯泡都变亮 D .a 、b 两灯变亮,c 灯变暗 解法:电路结构分析:干路元件有电源、电流表、A 灯泡,并联部分有两条支路,一条由b 灯泡和滑动变阻器串联,一条只有灯泡c ;电流表测干路电流,电压表测路端电压。 动态分析:在变阻器R 的滑动触头P 向上移动的过程中,R 连入电路的阻值逐渐变小,导致负载的总电阻R 外减小,由r R E I +=外干可得,干路上的电流增大,即A 表示数增大,由r 干I E U -=可得,路端电压减小,即V 表示数减小,选项A 错误,选项B 正确;由)a R r I E U +-=(干并可得,U c 变小,根据欧姆定律可得I c 变小,由c c c I U P =可知,c 灯 V A 图1

高中物理专题复习之运动学

高中物理专题复习——运动学 [知识要点复习] 1.位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。 2.速度(v):描述物体运动快慢和方向的物理量,是矢量。 做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。 它只能粗略描述物体做变速运动的快慢。 瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。 3.加速度(a):描述物体速度变化快慢的物理量,它的大小等于 矢量,单位m/s2。 4.路程(L ):物体运动轨迹的长度,是标量。 5.匀速直线运动的规律及图像 (1)速度大小、方向不变 (2)图象 6.匀变速直线运动的规律 (1)加速度a 的大小、方向不变

2)图像 7.自由落体运动只在重力作用下,物体从静止开始的自由运动。 8.牛顿第一运动定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。 惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。 9.牛顿第二运动定律物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。 10.牛顿第三运动定律两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。 11.超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。 12. 曲线运动的条件物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。 若用θ表示加速度a 与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90° <θ<180°时,物体做速率减小的曲线运动。 13.运动的合成与分解 (1)合运动与分运动的关系 a.等时性:合运动与分运动经历的时间相等; b.独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。 c.等效性:各分运动叠加起来与合运动规律有完全相同的效果。 (2)运动的合成与分解的运算法则遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。 (3)运动分解的原则

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

高中物理教学研究【论文】

高中物理教学研究 一、传统物理教学中存在的问题 1.教学方法过于单一,只注重传授式教育 传统的教学方式过于死板化、强制化,教师的教学方法偏重于传授式,一味地向学生灌输概念,解题方法,这种方式抹灭了学生自我发现的能力,发散性的思维模式得不到发挥。在课堂上,往往是教师以传授方式教学,将概念和实验结果不断重复地传输到学生的脑中,将物理教学变得机械化、单一化,很少有与学生互动的机会。这种填鸭式的教学方式,不能让学生更好地理解知识,并且学生发现问题的能力得不到培养,有问题却无法提出,同时教师得不到学生是否理解知识的反馈信息。这种单向的教学方式,对学生的学习成长是不利的。 2.创新意识培养的缺失,缺乏教学交流 传统的物理教学方式,教师一味地灌输课本上的知识,将物理实验应该呈现的现象,通过口述或者文字的方式表达出来,让学生对于那些生硬的物理概念以及物理实验死记硬背,学生只要记住这些会发生的现象就等于接受了这些知识,完全丧失了创新的意识能力。久而久之,学生对物理这门应该生动的学科产生了抵触心理,学生无法想象、无法亲眼验证物理的神奇,也就没有学习物理的兴趣。

3.过分注重教学结果,一味地追求高分 传统的物理教学方式,教师一味地注重学生的学习成绩,因为这是对教学方式好坏最直接反馈,然而这往往使学生缺乏自主学习的能力。如今的学习最直观的目的就是高考,高考的分数压力,不仅给学生带来了巨大的压力,同样迫使教师加快对学生分数的提高,教师不断地传授提高分数的解题方法,学生则只是掌握这些解题技巧,并没有从思想上接受这些知识,因此就出现了学生学习是为了应付考试,创造力和学习兴趣则慢慢地消失的现象。 二、讨论式教学方式实施的意义 1.能够激发学生的内在学习能力,促使学生自主学习 物理是一门充满魅力的学科。它是在探索大自然的过程中所呈现出来的现象的综合。刚开始学习的时候,我相信每个学生都是充满好奇心的,对所有未知的事物都有探知的本能,好奇心是创造发明的前提条件,是激发学生求知欲的根本。相信很多人小时候都是十万个为什么,为什么苹果会下落,为什么泡沫可以浮在水上。在传统的教学中,学生往往得不到提问的机会,讨论式教学使物理课堂拥有了新的生命力,学生可以自主提出问题,通过小组讨论的方式,表达自己的

