文档库 最新最全的文档下载
当前位置:文档库 › ASTM A426A426M-08 高温用离心铸造的铁素体合金钢管

ASTM A426A426M-08 高温用离心铸造的铁素体合金钢管

ASTM A426A426M-08 高温用离心铸造的铁素体合金钢管
ASTM A426A426M-08 高温用离心铸造的铁素体合金钢管

Designation:A 426/A 426M –08

Standard Speci?cation for

Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service 1

This standard is issued under the ?xed designation A 426/A 426M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.

Note—Table 1was editorially corrected and the year date was changed on Feb.4,2008.

1.Scope*

1.1This speci?cation 2covers centrifugally cast alloy steel pipe intended for use in high-temperature,high-pressure ser-vice.

1.2Several grades of ferritic steels are covered.Their compositions are given in Table 1.

1.3Supplementary Requirements S1through S12are provided.The supplementary requirements provide for addi-tional tests of an optional nature and when desired shall be so stated in the order (Section 4).

1.4The values stated in either inch-pound units or SI units are to be regarded separately as standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used independently of each https://www.wendangku.net/doc/059357581.html,bining values from the two systems may result in nonconformance with the speci?cation.

2.Referenced Documents 2.1ASTM Standards:3

A 370Test Methods and De?nitions for Mechanical Testing of Steel Products

A 609/A 609M Practice for Castings,Carbon,Low-Alloy,and Martensitic Stainless Steel,Ultrasonic Examination Thereof

A 941Terminology Relating to Steel,Stainless Steel,Re-lated Alloys,and Ferroalloys

A 999/A 999M Speci?cation for General Requirements for Alloy and Stainless Steel Pipe

E 94Guide for Radiographic Examination

E 165Test Method for Liquid Penetrant Examination

E 186Reference Radiographs for Heavy-Walled (2to 412-in.[51to 114-mm])Steel Castings

E 208Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels

E 280Reference Radiographs for Heavy-Walled (412to 12-in.[114to 305-mm])Steel Castings

E 446Reference Radiographs for Steel Castings Up to 2in.[51mm]in Thickness

E 709Guide for Magnetic Particle Examination 2.2ANSI Standard:4B46.1Surface Texture

2.3ASME Boiler and Pressure Vessel Code:5Section IX Welding Quali?cations

3.Ordering Information

3.1Orders for material under this speci?cation shall include the following,as required,to describe the desired material adequately:

3.1.1Quantity (feet,centimetres,or number of lengths),3.1.2Name of material (centrifugally cast pipe),3.1.3Speci?cation number,3.1.4Grade (Table 1),

3.1.5Size (outside or inside diameter and minimum wall thickness),

3.1.6Length (speci?c or random)(Section on Permissible Variations in Length of Speci?cation A 999/A 999M ),

3.1.7End ?nish (Section on Ends of Speci?cation A 999/A 999M ),

3.1.8Optional Requirements S1through S12and Section 1

4.1,

1

This speci?cation is under the jurisdiction of ASTM Committee A01on Steel,Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.18on Castings.

Current edition approved Feb.4,2008.Published February 2008.Originally approved in https://www.wendangku.net/doc/059357581.html,st previous edition approved in 2007as A 426/A 426M -07.2

For ASME Boiler and Pressure Vessel Code applications see related Speci?-cation SA-426in Section II of that Code.3

For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/059357581.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/059357581.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

4

Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY 10036,https://www.wendangku.net/doc/059357581.html,.5

Available from American Society of Mechanical Engineers (ASME),ASME International Headquarters,Three Park Ave.,New York,NY 10016-5990,https://www.wendangku.net/doc/059357581.html,.

1

*A Summary of Changes section appears at the end of this standard.

Copyright ?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.

Copyright ASTM International

--`,,,,,,,,`,`,`,,``,`,`,````,,`-`-`,,`,,`,`,,`---

w

w w

.b

z f x

w .

c o

m

3.1.9Test report required (Section on Certi?ed Test Report of Speci?cation A 999/A 999M ),

3.1.10Service temperature if over 1000°F [540°C](Note 1),and

3.1.11Special requirements or additions to speci?cation.

4.General Requirements for Delivery

4.1Material furnished under this speci?cation shall con-form to the applicable requirements of the current edition of Speci?cation A 999/A 999M unless otherwise provided herein.

5.Materials and Manufacture

5.1Heat-Treatment —The pipe shall be furnished in the normalized and tempered or liquid-quenched and tempered condition (Note 1).The temperature for tempering shall not be less than 1250°F [675°C]except for Grades CP1,CP2,CP11,CP12,and CP15for which the temperature for tempering shall not be less than 1100°F [595°C].Grade CP91shall be normalized at 1900–1975°F (1040–1080°C)and tempered at 1350–1470°F (730–800°C).

