文档库 最新最全的文档下载
当前位置:文档库 › 分式方程(二)

分式方程(二)

分式方程(二)

一、素质教育目标

(一)知识教学点:本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.

(二)能力训练点:本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.

(三)德育渗透点:结合分式方程应用题的分析与解答,向学生灌输辩证唯物主义的观点,使学生懂得:理论知识来源于实践,反过来去更好地指导实践.

二、教学重点、难点和疑点

1.教学重点:列分式方程解有关行程问题.

2.教学难点:如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.

3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.

三、教学步骤

(一)明确目标

在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.

(二)整体感知

为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.

(三)重点、难点的学习和目标完成过程

复习提问

1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?

2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?

3.以前所学过的列方程解应用题的步骤有哪些?

通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于教师点题——本节课所学的内容.

通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上教师的适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.

当教师将本节的主题点明以后,不失时机的打出题目,此时学生的精力将被调到最佳状态.

例1 甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?

分析:(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.

(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙从

(3)如果设乙每小时走x千米,那么甲每小时走(x+1)千米,

解:设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得

去分母,整理,得

x2+x-30=0.

解这个方程,得

x1=5,x2=-6.

经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.

答:甲每小时走6千米,乙每小时走5千米.

在本题中,采取的方法应为教师引导学生分析,列出方程以至于解出方程.在分析过程中和解题过程中,教师应强调单位的统一以及检验的位置.

例2 一小艇在江面上顺流航行63千米到目的地,然后逆流回航到出发地,航行时间共5小时20分.已知水流速度为每小时3千米,小艇在静水中的速度是多少?小艇顺流航行时间和逆流回航时间各是多少?

分析:

(1)顺水速度=在静水中速度+水速

逆水速度=在静水中速度-水速

(2)题目中的相等关系:顺流航行时间+逆流航行时间=5小时20分.

(3)设小艇在静水中速度为x千米/小时,则顺流航行速度为x+3(千米/时),逆流航行速度为x-3(千米/时),小艇顺流航行63千

解:设小艇在静水中的航行速度为x千米/时,则顺流航行的速度为(x+3)千米/时,逆流航行的速度为(x-3)千米/时,根据题意,得

去分母,整理得

8x2-189x-72=0.

∴x=24.

答:小艇在静水中的速度为24千米/时,顺流航行2小时20分,逆流回航3小时.

本题处理的方式应与上题相同.

巩固练习:

教材中6题.

(四)总结、扩展

对于本节小结,应该是学生在教师的指导下进行的.

本节内容的小结应从两个方面进行总结:

(1)本节课的内容是什么?

(2)关系到本节课内容的因素是什么?

本节课,我们在学习了分式方程基础上,来解决实际问题的应用之一——行程问题,而解行程问题的关键是将路程、时间、速度三者之间的关系运用到隐含在题目中的相等关系中去,以便列出方程而解决问题.

对于例2,教师应引导学生对同一类问题——在空中飞行问题进行思考和总结.

通过本节课内容的学习,可以充分地发挥教师的主导地位和学生的主体地位,从而可以提高学生的分析问题和解决问题的能力.

四、布置作业

教材中A4、5.

五、板书设计

分式方程的应用

——行程问题

例1…………例2…………

……………………

……………………

六、作业参考答案

教材中A4

解:设慢车每小时走x千米,则快车每小时走(x+12)千米,则

去分母,整理得

x2+12x-4320=0

解得x1=60,x2=-72.

经检验x1=60,x2=-72都是原方程的根,但速度不能为负,x=-72不合题意,舍去.∴x=60,x+12=72.

答:略.

