文档库 最新最全的文档下载
当前位置:文档库 › §8.3双曲线及其标准方程习题四

§8.3双曲线及其标准方程习题四

§8.3双曲线及其标准方程习题四
§8.3双曲线及其标准方程习题四

1.已知双曲线的焦距为26,13

252=c a ,则双曲线的标准方程是( ) A.11692522=-y x B. 1169

252

2=-x y C. 11442522=-y x D. 1144252

2=-y x 或1144

2522=-x y 2.F 1、F 2为双曲线14

22

-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则 △F 1PF 2的面积是( )

A.2

B.4

C.8

D.16

3.双曲线的焦点在y 轴上,且它的一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,

3

5=a c ,则此双曲线的方程是( ) A.1643622=-y x B. 136

642

2=-y x C. 1643622-=-y x D.136

642

2-=-y x 4.双曲线8mx 2-my 2

=8的焦距为6,则m 的值是( )

A.±1

B.-1

C.1

D.8

5.设θ是第三象限角,方程x 2+y 2sin θ=cos θ表示的曲线是( )

A.焦点在x 轴上的椭圆

B.焦点在y 轴上的椭圆

C.焦点在x 轴上的双曲线

D.焦点在y 轴上的双曲线

6.求与圆A :22)5(y x ++=49和圆B :22)5(y x +-=1都外切的圆的圆心P 的轨迹方程.

7.若一个动点P (x ,y )到两个定点A (-1,0)、A ′(1,0)的距离差的绝对值为定值a ,求点

P 的轨迹方程,并说明轨迹的形状.

8.已知点(223,1)、(266,-3)在双曲线12222=-b y a x 上,求双曲线的方程. 9.已知双曲线的焦点为F1(-c,0)、F2(c,0),过F 2且斜率为

5

3的直线交 双曲线于P 、Q 两点,若OP⊥OQ,|PQ|=4,求双曲线的方程.

参考答案:1.D 2.B 3.D 4.A 5.D 6.11692

2=-y x (x >0). 7.(1)当a =2时,轨迹方程是y =0(x ≥1或x ≤-1),轨迹是两条射线.

(2)当a =0时,轨迹是线段AA ′的垂直平分线x =0.

(3)当0<a <2时,轨迹方程是14

142

2

22=--a y a x 轨迹是双曲线.

8. 12

322=-y x 9.132

2=-y x

双曲线及其标准方程

§9.6 双曲线 1.双曲线的概念 平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫____________.这两个定点叫双曲线的________,两焦点间的距离叫________. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0: (1)当________时,P点的轨迹是双曲线; (2)当a=c时,P点的轨迹是____________; (3)当________时,P点不存在. 标准方程 x2 a2 - y2 b2 =1 (a>0,b>0) y2 a2 - x2 b2 =1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=± b a x y=± a b x 离心率e= c a ,e∈(1,+∞),其中c=a2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线 的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的 半虚轴长 a、b、c 的关系 c2=a2+b2 (c>a>0,c>b>0) [难点正本疑点清源] 1.双曲线中a,b,c的关系 双曲线中有一个重要的Rt△OAB(如右图),

它的三边长分别是a 、b 、c .易见c 2=a 2+b 2 , 若记∠AOB =θ,则e =c a =1 cos θ . 2.双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点: (1)距离之差的绝对值. (2)2a <|F 1F 2|. 这两点与椭圆的定义有本质的不同: ①当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; ②当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; ③当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; ④当2a >|F 1F 2|时,动点轨迹不存在. 3.渐近线与离心率 x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线的斜率为b a = b 2 a 2=c 2-a 2a 2 =e 2 -1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 1.已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程 是 _____________________________________________________________________. 2.双曲线mx 2 +y 2 =1的虚轴长是实轴长的2倍,则m =___________________________. 3.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________. 4.(2011·山东)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 2 9 =1有相同的焦点,且 双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________. 5.若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的 离心率为 ( ) A . 5 B .5 C . 2 D .2 题型一 双曲线的定义 例1 已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求另一焦点F 的轨迹方程. 探究提高 双曲线的定义理解到位是解题的关键.应注意定义中的条件“差的绝对值”,弄清所求轨迹是双曲线的两支,还是双曲线的一支.若是一支,是哪一支,以