5.1.1Heat treatment shall be performed after the pipe has been allowed to cool below the transformation range.De?ni-tion of heat-treatment terms shall be as given in Terminology A 941.

N OTE 1—Except for Grade CP91,it is recommended that the tempera-ture for tempering should be at least 100°F [55°C]above the intended service temperature.The purchaser shall advise the manufacturer of the service temperature when it is over 1000°F [540°C].

5.2Machining —The pipe shall be machined on the inner and outer surfaces to a roughness value no greater than 250μin.[

6.35μm]arithmetical average deviation (AA)from the mean line unless otherwise speci?ed as in ANSI B46.1.6.Chemical Analysis

6.1Heat Analysis —An analysis of each heat shall be made by the manufacturer to determine the percentages of elements speci?ed in Table 1.The analysis shall be made on a test sample taken preferable during the pouring of the heat.The chemical composition thus determined shall conform to the requirements speci?ed in Table 1(Note 2).

N OTE 2—The role of alloying elements in the development of Grade

TABLE 1Chemical Requirements A

Composition,%

Grade UNS Number Carbon Manganese Phos-phorus,max Sulfur,max Silicon Chromium

Molybdenum Other CP1J125210.25max 0.30-0.800.0400.0450.10-0.50...0.44-0.65...CP2J115470.10–0.200.30-0.610.0400.0450.10-0.500.50-0.810.44-0.65...

CP5J420450.20max 0.30-0.700.0400.0450.75max 4.00-6.500.45-0.65...CP5b J515450.15max 0.30-0.600.0400.045 1.00-2.00 4.00-6.000.45-0.65...CP9J820900.20max 0.30-0.650.0400.0450.25-1.008.00-10.000.90-1.20...

CP91

J84090

0.08–0.12

0.30–0.60

0.030

0.010

0.20–0.50

8.0–9.5

0.85–1.05?

nickel,0.40max.;

columbium,0.060–0.10;nitrogen,0.030–0.070;vanadium,0.18–0.25;aluminum,0.02max.;titanium,0.01max;zirconium,0.01

max.CP11J120720.05–0.200.30-0.800.0400.0450.60

max 1.00-1.500.44-0.65...

CP12J115620.05–0.150.30-0.610.0400.0450.50max 0.80-1.250.44-0.65...CP15J115220.15max 0.30-0.600.0400.0450.15-1.65...0.44-0.65...CP21J315450.05–0.150.30-0.600.040

0.045

0.50max 2.65-3.350.80-1.06...CP22J218900.05–0.15

0.30-0.700.040

0.045

0.60max 2.00-2.750.90-1.20...CPCA15

J91150

0.15max 1.00max

0.040

0.040

1.50max

11.5-14.0

0.50max

...

A

Where ellipses appear in this table there is no requirement.

?Editorially

corrected.

2

Copyright ASTM International

--`,,,,,,,,`,`,`,,``,`,`,````,,`-`-`,,`,,`,`,,`---

w

w w

.b

z f x

w .

c o

m

CP91has been extensively investigated.V and Nb contribute to precipi-tation strengthening by forming ?ne and coherent precipitation of M(C,N)X carbo-nitrides in the ferrite matrix.V also precipitates as VN during tempering or during creep.Therefore,the addition of strong nitride forming elements,those with a stronger affinity for nitrogen than Nb and V ,as deoxidation agents,interferes with these high-temperature strength-ening mechanisms.6

6.2Product Analysis —A product analysis may be made by the purchaser.The sample for analysis shall be selected so as to be representative of the pipe being analyzed.The chemical composition thus determined shall conform to the requirements of Table 1.

7.Tensile and Hardness Requirements

7.1Steel used for the castings shall conform to the tensile and hardness requirements speci?ed in Table 2.

8.Permissible Variations in Dimensions

8.1Thickness —The wall thickness shall not vary over that speci?ed by more than 1?8in.[3mm].There shall be no variation under the speci?ed wall thickness.

9.Number of Tests

9.1One tension and one hardness test shall be made from each heat.

9.2If a specimen is machined improperly or if ?aws are revealed by machining or during testing,the specimen may be discarded and another substituted from the same heat.10.Retests

10.1If the results of the mechanical tests for any heat do not conform to the requirements speci?ed,the castings may be reheat-treated and retested,but may not be re-austenitized more than twice.

11.Test Specimens

11.1Test coupons from which tension test specimens are prepared shall be removed from heat-treated casting prolonga-tions.

11.2When agreed upon between the manufacturer and the purchaser,test coupons from which test specimens are pre-pared shall be cast attached to separate blocks from the same heat as the casting represented.The test blocks shall be heat treated in the same manner as the casting represented.

11.3Tension test specimens shall be machined to the form and dimensions of the standard round 2-in.[50-mm]gage length specimens shown in Fig.6of Test Methods and De?nitions A 370.12.Hydrostatic Test

12.1Each length of pipe shall be hydrostatically tested in accordance with Speci?cation A 999/A 999M .

