文档库 最新最全的文档下载
当前位置:文档库 › 反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六-变压器设计实例
反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六

-变压器设计实例

已知条件:

输入电压:DC:380V~700V

输出电压:1) 5V/0.5A

2) 12V/0.5A

3) 24V/0.3A

PWM控制论芯片选用UC2842,

开关频率:50KHz

效率η:80%

取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到;

算得Po=5×0.5+12×0.5+24×0.3=15.7 W

计算步骤:

1、确定变比N

N=Np/Ns

VoR = N(VO+VD)

N=VoR/(VO+VD)

VoR取210V

N=210/(12+1)=16.1 取16

2.计算最大占空比Dmax

3、选择磁芯

计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f)

=2.51×103 (mm4)

通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2

4、计算初级匝数Np

5、初级峰值电流:Ip

6、初级电感量L

7、次级匝数

1) 、12V取样绕组Ns:

Ns=Np/N

=250/16

=15.625 取16匝

2)、计算每匝电压数Te:

Te=(Uo+Ud)/Ns

=(12+1)/16

=0.8125

3)、7.5V匝数:

N7.5V=U/Te

=(7.5+0.5)/0.8125

=9.84取10匝

4)、24V匝数

N24V=U/Te

=(24+1)/0.8125

=30.7取31匝

5)、辅助绕组15V

N15V=U/Te

=(15+1)/0.8125

=19.7取20匝

8、计算初级线径:

1)、计算电流有效值I

2)、计算线径d

9、计算次级12V/5V线径: 1)、计算电流有效值I

2)、计算线径d

10、计算次级24V线径: 1)、计算电流有效值I

2)、计算线径d

通过计算线径选择如下:

初级用0.18mm线绕;

12V和5V绕组用0.27mm的线双线并绕;

24V绕组用0.21mm线双线并绕;辅助绕组15V用0.21mm线绕。

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六 -变压器设计实例 已知条件: 输入电压:DC:380V~700V 输出电压:1) 5V/0.5A 2) 12V/0.5A 3) 24V/0.3A PWM控制论芯片选用UC2842, 开关频率:50KHz 效率η:80% 取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W 计算步骤: 1、确定变比N N=Np/Ns VoR = N(VO+VD) N=VoR/(VO+VD) VoR取210V N=210/(12+1)=16.1 取16 2.计算最大占空比Dmax 3、选择磁芯 计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f) =2.51×103 (mm4) 通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2 4、计算初级匝数Np

5、初级峰值电流:Ip 6、初级电感量L

7、次级匝数 1) 、12V取样绕组Ns: Ns=Np/N =250/16 =15.625 取16匝 2)、计算每匝电压数Te: Te=(Uo+Ud)/Ns =(12+1)/16 =0.8125 3)、7.5V匝数: N7.5V=U/Te =(7.5+0.5)/0.8125 =9.84取10匝 4)、24V匝数 N24V=U/Te =(24+1)/0.8125 =30.7取31匝 5)、辅助绕组15V N15V=U/Te =(15+1)/0.8125 =19.7取20匝 8、计算初级线径: 1)、计算电流有效值I

连续电流模式反激变压器的设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 Io 图二(a)

5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式電源變壓器設計過程整理 已知: VinAC = 85V ~ 265V 50/60Hz Vout = 5V + 5% Iout = 2A Vbias = 22V, 0.1A (偏置線圈電壓取 22V, 100mV) η = 0.8 fs = 132KHz 計算過程: 1.設工作模式為 DCM 臨界狀態. Pout = 5*2 = 10W Pin = Pout/η= 10/0.8 = 12.5W V inDCmin = 85* 2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V 2.匝數比計算 , 設最大占空比Dmax = 0.45 : 13918.12) 45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中: Vd 為輸出整流二極管導通壓降,取0.5V; VL 為輸出濾波電感壓降, 取0.2V. 3.初級峰值電流計算: A D V P I DC 494.045 .0*9010*2*out 2p max min in === 4.初級電感量計算: H H I V D L DC u 62110*621494 .0*10*13290*45.0p *fs *p 63min in max ==== 5.變壓器磁芯選擇EFD20, 參數如下: Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl = 1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 4

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

反激变压器设计实例(二)

反激变压器设计实例(二) 目录 反激变压器设计实例(二) (1) 导论 (1) 一.自跟踪电压抑制 (2) 2. 反激变换器“缓冲”电路 (4) 3. 选择反击变换器功率元件 (5) 3.1 输入整流器和电容器 (5) 3.2 原边开关晶体管 (5) 3.3 副边整流二极管 (5) 3.4 输出电容 (6) 4. 电路搭接和输出结果 (6) 总结 (7) 导论 前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑 图2.开关管电压、输出电压、输出电流 首先由输出情况可以看出,变压器的设计还是满足要求的。查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。 在反激变换器中,有两个主要原因会引起高开关应力。这两个原因都与晶体管自带感性负载关断特性有关。最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。 一.自跟踪电压抑制 当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。 在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。 考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。当晶体管Q关断