【精品】高中数学 选修1-1_双曲线及其标准方程_ 知识点讲解 讲义+巩固练习(含答案)提高

双曲线及其标准方程 【学习目标】 1.知识与技能: 从具体情境中抽象出双曲线的模型;掌握双曲线的定义、标准方程及几何图形;能正确推导双曲线的标准方程. 2.过程与方法: 学生亲自动手尝试画图、发现双曲线的形成过程进而归纳出双曲线的定义、图象和标准方程. 3.情感态度与价值观: 了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用,进一步感受数形结合的基本思想在解析几何中的作用. 【要点梳理】 要点一:双曲线的定义 把平面内到两定点1F 、2F 的距离之差的绝对值等于常数(大于零且小于12F F )的点的集合叫作双曲线. 定点1F 、2F 叫双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 要点诠释: 1. 双曲线的定义中,常数应当满足的约束条件:常数=1212PF PF F F -<,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若常数分别满足以下约束条件,则动点的轨迹各不相同: 若 常数=1212PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点2F 的一支; 若 常数=2112PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点1F 的一支. 若 常数=1212PF PF F F -=,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点); 若 常数=1212PF PF F F ->,则动点轨迹不存在; 若 常数=12=0PF PF -,则动点轨迹为线段F 1F 2的垂直平分线. 要点二:双曲线的标准方程

1.双曲线的标准方程 2.标准方程的推导 如何建立双曲线的方程?根据求曲线方程的一般步骤,可分为4步:建系、设点、列式、化简. (1)建系 取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系. (2)设点 设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0). (3)列式 设点M与F1、F2的距离的差的绝对值等于常数2a. 由定义可知,双曲线就是集合:P={M||M F1|-|M F2||=2a}={M|M F1|-|M F2|=±2a}. ∵2222 12 ||(),||(), MF x c y MF x c y ++=-+ ∴2222 ()()2 x c y x c y a ++-+=± (4)化简 将这个方程移项,得 当焦点在x轴上时, 22 22 1 x y a b -=(0,0) a b >>,其中222 c a b =+; 当焦点在y轴上时, 22 22 1 y x a b -=(0,0) a b >>,其中222 c a b =+

双曲线及其标准方程详解

2.2 双曲线 2.2.1 双曲线及其标准方程 【课标要求】 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点 ) 自学导引 1.双曲线的定义 把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么? 提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示. (2)若“常数大于|F 1F 2|”(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点 的位置? 提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在. (2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上. (3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|). (4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.” 2.双曲线的标准方程 (1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程. (2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,

双曲线及其标准方程练习题一

《双曲线及其标准方程》练习题一 1.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方 程是( ) A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3) D.x 29-y 2 16 =1(x ≥3) 2.“ab<0”是“方程c by ax =+22表示双曲线”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分又不必要条件 3.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( ) A.x 25-y 24=1 B.y 25-x 24=1 C.x 23-y 22=1 D.x 29-y 2 16 =1 4.方程x =3y 2-1所表示的曲线是( ) A .双曲线 B .椭圆 C .双曲线的一部分 D .椭圆的一部分 5.双曲线x 216-y 2 9 =1上一点P 到点(5,0)的距离为15,那么该点到点(-5,0)的距 离为( ) A .7 B .23 C .5或25 D .7或23 6.圆P 过点 ,且与圆 外切,则动圆圆心P 的轨迹方程( ). A . ; B . C . D . 7.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2 =1有相同的焦点,则a 的值是( ) A.12 B .1或-2 C .1或12 D .1 8. 已知ab<0,方程y= —2x+b 和bx 2+ay 2=ab 表示的曲线只可能是图中的( ) 9.双曲线m y x =-222的一个焦点是)3,0(,则m 的值是_______。 10.过双曲线)0,0(122 22>>=-b a b y a x 的焦点且垂直于x 轴的弦的长度为_____。

双曲线及其标准方程(1)

双曲线及其标准方程(1) 福建师大附中苏诗圣 教学目标:理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求曲线方程的步骤导出双曲线的标准方程,并能熟练写出两类标准 方程;培养学生分析问题能力和抽象概括能力。学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美,培养学生学习数学的兴 趣。 教学重点:双曲线的定义和双曲线的标准方程. (解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定义;对于双曲线的标准方程通过比较加深认识.) 教学难点:双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程的推导 类比.) 教学方法:启发式 教学过程:复习椭圆的定义及标准方程→新知探索→数学实验→双曲线→展示现实生活中的双曲线→双曲线的定义 →对定义的思考→双曲线标准方程的推导→例与练 →课堂小结→作业→研究性学习 一、复习引入: 前面我们已经学习了椭圆的有关知识,请同学们回忆一下椭圆的定义。 问题1:椭圆的定义是什么? (板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。 二、新知探索 1、思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在?若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉

双曲线及其标准方程练习题答案及详解

练习题 高二一部数学组 刘苏文 2017年5月2日 一、选择题 1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 2 1-k =1表示双曲线,则k 的取值范围是( ) A .-10 C .k ≥0 D .k >1或k <-1 3.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线 4.以椭圆x 23+y 24 =1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1 D.y 23-x 24 =1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2| =2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24 =1 7.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 22 =1有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 8.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27 =1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27 =1(x >0) 9.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2 的周长是( ) A .16 B .18 C .21 D .26 10.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( ) A .m -a B .m -b C .m 2-a 2 D.m -b

双曲线及其标准方程练习题

课时作业(十) [学业水平层次] 一、选择题 1.方程x 22+m -y 2 2-m =1表示双曲线,则m 的取值范围( ) A .-2<m <2 B .m >0 C .m ≥0 D .|m |≥2 【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A 2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( ) A.x 29-y 2 16=1 B.y 29-x 2 16=1 C.x 29-y 2 16=1(x ≤-3) D.x 29-y 2 16=1(x ≥3) 【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16, ∴P 点的轨迹方程为x 29-y 2 16=1(x ≥3). 【答案】 D 3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )

A.x 22-y 2 3=1 B.x 23-y 2 2=1 C.x 24-y 2 =1 D .x 2 -y 2 4=1 【解析】 由? ?? |PF 1|· |PF 2|=2,|PF 1|2+|PF 2|2 =(25)2 , ?(|PF 1|-|PF 2|)2=16, 即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C 4.已知椭圆方程x 24+y 2 3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( ) A.2 B. 3 C .2 D .3 【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =2 1=2. 【答案】 C 二、填空题 5.设点P 是双曲线x 29-y 2 16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________. 【解析】 由双曲线的标准方程得a =3,b =4. 于是c = a 2+ b 2=5. (1)若点P 在双曲线的左支上,

双曲线及其标准方程习题

[学业水平训练] 1.动点P 到点M (1,0)及点N (3,0)的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 解析:选D.依题意|PM |-|PN |=2=|MN |, 所以点P 的轨迹不是双曲线,而是一条射线. 2.若方程x 210-k +y 2 5-k =1表示双曲线,则k 的取值范围是( ) A .(5,10) B .(-∞,5) C .(10,+∞) D .(-∞,5)∪(10,+∞) 解析:选A.由题意得(10-k )(5-k )<0,解得5

(完整版)双曲线练习题(含标准答案).doc

双曲线及其标准方程习题 一、 单选题 (每道小题 4 分 共 56 分 ) 1. 命题甲:动点 P 到两定点 A 、B 距离之差│ |PA| |PB| │ =2a(a 0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件 2. 若双曲线 2kx 2 ky 2 的一个焦点是 (0 , 4) ,则 等于 [ ] = 1 k A . 3 B . 5 . 3 D . 5 32 8 C 32 8 3. 点 P 到点 ( 6 , 0) 与它关于原点的对称点的距离差的绝对值等于 10 ,则 点 P 的轨迹方程是 [ ] A . x 2 y 2 = 1 B . x 2 y 2 = 1 25 11 61 25 C . x 2 y 2 = 1 D . x 2 y 2 = 1 25 6 11 25 4. k < 5是方程 x 2 y 2 [ ] k 5 + = 1表示双曲线的 6 k A .既非充分又非必要条件 B .充要条件 C .必要而非充分条件 D .充分而非必要条件 5. 如果方程 x 2 sin y 2 cos =1 表示焦点在 y 轴上的双曲线,那么角 的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6. 下列曲线中的一个焦点在直线 4x 5y + 25 = 0 上的是 [ ] A . x 2 y 2 = 1 B . x 2 + y 2 = 1 9 16 25 16 C . y 2 x 2 = 1 D . y 2 x 2 = 1 9 16 25 + 16 7. 若 a · b 0,则 ax 2 ay 2 =b 所表示的曲线是 [ ] A .双曲线且焦点在 x 轴上 B .双曲线且焦点在 y 轴上 C .双曲线且焦点可能在 x 轴上,也可能在 y 轴上 D .椭圆 8. 以椭圆 x 2 + y 2 9 = 1的焦点为焦点,且过 P(3, 5)点的双曲线方程为 25 [ ] A . x 2 y 2 = 1 B . y 2 x 2 = 1 6 10 10 6 C . 9y 2 x 2 D . 11y 2 x 2 = 1 = 1