12.2When agreed to between the manufacturer and the purchaser and so stated in the order,the hydrostatic test may be deferred and shall be performed later by the purchaser.Pipe furnished without the hydrostatic test shall include with the mandatory marking the letters “NH.”The manufacturer is responsible for the satisfactory performance of the casting when it is tested.

12.3When certi?cation is required by the purchaser and the hydrostatic test has been omitted,the certi?cation shall clearly state “not hydrostatically tested.”The speci?cation number and material grade shown on the certi?cation shall be followed by the letters “NH.”

13.Visual Inspection

13.1The surface of the casting shall be free from cracks and

hot tears as determined by visual examination.Other surface imperfections shall be judged in accordance with visual accep-tance criteria which may be speci?ed in the order.14.Rework and Retreatment

14.1Defects as de?ned in Section 14shall be removed and their removal veri?ed by visual inspection of the resultant cavities.Defects that are located by inspecting with supple-mentary requirements S6,S7,S8,or S9shall be removed or reduced to an acceptable size.

14.2If removal of the defect does not infringe upon the minimum wall thickness,the depression may be blended uniformly into the surrounding surface.

14.3If the cavity resulting from defect removal infringes upon the minimum wall thickness,weld repair is permitted subject to the purchaser’s approval.The composition of the weld rod used shall be suitable for the composition of the metal being welded.

14.3.1Only welders and procedures quali?ed in accordance with ASME Boiler and Pressure Vessel Code ,Section IX ,shall be used.All repair welds will be inspected to the same quality standards used to inspect the casting.

14.4Local or full heat treatment in accordance with tem-pering temperatures speci?ed in 5.1shall follow welding.

6

Viswanathan,R.and Bakker,W.T.,Materials for Ultra Supercritical Fossil Power Plants,EPRI,Palo Alto,CA:2000,TR-114750.

TABLE 2Tensile Properties and Hardness Requirements

Tensile strength,min,psi [MPa]:Grade CP1

65000[450]

Grades CP11,CP22

70000[485]Grades CP5,CP9,CPCA1590000[620]

Grade CP9185000[585]to 110000[760]

All other grades

60000[415]

Yield strength,min,psi [MPa]:Grade CP1

35000[240]Grades CP11,CP2240000[275]Grades CP5,CP960000[415]Grade CPCA1565000[450]Grade CP9160000[415]All other grades

30000

[205]

Elongation,min,%:A Grade CP1

24Grades CP11,CP22

20Grades CP5,CP9,CP91,CPCA1518All other grades

22Reduction of area,min,%:

Grades CP1,CP2,CP11,CP12,CP15,CP21,CP22,CP5,CP5b,CP7,CP935Grade CPCA1530Grade CP91

45Hardness,max,HB:

Grades CP5,CP5b,CP9,CP91,CPCA15225All other grades

201

A

Elongation in 2in.[50mm]using a standard round specimen,in either the transverse or longitudinal

direction.

3

Copyright ASTM International

--`,,,,,,,,`,`,`,,``,`,`,````,,`-`-`,,`,,`,`,,`---

w

w w

.b

z f x

w .

c o

m

15.Rejection

15.1Each length of pipe received from the manufacturer may be inspected by the purchaser and,if it does not meet the requirements of the speci?cation based on the inspection and test method as outlined in the speci?cation,the pipe may be rejected and the manufacturer shall be noti?ed.Disposition of rejected pipe shall be a matter of agreement between the manufacturer and the purchaser.

16.Product Marking

16.1Each length of pipe shall be legibly marked with the manufacturer’s name or brand,the speci?cation number and

grade.In addition,heat numbers or serial numbers that are traceable to heat numbers shall be marked on each length of pipe.

17.Keywords

17.1alloy steel;centrifugal;ferritic;high-temperature ser-vice;pipe;stainless steel;steel castings

SUPPLEMENTARY REQUIREMENTS

Supplementary requirements shall be applied only when speci?ed by the purchaser.Details of the supplementary requirements shall be agreed upon between the manufacturer and purchaser.The speci?ed tests shall be performed by the manufacturer prior to shipment of the castings.

S1.Additional Tension Tests

S1.1Additional tension tests shall be made at a temperature to be speci?ed by the customer,and the properties to be met are a matter of agreement between the purchaser and manufacturer.S2.Flattening Test

S2.1The ?attening test shall be made on specimens from one or both ends of each length of pipe.If the specimen from any end of any length fails to conform to the requirements of Speci?cation A 999/A 999M ,that length shall be rejected.S3.Photomicrographs

S3.1The manufacturer shall furnish one photomicrograph at 100diameters from one specimen of as-?nished pipe from each heat in each heat-treatment lot.Such photomicrographs shall be suitable identi?ed as to pipe size,wall thickness,and heat.Such photomicrographs are for information only,to show the actual metal structure of the pipe as furnished.No photo-micrographs for the individual pieces purchased shall be required except as speci?ed in Section S4.