教材中A5

解:设汽船在静水中的速度为x千米/时,则顺流航行速度为(x+2)千米/时,逆流航行速度为(x-2)千米/时,根据题意,得

去分母整理,得

12x=160

答:略

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

第2课时 分式方程的实际应用

第2课时 分式方程的实际应用 01 基础题 知识点1 列分式方程解决工程问题 1 . ( 龙 岩 中 考 )甲、乙二人做某种零件 , 已知甲每小时比乙多做6个 , 甲做90个所用的时间与乙做60个所用的时间相等.若设乙每小时做x 个,则可列方程(C ) A .90x =60x -6 B .90x -6=60x C .90x +6=60x D .90x =60x +6 2.(深圳中考)施工队要铺设一段全长2 000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米 , 才能按时完成任务 , 求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是(A ) A .2 000x -2 000x +50=2 B .2 000x +50-2 000x =2 C .2 000x -2 000x -50=2 D .2 000x -50-2 000x =2 3.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x 天能完成此项任务,则可列出方程1x +1x +4=1 5 . 4.(大庆中考)某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务.求原计划每天加工多少个零件? 解:设原计划每天加工x 个零件,依题意,得 360x -360x (1+20%) =10,解得x =6. 经检验,x =6是原方程的解. 答:原计划每天加工6个零件. 知识点2 列分式方程解决行程问题 5 . (百色 中考 )A 、B 两地相距160千米 , 甲车和乙车的平均速度之比为4∶5,两车同时从A 地出发到B 地 , 乙车比甲车早到30分钟 ,

初三中考数学分式方程及其应用

课时11.分式方程及其应用 【课前热身】 1.方程22123=-+--x x x 的解是x= . 2. 已知2+x a 与2-x b 的和等于4 42-x x ,则=a ,=b . 3.解方程1 2112-=-x x 会出现的增根是( ) A .1=x B.1-=x C. 1=x 或1-=x D.2=x 4.如果分式12-x 与3 3+x 的值相等,则x 的值是( ) A .9 B .7 C .5 D .3 5.如果3:2:=y x ,则下列各式不成立的是( ) A .35=+y y x B .31=-y x y C .312=y x D .4 311=++y x 6.若分式 1 22--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.2 【考点链接】 1.分式方程:分母中含有 的方程叫分式方程. 2.解分式方程的一般步骤: (1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程; (3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去. 3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答. 4.分式方程的应用: 分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验: (1)检验所求的解是否是所列 ;(2)检验所求的解是否 . 5.易错知识辨析: (1) 去分母时,不要漏乘没有分母的项.

(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使 最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根. (3) 如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变 形后的整式方程,求出参数的值. 【典例精析】 例1 解分式方程:1233x x x =+--. 例2 在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电. 该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度. 例3 某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木 工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元. (1)求甲、乙两个木工小组每天各修桌凳多少套. (2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负 担他每天10元的生活补助.现有以下三种修理方案供选择: ① 由甲单独修理;② 由乙单独修理;③ 由甲、乙共同合作修理. 你认为哪种方案既省时又省钱?试比较说明. 【中考演练】 1.方程0112=--x x 的解是 . 2.若关于x 方程23 32+-=--x m x x 无解,则m 的值是 .

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

分式方程与实际问题

分式方程与实际问题 ——工程问题 一、教学目标 1.通过对工程问题的逐步探究,明确工程问题中三个量之间的基本关系,同时让学生学会从实际问题中寻找与这个量有关的等量关系. 2.经历从实际问题到建立分式方程的过程,体会建立分式方程模型解决实际问题的作用. 3.类比整式方程模型解决实际问题和分式方程模型解决实际问题的基本思路,突出分式方程模型解决实际问题的双检验特点. 二、学情分析 1.通过对工程问题的逐步探究,明确工程问题中三个量之间的基本关系,同时让学生学会从实际问题中寻找与这个量有关的等量关系. 2.经历从实际问题到建立分式方程的过程,体会建立分式方程模型解决实际问题的作用. 3.类比整式方程模型解决实际问题和分式方程模型解决实际问题的基本思路,突出分式方程模型解决实际问题的双检验特点. 三、重点难点 教学重点:工程问题中数量相等关系的探究. 教学难点:工程问题中分式方程模型的建立. 四、教学过程 (一)复习旧知,知识铺垫 有一项工程,甲单独完成需x天,乙单独完成比甲单独完成多用4天,那么乙单独完成这项工程需_____天, 则甲的工作效率是____,乙的工作效率是___ . 若这项工程甲先单独做3天,然后甲乙合作做2天, 则甲完成的工作量是____,乙完成的工作量是_____. 设计意图:通过简单的工程问题,让学生回顾工程问题中的基本关系式:工作总量=工作效率×工作时间,并且让学生回顾工程问题中当工作总量没有具体值时通常设工作总量为“1”。 (二)创设情境,提出问题 甲乙两个清洁队共同参与了城中垃圾的清运工作,甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成。哪个队的施工速度快? 设计意图:引导学生从问题出发,分析题中的已知量和未知量,通过设未知数来表示未知量,找出题中等量关系,利用分式方程解决问题。在这个问题中让