高中物理之热学专题复习与练习

高中物理之热学专题复 习与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章热学 一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

高中物理教研组工作总结

高中物理教研组工作总结 高一物理从知识体系到学习方法都与高中物理有较大的差别。许多学生在学习时都会有一定的困难,因而是学生易产生分化的一个阶段。因此,教学中我注意研究高中物理的知识特点和学习方法,加强学生学习习惯与思维方法的培养,其中提高学生学习物理的兴趣,是提高高一物理教学质量的关键。了解高一物理学习中存在以下几个难点: 1、大量的概念。 2、教学的难度加大。主要表现在教学函数关系的复杂化、图像的运用等。 3、空间关系的建立,在高中只有一维的问题,高中出现平面问题甚至立体问题。 4、概念和规律较高中更具复杂性,如曲线运动的速度等。 那么,如何克服这些难点呢? 首先,要把握好进度,勿图快,尤其在以上几个难点的教学中要把握好进度。第二,重在理解,切勿死记硬背。在高中物理学习中,需要记忆的东西不是很多。必要的物理概念和常数需记忆,而大多数物理知识应在理解的基础上记忆,切勿死记硬背。第三,在教学中,加强观察与实验,教师一定要把物理现象总结、归纳的过程讲清楚,不要草率地给出结论,要使学生体会到物理学是注重讲道理的科学。最后,在教学中不要随意

增加难度。如例题和习题的选择要慎重,应符合学生的实际。对成绩非常好的学生,可选择一些超前性的习题,而对大多数学 生来讲,在高一阶段的习题仍然是对概念的理解和简单的应用。切忌总是将综合性题目拿给学生,更不要把高考的试题拿给学生,那样结果只会适得其反。 物理教学,原本就有教师的教和学生的学两个方面,所以我 们不仅应重视对教师教法的研究,更应重视对改善学生学法的探讨。那种把教学方法只理解为教师的教法和只重视教法研究,而忽视对指导学生学法的探索的现象,对于开发学生智力,培 养学生能力,提高物理教学质量,是极为不利的。物理教学过程,不仅是传授知识技能的过程,而且也是教会学生如何学习物理 的过程。学生学习物理效率的高低,成绩的好坏,在很大程度上又取决于学习方法的是否科学。物理教师教学的最终落脚点,也只能是学生的“学会”和“会学”上面。所以我我们在研究教师 教法的同时,要认真探索学生的学法。 一、在设计教法的同时设计学法 备课的实质,就是一种教法设计。所以从教材的实际和学 生的实际出发,抓住其特点,在备知识、备教法的同时,也备 学生的学法,在设计教法的同时也设计学法,是非常重要的。不同的章节、不同的教材内容,都有其自身的特点,教师在教 法上往往采取不同的形式,同时也要考虑在这种教法下,学生

高中物理磁场经典计算题专题

高中物理磁场经典计算 题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、弹性挡板围成边长为L= 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m=2×10-4kg 、带电量为q=4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF, DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q,质量为m,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大最短时间为多少 (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的 中心O ,且a=) 10133( L.要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3、在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成 磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度 a b c d A F D (a ) (b )