S4.Photomicrographs for Individual Pieces

S4.1The manufacturer shall furnish photomicrographs from one or both ends of each pipe.All photomicrographs required shall be properly identi?ed as to heat number,size,and wall thickness of pipe from which the section was taken.Photomi-crographs shall be further identi?ed to permit association of each photomicrograph with the individual length of pipe it represents.

S5.Metal Structure and Etching Tests

S5.1Etching tests shall be made on transverse sections from the pipe and shall reveal the macrostructure of the material.Such tests are for information only.

S6.Radiographic Examination

S6.1The castings shall be examined for internal defects by means of X rays or gamma rays.The inspection procedure shall

be in accordance with Guide E 94and the types and degrees of

discontinuities considered shall be judged by Reference Radio-graphs E 186,E 280,or E 446.The extent of the examination and the basis for acceptance shall be subject to agreement between the manufacturer and the purchaser.

S7.Liquid Penetrant Examination

S7.1The castings shall be examined for surface disconti-nuities by means of liquid penetrant inspection.The method of performing the liquid penetrant test shall be in accordance with Practice E 165.The areas to be inspected,the methods and types of liquid penetrants to be used,the developing procedure,and the basis for acceptance shall be as speci?ed on the inquiry or invitation to bid and on the purchase order or contract or both,or as agreed upon between the manufacturer and pur-chaser.

S8.Magnetic Particle Inspection

S8.1The castings shall be examined by magnetic particle inspection.The inspection procedure used shall be in accor-dance with Practice E 709.The extent of examination and the basis for acceptance shall be subject to agreement between the manufacturer and the purchaser.

S9.Ultrasonic Inspection

S9.1The castings shall be examined ultrasonically in accor-dance with Practice A 609/A 609M .The extent of the exami-nation and the basis of acceptance shall be subject to agreement between the manufacturer and the purchaser.

S10.Residual Elements

S10.1An analysis for the elements speci?ed in Table S1shall be included in those analyses speci?ed in Section 6.The chemical composition thus determined shall conform to the requirements of Table S1.

S11.Charpy Impact Test

S11.1Charpy impact test properties shall be determined on each heat from a set of three Charpy V-notch specimens.

The

4

Copyright ASTM International

--`,,,,,,,,`,`,`,,``,`,`,````,,`-`-`,,`,,`,`,,`---

w

w w

.b

z f x

w .

c o

m

test coupons shall be taken as speci?ed for tension specimens in Section 11and tested at a test temperature agreed upon by the manufacturer and purchaser.The acceptance requirements shall be either energy absorbed or lateral expansion or percent shear area,and shall be that agreed upon by the manufacturer and purchaser.Test specimens shall be prepared as Type A and tested in accordance with Test Methods and De?nitions A 370.

S11.2Absorbed Energy Value ,of three specimens shall not be less than that agreed upon by the manufacturer and purchaser,with no more than one value permitted below the minimum average speci?ed and no value permitted below the minimum speci?ed for a single specimen.

S11.3Lateral Expansion Value ,shall be agreed upon by the manufacturer and purchaser.

S11.4Percent Shear Area ,shall be agreed upon by the manufacturer and purchaser.S12.Drop Weight Test

S12.1Drop weight test properties shall be determined by preparing and testing either Type P1,P2,or P3specimens in accordance with Test Method E 208.The test coupons shall be taken as speci?ed for tension specimens in Section 11.The crack starter weld shall be deposited on the surface of the specimen which was nearest to the casting surface.Each test shall consist of at least two specimens tested at a temperature agreed upon by the manufacturer and purchaser.Each speci-men shall exhibit a “no break”performance.

SUMMARY OF CHANGES

Committee A01has identi?ed the location of selected changes to this standard since the last issue,A 426/A 426M -07,that may impact the use of this standard.(Approved February 4,2008)

(1)Table 1–Molybdenum content in CP91corrected.

(2)Table 1–Included ellipses description as footnote.

Committee A01has identi?ed the location of selected changes to this standard since the last issue,A 426/A 426M -05,that may impact the use of this standard.(Approved May 1,2007)

(1)Added Grade CP91to 5.1and 6.1and to Tables 1and 2.

(2)Added UNS numbers to Table 1.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/059357581.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/059357581.html, (e-mail);or through the ASTM website (https://www.wendangku.net/doc/059357581.html,).