分式方程及其应用(北师版)(含答案)

学生做题前请先回答以下问题问题1:分式方程的概念是什么?并举例说明; 问题2:解分式方程分为哪三步? 问题3:解分式方程中,把分式方程化成整式方程的依据是什么? 问题4:解分式方程,结果必须_______,原因是什么? 问题5:增根产生的原因是什么? 问题6:分式方程有增根意味着什么? 问题7:分式方程无解可能存在两种情形,分别是什么? 分式方程及其应用(北师版) 一、单选题(共10道,每道10分) 1.下列方程不是分式方程的是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:分式方程的定义 2.分式方程的解是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:解分式方程 3.分式方程的解是( ) A. B. C. D.无解 答案:D 解题思路: 试题难度:三颗星知识点:解分式方程 4.若关于的分式方程有增根,则的值为( )

A.1 B.-1 C.-7 D.7 答案:D 解题思路: 试题难度:三颗星知识点:分式方程增根问题 5.若关于的分式方程有增根,则的值为( ) A.1 B.-1 C.3 D.5 答案:B 解题思路: 试题难度:三颗星知识点:分式方程增根问题

6.若关于的分式方程无解,则的值为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:分式方程无解问题 7.若关于的分式方程无解,则的值为( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:分式方程无解问题 8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少.设货车的速度为千米/小时,依题意列方程正确的是( ) A. B. C. D. 答案:C 解题思路:

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

分式方程及其应用的典型例题讲解学习

分式方程及其应用 一、知识点回顾: 1、分式方程的定义: 。 例如:下列方程:(1)31-x =5(2)x 1=14-x (3)π32-x =x-1(4)),(1为常数b a b a x = 其中属于分式方程的有 2、分式方程的增根:使得原分式方程的分母为零,所以解分式方程必须 。 3、解分式方程的基本步骤可以归纳为: 、 、 、 、 。 二.范例 1.当x =______时, 13x x ++的值等于13 . 2.当x =______时,424x x --的值与54 x x --的值相等. 3.若方程212 x a x +=--的解是最小的正整数,则a 的值为________. 4.下列关于x 的方程,是分式方程的是 ( ) A .23356x x ++-= B .137x x a -=-+ C .x a b x a b a b -=- D .2 (1)11 x x -=- 5.若3 x 与6 1x -互为相反数,则x 的值为 ( ) A . 13 B .-13 C .1 D .-1 6.若关于x 的方程2233 x m x x -=+--无解,则m 的值为___________. 7.解分式方程13132x x x +-=,去分母后所得的方程是 ( ) A .12(31)3x -+= B .12(31)2x x -+= C .12(31)6x x -+= D .1626x x -+= 8.解方程: (1) 623-=x x ; (2)12x -+ 3 =12x x --.

(3) 1121-=---x x x x . (4)1 613122-=-++x x x ; 9.已知关于x 的方程 2122x m x x -=--的解为正数,求m 的取值范围. 10. 解含有字母系数m 的分式方程 2233x m x x -=+-- 11. 若分式方程 223242 mx x x x +=--+有增根,试求m 的值. 12. 甲、乙两打字员,甲每分钟打字数比乙少10个.两人分别打同一份搞件,结果乙完成所需的时间是甲的 56 ,那么甲、乙两人每分钟打字数分别是多少?