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

反激变压器设计过程

精心整理 反激变压器设计过程 1、初始值设定 1.1开关频率f[kHz] 对于要接受EMI规格适用的产品,不要设定在150kHz(预计余量的话120kHz左右)以上。一般设定在65kHz左右。 1.2输入电压范围设定 主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定。 项目内容 瞬时最低输入电压 V inmin1[V] 考虑了停电保持的最低DC输入电压。为设计的基准。 连续最低输入电压V inmin2[V] 规格书上的最低AC输入电压×1.2倍。用于算出绕线的电流容量。 最大输入电压V inmax[V] 规格书上的最大AC输入电压×1.414倍。用于开关元器件/整流元器件的耐电压算出。 1.3最大输出电流设定 对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流(在规格书上有规定的情况下)3种类,进行设定。 另外,在这最大输出电流中需包括对于各自偏差的余量。 项目内容 过电流保护最大输出 电流 I omax1[A] 考虑了偏差的最大电流×余量1.1~1.2。 连续最大输出电流I omax2[A] 额定输出电流×余量1.1~1.2。为设计的基准。但是,在有峰值最大电流的情况下,只将峰值最大电流作为设计基准使用。连接最大电流只用于算出绕线的电流容量。 峰值最大输出电流 I opeak[A] 峰值最大电流×余量1.1~1.2。为设计的基准。 1.4最大二次绕组输出端电压设定 用以下公式算出: 最大二次绕线端输出电压:V N2max[V]=接插件端输出电压+线间损失0.1~0.5V+整流元器件Vf0.4~0.6V

※在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同。 客先要求规格书内容 只保证输出电压 ※只在装置试验时电压可变的情况下。磁芯用最大输出电压来设计。绕线是用额定输出电压来设计。 保证所有的性能 ※在实际使用条件下通常的电压可变的情况下。磁芯、绕线都用最大输出电压来设计。 1.5一次电流倾斜率设定 输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率。K的设定公式如下。 作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更。 1.6最大占空比设定 一般设定为0.45~0.65。 1.7最大磁通密度设定(Bmax) 设定为磁芯的产品目录上所记载的饱和磁通密度 ×0.8~0.9。 图1-2中表示了TDK制的磁珠磁芯PC44的B-H 曲线图。 磁芯的磁通密度B[T],如图1-2所示,与磁场强度H[A/m]成比例,增加。另外,当B达到一定的值时,在那基础上,即使增加H,B也不会增加。在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用。 另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意。 ※磁芯的饱和磁通密度是根据温度而变动。在TDK制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%。因此,如果在25℃的条件下设计的话,有可能发生使用时的故障。図1-2PC44B-Hカーブ温度特性 设计的要点: ?单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右。 ?最大占空比的设定,对开关元器件、整流元器件施加耐压方面会造成影响,因此要进行适当的设定。加宽最大占空比的话,开关元器件的耐压将会上升,缩小最大寻通角的话,整流元器件的耐压将会上升。 .设定到考虑了控制IC保证的最大占空比(外部设定时,其设定值)的偏差的最小值×0.9以下。

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

反激变压器设计实例(一)

反激变压器设计实例(一) 目录 1.导论 (1) 2.磁芯参数和气隙的影响 (1) 2.1 AC极化 (2) 2.2 AC条件中的气隙影响 (2) 2.3 DC条件中的气隙影响 (2) 3. 110W反激变压器设计例子 (3) 3.1 步骤1,选择磁芯尺寸 (3) 3.2 步骤2,选择导通时间 (5) 3.3 步骤3,变换器最小DC输入电压的计算 (5) 3.4 步骤4,选择工作便宜磁通密度 (5) 3.5 步骤5,计算最小原边匝数 (6) 3.6 步骤6,计算副边匝数 (6) 3.7 步骤7,计算附加匝数 (7) 3.8 步骤8,确定磁芯气隙尺寸 (7) 3.9 步骤9,磁芯气隙尺寸(实用方法) (8)

3.10 步骤10,计算气隙 (8) 3.11 步骤11,检验磁芯磁通密度和饱和裕度 (9) 4 反激变压器饱和及暂态影响 (10) 1.导论 由于反激变换器变压器综合了许多功能(储存能量、电隔离、限流电感),并且还常常支持相当大的直流电流成分,故比直接传递能量的正激推挽变压器的设计困难得多、以下变压器设计例子中没选择过程使用反复迭代方法,无论设计从哪里开始没开始时须有大量近似的计算。没有经验工程师的问题是要得到对控制因数的掌握。特别的,磁芯大小、原边电感的选择、气隙的作用、原边匝数的选择以及磁芯内交流和直流电流(磁通)成分的相互作用常常给反激变压器设计带来挑战。 为使设计者对控制因数有好的感觉,下面的设计由检查磁芯材料的特性和气隙的影响开始,然后检查交流和直流磁芯极化条件,最后给出100W变压器的完整设计。 2.磁芯参数和气隙的影响 图1表示一个铁氧体变压器在带有和不带气隙时典型的B/H(磁滞回归线)环。 注意到虽然B/H环的磁导率(斜率)随气隙的长度变化,但磁芯和气隙结合后的饱和磁通密度保持不变。进一步,在有气隙的情况下,磁场强度H越大,剩磁通密度B r越低。这些变化对反激变压器非常有用。

反激变压器设计步骤及变压器匝数计算教学内容

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. .输入电压范围Vin=85—265Vac; .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; .变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V). 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dm ax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A

总结:开关电源设计心得

总结:开关电源设计心得 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外。 下面谈一谈印制板布线的一些原则 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

相关文档
相关文档 最新文档