TABLE S1Residual Elements

Grade

Copper,max Nickel,max Chromium,max Tungsten,

max

Total Contents of

These Unspeci?ed Elements,max,%CP10.500.500.350.10 1.00CP20.500.50...0.10 1.00CP50.500.50...0.10 1.00CP5b 0.500.50...0.10 1.00CP70.500.50...0.10 1.00CP90.500.50...0.10 1.00CP110.500.50...0.10 1.00CP120.500.50...0.10 1.00CP150.500.500.350.10 1.00CP210.500.50...0.10 1.00CP220.500.50...0.10 1.00CPCA15

0.50

1.00

...

0.10

1.50

5

Copyright ASTM International

--`,,,,,,,,`,`,`,,``,`,`,````,,`-`-`,,`,,`,`,,`---

w

w w

.b

z f x

w .

c o

m

高温合金概述

1.1 高温合金 1.1.1 高温合金及其发展概况 高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。 高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。如今先进航空发动机中高温合金用量已超过50%。此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。 高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

离心铸造工艺规程

离心铸造工艺规程 1型筒的预热 安装好型筒涂刷好锆英粉醇基涂料的前后端盖,预热型筒。预热温度一般在180-220℃范围之间,此时,涂料中的水分可以充分蒸发,减少气孔的产生,使涂料中粘胶剂充分发挥作用,可以防止涂料被冲刷,出现粘型筒、端盖现象。2喷涂、挂砂 2.1喷涂喷涂压力0.45-0.55MPa,喷涂小车行走速度7m/s,喷涂料速度及喷涂量250g/20s,涂层厚度:小管径0.2-0.3mm,大管径0.3-0.5mm,型筒转速600-800转/s。 2.2挂砂把定量的覆膜砂或石英砂放在U型槽中,把U型槽伸入铸型的轴线上,让预热到200℃左右的铸型转动,倾翻U型槽,将覆膜砂或石英砂均匀地铺在铸型的工作面上,利用铸型热量硬化覆膜砂,覆膜砂在铸型上的厚度为2-4.5mm。3浇注 3.1铸型转速的选择,过低的铸型转速,会出现钢液雨淋现象,也会使铸管内出现疏松、夹渣,内表面凹凸不平等缺陷;过高的铸型转速,铸管上易出现裂纹、偏析等缺陷,也会使机器出现大的震动,磨损加剧,功率消耗过大。2-4吋转速为850转/s,4-8吋转速为750转/s,8吋以上,转速为600-650转/s。 型筒转速修定原则:浇注不足时,降低转速;浇过时,

提高转速。 3.2浇注定量由离心铸管的内径、外径、长度、比重,确定浇注重量。 3.3浇注浇注温度、化学成分要合格后,在浇包中按浇注定量承接浇注一根铸管的钢液,把浇注槽伸入型筒内,快速把钢液倾入浇注槽,让浇注槽出口的钢液均匀地铺在铸型的内表面上,不得有断流现象。要求在2-5s内完成浇注,以提供足够的钢液流速。 4拔管 要严格控制拔管时间、温度,拔管太早,铸管温度高,会出现弯曲和断裂现象;拔管太晚,型筒温度升高,不利于喷涂工艺进行,且降低了生产效率,同时铸管在型筒中收缩受阻,易引起裂纹。拔管温度应在500-700℃之间。 5安全生产 5.1经常检查型筒,有无裂纹、变形、损伤等。

变形铝及铝合金牌号对照表[1]

变形铝及铝合金牌号对照表

铝及铝合金新旧牌号对照表

注: ①"原"是指化学成份与新牌号同,且都符合GB3190-82规定的旧牌号。 ②“代”是指与新牌号的化学成份相近似,且符合GB3190-82规定的旧牌号。 ③“曾用”是指已经鉴定,工业生产时曾经用过的牌号,但没有收入GB3190-82中。

变形铝和铝合金牌号表示方法和状态代号 类型:铝型材点击次数:1030 (1)四位数字体系牌号命名方法1997年1月1号,我国开始实施GB/T16474?996《变形铝和铝合金牌号表示方法》标准。新的牌号表示方法采用变形铝和铝合金国际牌号注册组织推荐的国际四位数字体系牌号命名方法,例如工业纯铝有1070、1060等,Al-Mn合金有3003等,Al-Mg合金有5052、5086等。 (2)四位字符体系牌号命名方法1997年1月1号前,我国采用前苏联的牌号表示方法。一些老牌号的铝及铝合金化学成分与国际四位数字体系牌号不完全吻合,不能采用国际四位数字体系牌号代替,为保留国内现有的非国际四位数字体系牌号,不得不采用四位字符体系牌号命名方法,以便逐步与国际接轨。例如:老牌号LF21的化学成分与国际四位数字体系牌号3003不完全吻合,于是,四位字符体系表示的牌号为3A21。 四位数字体系和四位字符体系牌号第一个数字表示铝及铝合金的类别,其含义如下: 1)1XXX系列工业纯铝; 2)2XXX系列Al-Cu、Al-Cu-Mn合金,; 3)3XXX系列Al-Mn合金; 4)4XXX系列Al-Si合金; 5)5XXX系列Al-Mg合金; 6)6XXX系列Al-Mg-Si合金; 7)7XXX系列Al-Mg-Si-Cu合金; 8)8XXX系列其它。 (3)铝铸件牌号我国容器用铝铸件牌号采用ZAl+主要合金元素符号+合金元素含量数百分率表示。例如;ZAlSi7Mg1A、ZAlCu4、ZAlMg5Si等。 (4)状态代号相同牌号的铝及铝合金,状态不同时,力学性能不相同。按照GB/T16475《变形铝和铝合金状态代号》标准,新状态代号规定如下: O 退火状态 H112 热作状态 T4 固溶处理后自然时效状态 T5 高温成形过程冷却后人工时效状态 T6 固溶处理后人工时效状态