高中物理研究性学习报告

高中物理研究性学习报告 篇一:高中物理研究性学习结题报告 家用电器中的物理现象结题报告 (一)摘要: 物理学是一门基础科学,它的研究领域已几乎涉及所有的自然科学和许多社会领域,已成为各类科学发展的原动力。物理学是以实验为基础的一门科学,它既有科学的思维,数学的方法,又有实际动手能力的训练,因此培养学生的学习能力,科学方法,科学素质,已成为物理教学的一项主要任务,不再是单纯的传授知识,而是要让学生会发现问题,会提出问题,会用科学的实验方法和实践的方法去探究这个问题,去解决这个问题,从科学的探究活动中培养学生的创新精神和实践能力,所以我们物理教学的方法和方式必须进行大规模的变革。但就初中学生而言他们刚接触物理这门学科,抽象思维的能力较差,个人学习的能力不强,更缺乏实际的动手能力,个人难以持续的去探讨一个问题。所以我校物理教研组根据初中学生好奇、好问、好动的特点,从提高学生学习兴趣为切人点,采用“以学带玩,以玩促学”的方法确定了《初中物理探究性学习》的教学模式的研究。 (二)研究背景: 纵观科学的发展,任何一个科学的发现都离不开科学家对自然 现象的质疑,离不开科学家对自然现象的辛勤的探索;任何一个技术上的创新也都是劳动者对生产实践的探究和再创造的结果。德国文化教育家斯普郎格 说:“教育的最终目的不是传授已有的东西,而是把人的创造力诱导出来,将生命的价值感唤醒。” 而传统的物理教学是以传授物理学的知识为主,即向学生传授一般的物理规律,把大量的知识灌输给学生,用这种方法培养的学生能应付各种考试,在考试中

游刃有余,出类拔粹。但让它们去解决一个具体的问题,或独立地去完成一个研究性的课题,就会困难重重,甚至束手无策。 参考书目及资料: 《大气压强原理》、《高中实验大全》、《物理与生活》、《摩托车中物理知识探究》、《密闭液体对外加压强的传递》、《有效进行探究性教学须注意的问题》、《白炽灯炮漫谈18问》、《电与热探究教学的反思》、《利用《物理与社会生活》 (三)目的和意义: 1.让学生通过实验活动感受物理学之美,体验科学探究的乐趣,感受成功的喜悦,激发学生学习物理的兴趣。 2.培养学生善于发现问题,提出问题的能力和勇于探索的精神,敢于创新实践的能力。 3.培养学生敏锐的观察能力,培养学生实际动手操作能力,培养学生不折不绕敢于克服困难的意志力以及实事求是的科学态度。 4.培养学生合理处理信息的能力,培养他们交流合作,共同提高 的能力。 5.培养学生初步掌握研究物理问题的方法,体验物理学和人类社会的关系,体会用物理学为人类社会服务的意识。 (四)研究方法: “创设情景----发现和提出问题----猜想假设,设计实验或实践方案----实验探究和调查分析----总结分析----交流合作,成果展示” (五)体验与反思 本次研究性课题,同学们实诚信,讲原则,说到做到,决不推卸责任;有自制力,做事情始终坚持有始有终,从不半途而废;肯学习,有问题不逃避,愿意虚心向

高中物理必修一专题复习

高中物理必修一专题复习 一、参考系 课标要求:理解参考系选取在物理中的作用,会根据实际选定. 知识梳理: 参考系:在描述一个物体的运动时,选来作为标准的另外的物体. ①凡是被用作参考系的物体,我们都认为是静止的; ②参考系的选择是任意的,但应以观测方便和使运动的描述尽可能简单为原则.研究地面上物体的运动时,常选地面为参考系.有时为了研究问题方便,也可以巧妙地选用其它物体做参考系,甚至在分析某些较为复杂的问题时,为了求解简洁,还需灵活地转换参考系. ③物体的运动都是相对参考系而言的,这是运动的相对性.选择不同的参考系来观察同一运动,会有不同结果,要比较两个物体的运动情况,必须选择同一参考系. 【例1】“坐地日行八万里,巡看遥天一千河.”这一诗句表明() A.坐在地上的人是绝对静止的 B.坐在地上的人相对于地球以外的其他星体是运动的 C.人在地球上的静止是相对的,运动是绝对的 D.以上说法都是错误的 答案:BC 点评:基础题,考查物体运动与参考系的选取.参考系问题往往和我们的日常思维发生矛盾,因为我们生活在地球上,所以我们总是不自觉地以地球为参考系来描述物体的运动,我们处理这类问题时,一定要防止思维定势的影响. 【例2】(2010年广东学业水平考试单选I)在行汽车上的乘客,看到道路两旁的树木不断向后退,这是因为乘客