用分式方程解决实际问题

数学学科导学案(第—次课)教师:_ 学生:—年级:八日期: ___________ 星期: _____ 时段: ____

乙型拖拉机单独耕这块地需要几天? 2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%结果提前30天完成了任务,实际每天铺设多长管道?

例:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付 乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的2 ,厂家需付甲、丙两队共5500 3 元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天? ⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由. 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量?对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为X天,y天,Z天,可列出分式方程组. 练习1:某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天? (2)若甲工程队独做a天后,再由甲、乙两工程队合作 ___________ 天(用含a的代数式表示)可完成此项工程; (3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费 2.5万元,甲工程队至少要单独施工 多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超 过64万元? 练习2:某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款 1.5万元, 乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成; 方案二:乙队单独完成这项工程要比规定日期多用5天;

分式方程及其应用知识分享

分式方程及其应用

分式方程应用题辅导班(B班) 一、知识梳理: 列分式方程解应用题的步骤:1、设元(一般采用直接设元,要带上单位) 2、列分式方程 3、解分式方程(可直接写结果,不要过程) 4、检验(这是必不可少的,要做到验方程、验题意) 5、答题(要带上单位) 二、列分式方程解应用题专题训练 行程问题 1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。 2、某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少. 仅供学习与交流,如有侵权请联系网站删除谢谢2

工程问题 3、某大队要筑一条水坝,需要在规定日期内完成,如果由甲小队去做,恰好能够如期完成;如果由乙小队去做,要超过规定日期3天才能完成;现在由甲乙两队合作2天,剩下的工程由乙小队独立去做,恰好在规定日期完成,问规定日期为几天? 4、现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器数. 顺逆流航行问题 5、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的仅供学习与交流,如有侵权请联系网站删除谢谢3

仅供学习与交流,如有侵权请联系网站删除 谢谢4 速度是3千米/时,求轮船在静水中的速度。 6、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地 逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .94 96496=-++x x

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

分式方程及其应用教案

第三讲 分式方程及其应用专讲 【学习目标】 1.掌握分式的概念,会解可化为一元一次方程的分式方程; 2.体验和学习应用分式方程. 3.熟练运用分式方程解题,能准确找出题中的等量关系。 【知识要点】 1.分式方程的概念: 字母里面有未知数的方程. 2.分式方程的解法: (1)去分母:将分式方程两边都乘以最简公分母,化分式方程为整式方程; (2)解整式方程; (3)验根 3.增根:使分式方程中分母为0的根,叫做方程的增根,应舍去. 【经典例题】 例1 解方程 (1)2235211787x x x x x x x ----=----+ (2)x x x x -=-+-3231 例2 解方程 (1)22416222-+=--+-x x x x x (2)()() 365212222-=+----x x x x x x x

(3)9 6999624822222+--=-++++x x x x x x x x (4)61514171-+-=-+-x x x x 例3 (1)a 为何值时,方程 3 23-+=-x a x x 会产生增根? 例4 .甲、乙两地相距50千米,A 骑自行车,B 乘汽车同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B 中途休息了半个小时,还比A 早到2小时,求A 和B 两人的速度? 例5.轮船顺水航行100千米所需的时间和逆水航行80千米所需的时间相同,已知水流速度 为2千米/小时,求船在静水中的速度。 例6.某工程甲、乙两队合做2天完成全工程的31,甲队独做所需天数是乙队独做所需天数的2倍,现由甲队先做4天后,甲、乙合做2天,余下的由乙队独做,共需几天完工?