Incoloy MA956铸造高温合金

上海商虎/张工:158 –0185 -9914 Incoloy MA956 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。 Incoloy MA956化学成分: 碳C: — 硅Si: — 锰Mn: — 铬Cr: 20 镍Ni: — 钼Mo: — 钴Co: — 钨W: — 铝Al: 4.5 铜Cu: — 钛Ti: 0.5 铁Fe: 74.4 其他(%): Y2O3 0.5 现在已完成商业化生产的主要有三种ODS合金: MA956合金在氧化气氛下运用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。 MA754合金在氧化气氛下运用温度可达1250℃并坚持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制造航空发动机导向器蓖齿环和导向叶片。 MA6000合金在1100℃拉伸强度为222MPa、屈从强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。金属间化合物高温资料是近期研讨开发的一类有重要使用前景的、轻比重高温资料。十几年来,对金属间化合物的基础性研讨、合金设计、工艺流程的开发以及使用研讨现已老练,尤其在 Ti-Al、Ni-Al和Fe-Al系资料的制备加工技能、韧化和强化、力学功能以及使用研讨方面取得了令人瞩目的成果。 Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~ 5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等长处,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀功能,展示出极好的使用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀功能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新资料。在民用工业的很多领域,服役的构件资料都处于高温的腐蚀环境中。为满意市场需要,依据资料的运用环境,归类出系列高温合金。 1、高温合金母合金系列 2、抗腐蚀高温合金板、棒、丝、带、管及锻件 3、高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件

离心铸造研究现状_张泽磊

收稿日期:2010 06 16; 修订日期:2010 07 25 作者简介:张泽磊(1984 ),甘肃金昌人,硕士生.研究方向为材料加工 工艺. Email:gans uzzl@https://www.wendangku.net/doc/059357581.html, V ol.31N o.11No v.2010铸造技术 F OU N DRY T ECH NO LO GY 离心铸造研究现状 张泽磊,杨 刚,杨 屹 (四川大学制造科学与工程学院,四川成都610065) 摘要:作为特种铸造之一的离心铸造,在现代铸造业中已经占据了十分重要的地位。本文概括了近20年来离心铸造关键工艺技术的研究现状,总结了离心铸造的应用状况。关键词:离心铸造;工艺技术;相关产品;研究现状 中图分类号:TG249.4 文献标识码:A 文章编号:1000 8365(2010)11 1517 05 Development Status of Centrifugal Casting ZHANG Ze lei,YANG Gang,YANG Yi (School of Manufacturing Science and Engineering,Sichuan University,Chengdu 610065,China) Abstract:Cen trifu gal castin g,as on e of the special casting,has occupied a very important position in the modern industry.This article summ arizes th e key tech nology of cen trifu gal castin g tech nology research and the application of centrifu gal castin g. Key words:Centrifugal casting;Technology;R elated Products;Research situation 1 离心铸造关键技术的研究现状1.1 铸型转速的计算 在生产过程中,对铸型转速的确定是十分重要的,它直接影响着铸件的质量和生产的成本。转速过低, 离心力不足,易导致铸件充型不良,水平离心铸造中就会出现雨淋现象;但转速过高,不但会浪费资源,而且会使铸件产生纵向裂纹,成分偏析等缺陷。目前对铸型转速的确定主要有表1中所列的6种方法[1]: 表1 离心铸造铸型转速计算公式及适用范围 T ab.1 Ca lculatio n fo rmula o f centr ifugal casting speed and its applied range 编号计算公式系数意义及其经验值 适用范围 (1) n = 555200 R n 铸型转速(r/min );R 铸件内表面半径(m); 合金重度(N/m3); 调整系数:根据材料不同取0.9 1.6。 用于水平离心铸造,且铸件R 外/R 内比值应不大于1.5。 (2) n =29.9 G R G 重力系数:中空冷硬轧辊75~150;缸套50~110;铜套钢管50~65;铸铁管30~75 可用于绝大多数离心铸造。 (3) n = C R C 综合系数(g /cm -3):铸铁7.2;铸钢7.85;黄铜8.2;铅青铜8.8~10.5;巴氏合金7.3~7.5;铝合金2.65~3.10;青铜8.4 用于铸件R 外/R 内比值应不大于1.15的情况。 (4)n =42.3P (R 2 外-R 2内)P 非金属铸型能承受的最大离心压力(M Pa)非金属铸型的离心铸造,并且铸型不因离心力而受损。(5)n =42.3h D 2 -d 2h 铸件高度(m);D 、d 铸件内孔允许的最大半径和最小半径(m)。 用于立式离心铸造。 (6) N =2k Eh R 2 1+R 22 N 铸型的生产转速;E 能量系数:尚需通过实践,积累经验,逐渐确定。 需要掌握比较丰富的生产实践经验。 1.2 涂料的研究 涂料及涂料工艺的改进对铸件质量的提高有极大 地作用[2]。在离心铸造生产中,金属型内表面涂敷涂料的主要作用是:降低金属型所受的热冲击、控制合金液的冷却速度、形成合理的铸件表面、使铸件容易脱模。我国离心铸造所用的涂料多存在劳动条件差,粘砂严重,表面硬度高及涂料层不易扩散等缺点。 河北机电学院研制的以高铝土为主,并添入少量S.A 、S.B 粘结剂及微量PVA 的新涂料。通过测定3 1517