选择的参考系是( ) A .所乘坐的汽车 B .地面上的建筑物 C .道路旁的树木 D .路边站着的人 答案:A 点评:基础题,考查物体运动与参考系的选取. 【例3】甲、乙、丙三架观光电梯,甲中乘客看某幢高楼在向下运动;乙中乘客看甲在向下运动; 丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的可能运动情况是( ) A .甲向上、乙向下、丙不动 B .甲向上、乙向上、丙不动 C .甲向上、乙向上、丙向下 D .甲向上、乙向上、丙也向上,但比甲、乙都慢 答案:BCD 点评:中难题,考查物体运动与参考系的选取.观察者看到的运动都是相对于自己的运动,明确这一点,一切问题就可迎刃而解了. 【例4】如图所示,ab 、cd 两棒的长度均为L=1m ,a 与c 相距s=20m ,现使两棒同时 开始运动,其中ab 自由下落,cd 棒以初速度v=20m/s 竖直上抛,设两棒运动时不 产生相撞问题,问它们从开始相遇到分开要经过多长时间? 解析:以ab 为参考系,认为ab 棒静止不动,则cd 棒相对于ab 棒做速度为v=20m/s 的匀速直线运动.两棒从开始相遇到分开相对位移为2L ,故所经历的时间为:t=2L/v=0.1s . 点评:中难题,考查巧选参考系解题.中学一般选择地面为参考系研究物体的运动,但有时适当选择参考系,能使运动的描述和研究更为简便. 专题训练一: b a c d

2020年高中物理计算题专题复习 (3)

2020年高中物理计算题专题复习 (3) 1.如图所示,坐标平面第Ⅰ象限内存在大小为、方向水平向左的匀强电场,在 第Ⅱ象限内存在方向垂直纸面向里的匀强磁场比荷的带正电的粒子,以初速度从x轴上的A点垂直x轴射入电场,,经偏转电场后进入磁场,在磁场中发生偏转,轨迹恰好与x轴相切,不计粒子的重力求: 粒子在电场中运动的加速度大小 求粒子经过y轴时的位置到原点O的距离 求磁感应强度B 2.如图甲所示为倾斜的传送带,正以恒定的速度v,沿顺时针方向转动,传送带的倾角为。一 质量的物块以初速度vo从传送带的底部冲上传送带并沿传送带向上运动,物块到传送带顶端的速度恰好为零,其运动的图像如图乙所示,已知重力加速度为,,求: 内物块的加速度a及传送带底端到顶端的距离x;

物块与传送带闻的动摩擦因数; 物块与传送带间由于摩擦而产生的热量Q。 3.如图所示,水平传送带AB足够长,质量为的木块随传送带一起以的速度 向左匀速运动传送带的速度恒定,木块与传送带的动摩擦因数。当木块运动到最左端A点时,一颗质量为的子弹,以的水平向右的速度,正对射入木块并穿出,穿出速度,设子弹射穿木块的时间极短,取。求: 木块遭射击后远离A端的最大距离; 木块遭击后在传送带上向左运动所经历的时间。 4.如图所示,圆心角的圆弧轨道JK与半圆弧轨道GH都固定在竖直平面内,在两者之间 的光滑地面上放置质量为M的木板,木板上表面与H、K两点相切,木板右端与K端接触,左端与H点相距L,木板长度。两圆弧轨道均光滑,半径为R。现在相对于J点高度为3R的P点水平向右抛出一可视为质点的质量为m的木块,木块恰好从J点沿切线进入圆弧轨道,然后滑上木板,木块与木板间的动摩擦因数;当木板接触H点时即被黏住,木块恰好能运动到半圆弧轨道GH的中点。已知,重力加速度为g。