双曲线标准方程--离心率练习题

双曲线的标准方程及其简单的几何性质 一、选择题 1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 2 1-k =1表示双曲线,则k 的取值范围是( ) A .-10 C .k ≥0 D .k >1或k <-1 3.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线 4.以椭圆x 23+y 2 4=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( ) -y 2=1 B .y 2- x 23=1 -y 2 4=1 -x 2 4=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) -y 2 3=1 -y 2 2=1 -y 2=1 D .x 2- y 2 4=1 7.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) -y 27=1 -y 27=1(y >0) -y 27=1或x 27-y 29=1 -y 2 7=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16 B .18 C .21 D .26 9.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5,双曲线的方程是( ) -y 24=1 -y 212=1 C .-x 212+y 24=1 D .-x 24+y 2 12=1 10.焦点为(0,±6)且与双曲线x 22-y 2 =1有相同渐近线的双曲线方程是( ) -y 2 24=1 -x 224=1 -x 2 12=1 -y 2 12=1 11.若0

双曲线及其标准方程(一)

双曲线及其标准方程(一) 教学目的: 1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用; 2.通过对双曲线标准方程的推导,提升学生求动点轨迹方程的水平; 3.使学生初步会按特定条件求双曲线的标准方程; 4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5.培养学生发散思维的水平 教学重点:双曲线的定义、标准方程及其简单应用 教学难点: 教 具:多媒体 教学过程: 一、复习引入: 1 椭圆定义: 平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭 圆的焦点,两焦点间的距离叫做椭圆的焦距 2.椭圆标准方程: (1)2222=+b y a x (2)2222=+b x a y 其中22b c a +=二、讲解新课: 1.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于2 1F F )的动点的轨迹叫双曲线 即 a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距 概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于2 1F F ” 2.双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证 明 12 222=-b y a x ,此即为双曲线的标准方程 它所表示的双曲线的焦点在x 轴上,焦点是)0,(),0,(21c F c F -,其中222 b a c += 若坐标系的选择不同,可得到双曲线的不同的方程,如焦点在 y 轴上,则焦点是),0(),,0(21c F c F -,将y x ,互换,得到122 22=-b x a y ,此也是双曲线的标准方程 3.双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种: 焦点在x 轴上时双曲线的标准方程为:122 22=-b y a x (0>a ,0>b ); 焦点在y 轴上时双曲线的标准方程为:122 22=-b x a y (0>a ,0>b ) (2)c b a ,,相关系式222 b a c +=成立,且0 ,0,0>>>c b a 其中a 与b 的大小关系有三种情况。 4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2 x 、2 y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即 2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 5.双曲线与椭圆之间的区别与联系 三、讲解范例: 例1 已知双曲线两个焦点的坐标为)0,5()0,5(21F F -,双曲线上一点P 到)0,5()0,5(21F F ,-的距离之差的绝对值等于6,求双曲线标准方程 变题1:将条件改为双曲线上一点P 到 1F ,2F 的距离的差等于6,如何? 变题2:将条件改为双曲线上一点P 到1F ,2F 的距离的差的绝对值等于10,如何? 例2 四、课堂练习: 五、小结 : 1、双曲线的两类标准方程是)0,0(12222>>=-b a b y a x 焦点在x 轴上,)0,0(122 22>>=-b a b x a y 焦点 在 y 轴上 c b a ,,相关系式222b a c +=成立,且,0,0>>>c b a 其中a 与b 的大小关系:能够为 a b a b a ><=,,

高二双曲线练习题[1]

高二数学双曲线同步练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

双曲线及其标准方程(1)