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

分式方程及实际应用

详解点一 、分式方程的概念 分母里含有未知数的方程叫做分式方程。 分式方程的重要特征是:①含分母;②分母里含未知数。 分式方程和整式方程的区别就在于分母中是否含有未知数。例如:011=+x ;3 432=++x x 是分式方程; 5 3422x x =++是整式方程,不是分式方程。 详解点二 、分式方程的解法 1、解分式方程的思想和方法 2、解分式方程的一般步骤: (1)去分母,在分式方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程,得出整式方程的根; (3)验根,把整式方程的根代入最简公分母(或原方程)检验,看结果是不是零,使最简分母为零的根是原方程的增根,必须舍去。 (4)写出分式方程的根。 详解点三、分式方程的增根 1、分式方程的增根是适合去分母后的整式方程但不适合原方程的根; 2、增根产生的原因:分式方程本身隐含着分母不为0的条件,我们在解分式方程时,为去分母,要在方程两边同时乘以各分母的最简公分母,当最简公分母为0时,就产生了增根。 3、排除增根的方法

由于产生增根的原因是在方程的两边同时乘以了“隐形”的零——最简公分母,因此,判断是否是增根,应将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原方程的解;否则,这个解不是原分式方程的根。 详解点四、列分式方程解应用题 1、分式方程是描述实际问题的一种模型 2、列分式方程解应用题的步骤: (1)审:审清题意,找出相等关系和数量关系 (2)设:根据所找的数量关系设出未知数 (3)列:根据所找的相等关系和数量关系列出方程 (4)解:解这个分式方程 (5)检:对所解的分式方程进行检验,包括两层,不仅要对实际问题有意义,还要对分式方程有意义 注:分式方程的应用与一元一次方程应用题类似,不同的是要注意检验; (6)答:写出分式方程的解 例题1、下列关于x 的方程21=+ x x ,300015009000+=x x ,42480-300=x x ,x-2=0,21-3x x =,x x 3 1-2=,4x-5=0,哪些是整式方程,哪些是分式方程? 分析:利用整式方程与分式方程的定义解答即可 解:方程21=+ x x ,300015009000+=x x ,42480-300=x x ,x x 3 1-2=,是分式方程 x -2=0,2 1 -3x x = ,4x -5=0是整式方程。 例题2、解分式方程:(1) 42480-300=x x ;(2)2--31 3-x -2x x =; 分析:先找出各分母的最简公分母,然后同时乘以最简公分母,去掉分母,化成整式方程。(1)中根 据方程的特点可有两种解法。 解:(1)解法1 42480 -300=x x ,方程两边都乘以2x ,得600-480=4×2x ,解这个方程,得x =15, 检验:将x =15代入原方程,左边=4=右边,所以x =15是原方程的解。

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A、0 B 、1 C 、x D、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w =( )

分式方程的特殊解法

分式方程的特殊解法 四川省攀枝花市第二中学 617000 王琨 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验27-=x 是原方程的解 三、 韦达定理法: 例3、解方程71 )1(31)1(222=+++++x x x x 分析:该方程的常规解法是换元法,但通过进一步观察会发现含有未知数的两个代数式的和或积都等于常数,故联想韦达定理求解。 略解:设 1)1(22++=x x u 1 )1(32++=x x v 则易知u ,v 是方程0672=+-y y 的两个解,

解这个方程得1=u 6=v 或1 6==v u ???????=++=++∴ (2) 61 )1(3)1( 11)1(2 22x x x x 或???????=++=++(4) 11)13((3) 61)1(222x x x x 由(2) 1)(得 方程无解 由(4) (3)得 2 1732 1±=x 经检验,它们满足原方程。故原方程的解是 2173 1+=x 2 1732-=x 四、 配方法: 例4、解方程 )32(49422x x x x -=+ 分析:观察发现方程左边恰好是 2x 与x 3的平方和,而右边又含有式子x x 32-,故可通过配方的方法把左边写成2x 与x 3差的完全平方的形式,进而把原方程看作是以x x 32-为未知数的一元二次方程去求解。 略解:原方程可变形为 03)32(4)32(2=+---x x x x 解之得132=-x x 或 332=-x x 当132=-x x 时,解之得712 1±=x 当332=-x x 时,解之得1534 3±=x 经检验,它们都满足原方程。故原方程的解是 71 1+=x 712-=x 1533+=x 1534-=x 五、 运用方程c b c x b x +=+ 的解求解 方程c b c x b x +=+的解不难通过去分母法求得为c x =1,c b x =2运用这一结论可以使具备此方程特征的这类方程的解法简捷。 例5、解方程 25991=+++ x x x