高中物理教研活动记录1

时间:4月25日 地点:会议室 主持人:代秀德 参加教师:赵来国、陈风云、王连霞、刘世莲、时玉霞、王凤花 主题:1、融合三维目标教学法 2、生成课程探析 过程: 1、代秀德主讲融合三维目标教学法 要实现三个维度的目标,学生在课堂教学过程中,就要通过积极参与和有效参与,来达到知识和能力、过程和方法、情感态度价值观三个维度的全面落实。 ★提高研究学生在理化教学活动中如何积极参与,来侧重解决情感、态度、价值观维度。只有对理化持热情、积极的态度,才有可能学好理化。也就是说要通过学生的积极参与,来实现学生的情感目标。 ★通过研究学生在理化教学活动中如何有效的参与,来侧重解决知识和能力、过程与方法维度。传授知识、培养能力、产生情感体验、形成积极的人生态度等,都产生于一定的教学过程。 ★通过研究对知识的理解和感受的过程来达到三维融合的境界。知识和能力、过程和方法、情感态度价值观是相互渗透的,在理化教学过程中,通过积极参与和有效参与,学生自主地去理解和感受知识,在这个过程中,既获得了知识,又产生了情感、激发了想象、启动了思维,形成了一定的学习态度,这一切都体现在学生对知识的理解与感受的过程中。 2、赵来国主讲生成课程的涵义 既然生成课程以生成论为理论背景,那么就有必要对生成论作一简单介绍。生成表示某种事物或现象发生和发展的动态过程。生成与预设相对,“预设”是指已经完成、已经完结。在当前,生成论思想虽然仍缺乏系统的哲学建构,但它已成为国内外学术界所共同关注的亮点。生成论是关于事物生成、演化过程和规律的思想,它坚持宇宙万物在本质上是生成的,它对世界持一种动态的整体性分析观点。 所谓生成课程是指:以真正的对话情境为依托,在教师、学生、教材、环境等多种因素的持续相互作用过程中动态生长的建构性课程。这表明课程弃绝了“本质先定,一切既成”的思维逻辑,而代之以“一切将成”,课程在过程中展开其本质,课程活动成为师生展现与创造生命意义的动态生成的生活过程,而非单纯的认识活动。以此为据,英国进行的开放课程,斯腾豪斯倡导的过程取向课程,意大利著名幼儿教育家瑞吉欧—艾米利亚的“项目活动”课程,以及丰富的后现代课程理论都是生成课程的深刻体现。著名的后现代主义课程学者多尔就认为课程是在师生对话中生成的,“适应复杂多变的21世纪的需要,应构建一种具有开放性、整合性、变革性的新课程体系。课程不再是特定知识体系的载体,而成为一种师生共同探索新知的发展过程;课程发展的过程具有开放性和灵活性,不再是完全预定的,不可更改的。”澳大利亚学者布莫(Boomer)等人倡导的“协商课程”实质上也是一种生成课程,其课程内容方案的制定以及实施都是由师生通过协商合作而共同完成的,同时课程所蕴涵的价值、意义、精神也通过师生的相互理解而得以生成。我国当前进行的新课程改革也从多层面内在地反映了生成课程的精髓,比如研究型课程实际上就是一种生成课程。 这样,在生成课程中,课程就具有了全新的含义,课程真正实现了由“名词”到“动词”的根本跃迁。课程不再仅仅只是已知的结论性知识,而是师生通过对话探究知识并获得发展不断生成的活生生的动态过程。预设课程虽然也讲过程,但是过程是事先预设好的,这样,课程活动中的创造品质和生成品质遭致根本丧失。在生成课程中,教材并非学生必须识记的静态的知识体系,

(完整)最全的高一物理必修一复习资料(强力推荐)