双曲线及其标准方程 (1) 理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求 曲线方程的步骤 导出双曲线的标准方程, 并能熟练写出两类标准 方程; 培养学生分析问题能力和抽象概括能力。 学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美, 培养学生学习数学的兴 趣。 双曲线的定义和双曲线的标准方程. ( 解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定 义;对于双曲线的标准方程通过比较加深认识. 双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程 的推导 类比. ) 教学过程:复习椭圆的定义及标准方程 7 新知探索 7 双曲线 7 展示现实生活中的双曲线 7 对定义的思考 7 双曲线标准方程的推导 7 课堂小结 7 作业 7 研究性学习 一、 复习引入: 前面我们已经学习了椭圆的有关知识, 请同学们回忆一下椭圆的定义。 问题 1:椭圆的定义是什么? (板书)平面内与两定点 F i 、F 2的距离的和等于常数(大于|F I F 2|)的点的 轨迹叫做椭 圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做焦距。 二、新知探索 思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在? 若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的 一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a ),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉 教学方法: 启发式 福建师大附中 苏诗圣 教学目标: 教学重点: 教学难点: 数学实验 7 双曲线的定义 7 例与练 1、

人教新课标版(A)高二选修1-1 2.2.1双曲线及其标准方程(一)同步练习题

人教新课标版(A )高二选修1-1 2.2.1 双曲线及其标准方程(一)同步练习题 【基础演练】 题型一:双曲线的定义 平面内到两定点1F 、2F 的距离的绝对值为定值(小于|F F |21)的点的轨迹叫双曲线, 其中两定点为焦点,两焦点之间的距离为焦距,请根据以上知识解决以下1~4题。 1. 已知定点1F (-2,0)、2F (2,0),在满足下列条件的平面内动点P 的轨迹中为双曲线的是 A. 3|PF ||PF |21±=- B. 4|PF |PF |21±=- C. 5|PF ||PF |21±=- D. 4|PF ||PF |2 221±=- 2. 若动点P 到1F (-5,0)与P 到2F (5,0)的距离的差为8±,则P 点的轨迹方程是 A. 116y 25x 2 2=+ B. 116y 25x 2 2=- C. 19y 16x 2 2=+ D. 19 y 16x 2 2=- 3. 已知双曲线的两个焦点坐标为()2,2F 1--、( ) 2, 2F 2, 双曲线上一点P 到1F 、2F 的距离的差的绝对值等于22,求双曲线的方程。 4. 在△ABC 中,B (4,0)、C (-4,0),点A 运动时满足A sin 2 1 C sin B sin =-,求A 点轨迹。 题型二:双曲线的标准方程 (1)焦点在x 轴上,方程为1b y a x 22 22=-,焦点为F (c ±,0); (2)焦点在y 轴上,方程为1b x a y 22 22=-,焦点为F (0,c ±); (3)a 、b 、c 之间的关系:222c b a =+。 请根据以上知识解决5~7题。 5. 已知方程b ay ax 22=-,如果实数a 、b 异号,则它表示的曲线是 A. 焦点在x 轴上的双曲线 B. 焦点在y 轴上的双曲线

双曲线练习题含答案图文稿

双曲线练习题含答案集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

双曲线及其标准方程习题 一、单选题(每道小题 4分共 56分 ) 1. 命题甲:动点P到两定点A、B距离之差│|PA||PB|│=2a(a0);命题乙; P点轨迹是双曲线,则命题甲是命题乙的[ ] A.充分非必要条件B.必要非充分条件 C.充要条件D.既非充分也非必要条件 2. 3. 4. 5. 如果方程x2siny2cos=1表示焦点在y轴上的双曲线,那么角的终边在 [ ] A.第四象限B.第三象限C.第二象限D.第一象限 6. 7. 若a·b0,则ax2ay2=b所表示的曲线是[ ] A.双曲线且焦点在x轴上B.双曲线且焦点在y轴上 C.双曲线且焦点可能在x轴上,也可能在y轴上D.椭圆 8. 9. 10. 11. 12. 13. 已知ab0,方程y=2xb和bx2ay2=ab表示的曲线只可能是图中的 [ ] 14. 二、填空题(每道小题 4分共 8分 ) 1. 2. 双曲线的标准方程及其简单的几何性质 1.平面内到两定点E、F的距离之差的绝对值等于|EF|的点的轨迹是( ) A.双曲线B.一条直线 C.一条线段 D.两条射线 2.已知方程 x2 1+k - y2 1-k =1表示双曲线,则k的取值范围是( ) A.-10 C.k≥0 D.k>1或k<-1 3.动圆与圆x2+y2=1和x2+y2-8x+12=0都相外切,则动圆圆心的轨迹为( ) A.双曲线的一支 B.圆 C.抛物线 D.双曲线 4.以椭圆x2 3 + y2 4 =1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方