分式方程及其应用(讲义及答案)

分式方程及其应用(讲义) 课前预习 1.请回顾相关知识,填空: 2.回忆并背诵应用题的处理思路,回答下列问题: (1)理解题意,梳理信息. 梳理信息的主要手段有_______________________________.(2)建立数学模型. 建立数学模型要结合不同特征判断对应模型,如: ①共需、同时、刚好、恰好、相同……,考虑___________; ②不超过、不多于、少于、至少……,考虑_____________. (3)求解验证,回归实际. 主要是看结果是否_________________. 知识点睛

1. 分式方程的定义:__________________的方程叫做分式方程. 2. 解分式方程: 根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________. 3. 列分式方程解应用题,也要进行___________. 精讲精练 1. 下列关于x 的方程是分式方程的有__________.(填写序号) ① 315x -=;②x x π=π;③11123x y -=;④1152 x x +=+; ⑤11 x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________. 3. 解分式方程: (1)2115225 x x x ++=--; (2)100602020x x =+-; (3)3201(1) x x x x +-=--; (4)2216124x x x ++=---; (5) 2236111 x x x +=+--;

特殊方程的解法

-------------绝对值方程 1、掌握形如| x | = a(a≥0)方程的解法; 2、掌握形如| x – a | = b(b≥0)方程的解法。 知识结构 绝对值的代数和几何意义。 绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。 a a > 0) 用字母表示为| a | = 0 (a = 0) – a (a < 0) 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数的绝对值是非负数。 我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程简称绝对值方程 解绝对值方程的基本方法有: 1、设法去掉绝对值符号,将绝对值方程转化为常见的,方程求解 2、数形结合,借助于图形的直观性求解 说明:前者是通法,后者是技巧。解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法 (1)| x | = 7;(2)5 | x | = 10; 解:(1)x =±7; (2)x = ±2; 我来试一试! (3)| x | = 0; 答案:x = 0

解方程:(1)19 – | x | = 100 – 10 | x | (2)2||3 3|| 4 x x + =- 解:(1)– | x | + 10 | x | = 100 – 19 (2) 2 | x | + 3 = 12 – 4 | x | 9 | x | = 81 2 | x | + 4 | x | = 12 – 3 | x | = 9 6 | x | = 9 x = ±9 | x | = 1.5 x = ±1.5 、思考:如何解| x – 1 | = 2 分析:用换元(整体思想)法去解决,把x – 1 看成一个字母y,则原方程变为:| y | = 2,这个方程的解为y = ±2,即x – 1 = ±2,解得x = 3或x = – 1. 解:x – 1 = 2 或x – 1 = – 2 x = 3 x = – 1 例题小结: 形如| x – a | = b(b≥0)的方程的解法: 解:x – a = b 或x – a = – b x = a + b x = a – b 解方程:| 2x – 1 | – 3 = 0 解:| 2x – 1 | = 3 2x – 1 = 3 或2x – 1 = – 3 2x = 4 2x = – 2 x = 2 x = – 1 把绝对值内的式子看成一个整体,用一个字母表示的方法叫换元法,形如 | mx – n | = a(m,n,a为已知数,且a ≥0)方程分为两步解 (1)先解| y | = a(a≥0) (2)再解mx – n = y的方程 解:mx – n = ±a mx – n = a或mx – n = – a x = n a m + x = n a m - 我来试一试! 1、解方程:3 |21|6 2 y-=(y = 2.5或– 1.5)

相关文档
相关文档 最新文档