高一上物理期末考试知识点复习提纲 专题一:运动的描述 【知识要点】 1. 质点(A)(1 )没有形状、大小,而具有质量的点。 (2 )质点是一个理想化的物理模型,实际并不存在。 (3 )一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体 的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 2. 参考系(A)(1 )物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2 )在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做仝.廿W 参考糸对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系 3. 路程和位移(A) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2 )位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小 等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大 小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运 动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。 图1-1

(4 )在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从0点起走了50m路,我们就说不出终了位置在何处。 4、速度、平均速度和瞬时速度(A (1 )表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即 v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s )米/秒。 (2 )平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。 (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速 度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率 5、匀速直线运动(A) (1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速 直线运动。 根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路 程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。_______________ (2)匀速直线运动的x —t图象和v-t图象(A (1 )位移图象(s-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动 规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。 (2 )匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线, 如图2-4-1所示。 由图可以得到速度的大小和方向,如v1=20m/s,v 2=-10m/s,表明一个质点沿正方向以 20m/s的速度运动,另一个反方向以10m/s速度运动。 6、加速度(A) (1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一 改变量所用时间的比值,定义式:a= V t一"V o

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

高中物理《功》专题计算

高中物理《功》专题计算 1、如图所示,斜面长为1米,倾角θ=37°,把一个质量为10千克 的物体从斜面底端匀速地位到斜面顶端.要使拉力做的功最大,拉力F 与 斜面的夹角α为多大?功的最大值为多少?要使拉力F 做的功最少,拉力F 与斜面的夹角a 又为多大?功的最小值为多大?已知物体与斜面的滑动摩擦 系数为.(g 取10米/秒2.) 2、倾斜传送带与水平方向的夹角θ=300,传送带以恒定 的速度v=10m/s 沿图示方向运动。现将一质量m =50kg 的物块 轻轻放在A 处,传送带AB 长为30m ,物块与传送带间的动摩擦因数为2 3= μ,且认为物块与传送带之间的最大静摩擦力等于滑动摩擦力,g =10m/s 2。则在物块从A 至B 的过程中: (1)开始阶段所受的摩擦力为多大? (2)共经历多长时间? (3)准确作出物块所受摩擦力随位移变化的函数图像; (4)摩擦力做的总功是多少? 3、如图所示,质量m=60kg 的高山滑雪运动员,从 A 点由静止开始沿滑雪道滑下,从 B 点水平飞出后又落 在与水平面成倾角θ=37?的斜坡上C 点.已知AB 两点间 的高度差为h=25m ,B 、C 两点间的距离为s=75m ,(取 g=10m/s 2,sin370=,求: (1)运动员从B 点飞出时的速度v B 的大小; (2)运动员从A 到B 过程中克服摩擦力所做的功. 4、如图所示,两个底面积分别为2S 和S 的圆 桶,放在同一水平面上,桶内部装水,水面高分别 是H 和h 。现把连接两桶的闸门打开,最后两水桶中 水面高度相等。设水的密度为ρ,问这一过程中重 力做的功是多少? 5、如图所示,光滑弧形轨道下端与水平传送带相接,轨道上的A 点到传送带的竖直距离及传送带地面的距离均为h=5m ,把一物体自A 点由静止释放,物体与传送带间的动摩擦因数2.0=μ。先让传送带不转动,物体滑上传送带后,从右端 B 水平飞离,落在地面上的P 点,B 、P 间的水平距离OP 为 x=2m ;然后让传送带顺时针方向转动,速度大小为 v=5m/s 。仍将物体自A 点由静止释放,求: (1)传送带转动时,物体落到何处? (2)先后两种情况下,传送带对物体所做功之比. 6、质量为m 的飞机以水平速度v 0飞离跑道后逐渐上O x /m f /N B θ A v y x l h o