2.3.1 双曲线及其标准方程

§ 2.3双曲线 2.3.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题. 1.双曲线的有关概念 (1)双曲线的定义 平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线. 平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距 双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程 (1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________. (2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________. (3)双曲线中a 、b 、c 的关系是________________. 一、选择题 1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上 3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B .x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( ) A .12 B .1或3 C .1+22 D .2-12 5.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆

(完整版)双曲线练习题

圆锥曲线与方程(双曲线练习题) 一、选择题 1.已知方程22 121 x y k k +=--的图象是双曲线,那么 的取值范围是( ) A . B . C . D . 2.双曲线22 221(00)x y a b a b ->>=,的左、右焦点分别为12F ,F ,P 是双曲线上一点,满足212|PF F F |=,直线1PF 与 圆222x y a +=相切,则双曲线的离心率为( ) A. 54 B.53 3.过双曲线22 12 y x -=的右焦点作直线交双曲线于两点,若,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 4.等轴双曲线222:C x y a -=与抛物线216y x =的准线交于A,B 两点,AB =C 的实轴长等于( ) 5.已知双曲线x y m 2219-=的一条渐近线的方程为y =,则双曲线的焦点到直线的距离为( ) A .2 B . C . D . 6.若直线过点(3,0)与双曲线2 2 4936x y -=只有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 7.方程22 1()23 x y k k k -∈-+R =表示双曲线的充要条件是( ) A.2k >或3k <- B.3k <- C.2k > D.32k -<< 二、填空题 8.过原点的直线,如果它与双曲线22 134 y x -=相交,则直线的斜率的取值范围是 . 9.设为双曲线2 214 x y -=上一动点,为坐标原点,为线段的中点,则点的轨迹方程是 . 10.过双曲线 22 22 1(,0)x y a b a b -=>的左焦点作垂直于轴的直线与双曲线相交于两点, 以为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于 . 11.已知双曲线22221(00)x y a ,b a b -=>>的渐近线与圆22 420x y x +-+=有交点,则该双曲线的离心率的取值 范围是 . 三、解答题(本题共3小题,共41分) 12.求适合下列条件的双曲线的标准方程:

双曲线练习题及答案

双曲线相关知识 双曲线的焦半径公式: 1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程x^2/a^2-y ^2/b^2=1 点P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex -a) 点P(x,y )在右支上 │PF1│=ex+a ;│PF2│=ex-a 运用双曲线的定义 例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( ) A 、第一象限 B、第二象限 C 、第三象限 D、第四象限 练习1.设双曲线19 162 2=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或23 例2. 已知双曲线的两个焦点是椭圆10x 2 +32 y 52=1的两个顶点,双曲线的两条准 线分别通过椭圆的两个焦点,则此双曲线的方程是( )。 (A)6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2 -5 y 2=1 练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。 (A)充分条件 (B )必要条件 (C )充要条件 (D)不充分不必要条件 例3. 已知|θ|< 2 π ,直线y=-tg θ(x-1)和双曲线y 2co s2θ-x2 =1有且仅有一个公共点,则θ等于( )。 (A)±6π (B)±4π (C )±3π (D )±12 5π 课堂练习

1、已知双曲线的渐近线方程是2 x y ±=,焦点在坐标轴上且焦距是10,则此双曲线 的方程为 ; 2、焦点为(0,6),且与双曲线12 22 =-y x 有相同的渐近线的双曲线方程是 ( ) ?A.124 122 2=-y x B . 124 122 2=-x y C. 112 242 2=-x y D. 112242 2=-y x 3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1a y b x 22 22=-的离心率,则e 12+e 22与e 12·e 2 2 的大小关系是 。 4.若点O 和点(2,0)F -分别是双曲线2 221(a>0)a x y -=的中心和左焦点,点P 为双 曲线右支上的任意一点,则OP FP ?的取值范围为 ( ) A .)+∞ B .[3)++∞ C .7[-,)4+∞ D.7 [,)4+∞ 5. 已知倾斜角为 4 π 的直线l 被双曲线x 2-4y2=60截得的弦长|AB |=82,求直线l 的方程及以AB 为直径的圆的方程。 6. 已知P 是曲线xy=1上的任意一点,F (2,2)为一定点,l :x+y -2=0为一定直线,求证:|PF |与点P到直线l 的距离d 之比等于2。 7、已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为 ) .

相关文档
相关文档 最新文档