什么是离心铸造

什么是离心铸造 离心铸造是将液体金属注入高速旋转的铸型内,使金属液在离心力的作用下充满铸型和形成铸件的技术和方法。离心力使液体金属在径向能很好地充满铸型并形成铸件的自由表面;不用型芯能获得圆柱形的内孔;有助于液体金属中气体和夹杂物的排除;影响金属的结晶过程,从而改善铸件的机械性能和物理性能。 根据铸型旋转轴线的空间位置,常见的离心铸造可分为卧式离心铸造和立式离心铸造。铸型的旋转轴线处于水平状态或与水平线夹角很小(4°)时的离心铸造称为卧式离心铸造。铸型的旋转轴线处于垂直状态时的离心铸造称为立式离心铸造。铸型旋转轴线与水平线和垂直线都有较大夹角的离心铸造称为倾斜轴离心铸造,但应用很少。

离心铸造最早用于生产铸管,随后这种工艺得到快速发展。国内外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、内燃机缸套和轴套等铸件的生产最为普遍。对一些成形刀具和齿轮类铸件,也可以对熔模型壳采用离心力浇注,既能提高铸件的精度,又能提高铸件的机械性能。 离心铸造的优点: 1)几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率; 2)生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力,降低铸件壁厚对长度或直径的比值,简化套筒和管类铸件的生产过程; 3)铸件致密度高,气孔、夹渣等缺陷少,力学性能高; 4)便于制造筒、套类复合金属铸件,如钢背铜套、双金属轧辊等;成形铸件时,可借离心力提高金属的充型能力,故可生产薄壁铸件。 离心铸造的缺点: 1)用于生产异形铸件时有一定的局限性。 2)铸件内孔直径不准确,内孔表面比较粗糙,质量较差,加工余量大; 3)铸件易产生比重偏析,因此不适合于合金易产生比重偏析的铸件(如铅青铜),尤其不适合于铸造杂质比重大于金属液的合金。 离心铸造工艺过程:

K417镍基铸造高温合金材料报告

K417镍基铸造高温合金材料报告 K417是高强度的镍基铸造高温合金,其成分中的铝和钛含量较高,形成约占合金重量67%的γ′强化相,因而高温强度较高、塑性较好,加之其密度较低(7.8g/cm3),故特别适宜制作高温转动件。但它的组织稳定性较差,特别是当成分偏上限或铸造工艺参数控制不当时,零件在850~950℃长期工作中,有析出片状σ相的倾向。它的耐热腐蚀性能也较差,若长期高温使用,需用保护涂层 . 化学成分 Typical values(Weight %) Cr Ni Co Mo Al Ti 8.50-9.5 余14.0-16.0 2.50-3.20 4.80-5.70 4.50-5.00 Fe C Mn Si P S ≤1.0 0.13-0.22 ≤0.50 ≤0.50 ≤0.015 ≤0.010 力学性能 θ/℃持久性能拉伸性能 σb/ MPa t/h σb/ MPa δБ/% W / % 900 315 ≥70 635 6 8 物理性能 密度:7.8 g/m3 熔点:1260℃-1340℃ 磁性能:无 相近牌号 美国:IN100 技术标准 HB 5161—1988 物理数据 温度 ℃热导率W/mk 温度 ℃线膨胀系数10-6/K 132 10.87 200 13.2 419 14.23 431 13.5 661 19.25 679 13.5 760 25.94 759 14.7 947 38.49 868 15.7 1076 35.98 956 16.8 1109 41.42 1000 17.3 成形性能 用熔模铸造法可铸成壁厚小至1mm的薄壁零件也可铸造整体涡轮 焊接性能 可以进行氩弧堆焊 零件热处理工艺 1. 零件在铸态下使用; 2. 也可进行渗铝和消除应力的退火处理,处理温度低于1120℃。 表面处理工艺