《高中物理选修3-5》二轮专题复习

《高中物理选修3-5》二轮专题复习 一、考纲要求与考题特点分析 (一)经过一轮复习,大部分学生对本模块基本概念、基本规律都有较好的把握。尤其是动量守恒定律、光电效应、能级与光谱、核反应方程及规律等重点内容,有较强的得分能力。原子物理部分的相关选择题,只要是常规题,一般能得分。但这一部分知识点细而杂,涉及到的微观领域,学生又缺少直接经验;有关考题,跟物理学的前沿容易发生联系,如夸克、黑洞等,而且往往是多项选择题,会有部分学生因细节关注不够,造成不能拿满分。动量守恒定律部分内容,相对难度大些,且跟能量、电磁学的内容综合考查的概率很大,对于普通高中学生或者一些物理相对薄弱的学生来说,涉及动量的综合题,总是一筹莫展,甚至干脆放弃。而有关动量守恒的实验题也是高考热点,所以,争对3-5的二轮复习,重点内容还是要加强,细杂知识要突破、要点拨,加强解题方法、解题能力的指导和训练。力保学生不失基础题的分、不失中档题的分、少失难题的分。

(二)高考物理学科要考查的五个能力(理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力、实验能力)的要求1.理解能力理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚认识概念和规律的表达形式(包括文字表述和数学表述);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。 2.推理能力能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或作出正确的判断,并能把推理过程正确地表达出来。 3.分析综合能力能够独立地对所遇的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出其中起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。 4.应用数学处理物理问题的能力能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图像进行表达、分析。

高中物理相互作用力10道计算题专题

高中物理相互作用力10道计算题专题学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图所示,竖直平面内有一半径为R的光滑半圆弧形轻杆,圆心为O,其直径AB 位于水平桌面上,原长为R的轻弹簧一端固定在A点,另一端连接着质量为m的小球, θ=?,重力小球套在弧形杆上的C点处于静止状态,已知OC与水平面之间的夹角60 加速度为g。求: (1)弧形杆对小球的弹力大小及方向; (2)弹簧的劲度系数。 2.如图所示,质量M=kg的木块套在水平杆上,并用轻绳与质量m kg的小 球相连,今用跟水平方向成α=30°角的力F=N拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,g取10N/kg,求: (1)运动过程中轻绳与水平方向夹角θ; (2)木块与水平杆间的动摩擦因数μ。 3.重250N的物体放在水平地面上,已知物体与水平地面间的最大静摩擦力为150N,动摩擦因数是0.5,物体的一端连一根劲度系数为4×103N/m的轻质弹簧.求: (1)将弹簧拉长2cm时,物体受到地面的摩擦力多大? (2)将弹簧拉长4cm时,物体受地面的摩擦力多大? 4.如图所示,用一轻弹簧竖直悬挂物体,现用力F=10.5N竖直向下拉物体,使物体处于静止状态,弹簧由原长5cm伸长到7.2cm。若将力F改为竖直向上拉物体,大小不变,物体仍处于静止状态,弹簧由原长缩短到3cm。求物体的质量和弹簧的劲度系数。(g

取10N/kg) 5.如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有A、B两个小球,其中B球质量为m,当它们处于平衡状态时,小球A与O点的连线与水平线的夹角为α=60°,求:小球A的质量大小。 6.如图所示,某人用轻绳牵住一只质量m=0.6kg的氢气球,因受水平风力的作用,系氢气球的轻绳与水平方向成37°角。已知空气对气球的浮力为15N,人的质量M=50kg,且人受的浮力忽略不计(g取10N/kg,sin37°=0.6,co s37°=0.8)。求: (1)水平风力的大小; (2)人对地面的压力大小; (3)若水平风力增强,人对地面的压力如何变化?(要求说明理由) 7.如图所示,物块A套在一根水平固定的直杆上,物块A与水平杆间的动摩擦因数 μ=,用轻绳将物块A与质量m=1 kg的小球B相连,轻绳与水平方向夹角为30°。 3 现用跟竖直方向成30°角的拉力F,拉着球B并带动物块A一起向左做匀速直线运动,运动中A、B相对位置保持不变,g=10 m/s2。求: (1)拉力F的大小;(结果可以用根式表示) (2)物块A的质量。

相关文档
相关文档 最新文档