高温合金成型方法

高温合金成型方法:熔模精密铸造,铸锭冶金(包括挤压、轧制、锻造等)粉末冶金,定向凝固。 高温合金的几种成型方法的工艺路线 粉末冶金 高温合金如TiAl基合金的室温塑性较差,用常规塑性变形的方法加工极为困难。粉末冶金法可以很好的解决这一问题。这种方法以合金或单质粉末为原材料,通常先采用常规塑性加工方法(如模压、冷等静压等)对粉末进行固结成形,在经烧结就可直接获得特定形状的零件,同时实现制件的近终成型,这样就避免了对TiAl基合金的后续加工。同时,相比于铸造合金,采用粉末冶金法所制得的材料组织更为均匀、细小。 目前基于高温合金粉末冶金的具体方法主要有:机械合金化、反应烧结、预合金粉末法、自蔓燃—高温合成、爆炸合成等。这些方法常常两种或多种方法结合在一起使用,难以严格区分。 但是,粉末冶金方法制得的TiAl基合金部通常含有较多的杂质含量(如氧、氮等),并且粉末冶金制得合金组织不致密,内部经常存在孔隙,这些都严重的限制了粉末冶金方法的应用及推广。部分学者采用热锻以及包套挤压方法在一定程度上减少了孔隙率,较大的提高了TiAl基合金的力学性能。在但由于Ti、Al 元素扩散系数差别太大,元素反应扩散距离大,以及柯肯达尔效应的影响,均匀、高致密度的TiAl基合金仍然比较难以获得。因此,在高纯粉末的制备、烧结工艺

的优化、杂质的控制、提高合金的致密度等方面,粉末冶金还有较长的路要走。 铸锭冶金 铸锭冶金是合金熔炼、铸造、锻造和轧制等技术的综合,是目前TiAl 基合金的典型加工工艺。 一般由铸造出来的铸锭,组织都比较粗大,成分由于偏析的存在而不均匀,并且内部也或多或少的存在缩松、缩孔等缺陷。铸锭在进行塑性加工之前,一般要对其进行热等静压,实现对铸锭的均匀化处理。这样可以一定程度上除合金成分的偏析,同时合金铸锭中的微观缩孔或孔洞也能被压实、焊合,这就可以防止铸锭在后续热加工过程中由于微观缩孔与孔洞引起的应力集中或合金的不均匀流变造成的铸锭的变形开裂。对Al>46%(原子)的合金热等静压多选择在1260℃/175MPa 进行。 通过对铸锭的进行热加工,可以破碎粗大的铸态组织,细化晶粒,进一步减小微观缩孔或孔洞的影响,较大幅度的提高TiAl 基合金的力学性能。通常使用的热加工工艺主要有等温锻造、包套锻造、热轧制或热挤压等。 等温锻造区间一般为1065~1175℃,名义应变速率在10-2~10-3/s之间,压缩比为4:1~6:1;在这种工艺条件可保证铸锭有良好的塑性同时又不开裂,所获得的组织中有超过50%的板条组织球化。在锻造过程中增大保压时间、将锻件在锻模内短暂停留或在两步锻造中间进行热处理都可以促进球化。从而细化组织,提高材料的力学性能。 包套锻造可以在锻坯外设置包套,在锻坯与包套材料之间采用隔热材料,使锻件在的一定范围内保持均匀的温度,从而得到细小、均匀的显微组织及良好的锻坯表面质量。包套材料一般采用不锈钢、TC4合金或工业纯钛,目前最好的隔热材料是SiO2纤维网[38]。包套技术与挤压技术结合起来,形成了包套挤压技术,这种技术也能极大程度的优化TiAl 基合金的组织和性能。 目前比较热门的方向是综合利用铸锭冶金的方法,采用轧制的方法制备TiAl 基合金板材,哈尔滨工业大学陈玉勇教授带领的课题组在这方面做了许多功能工作,取得了较大的成果。 离心铸造 离心铸造是指将液态金属浇入旋转的铸型中,使金属液在离心力作用下完成充填和凝固成型的一种铸造方法。为了实现这种工艺过程,必须采用专门的设备—离心铸造机(简称为离心机),提供使铸型旋转的条件。根据铸型旋转轴在空间位置的不同,常用的离心机分为立式离心铸造机和卧式离心铸造机两种。立式离心铸造的铸型是绕垂直轴旋转的,卧式离心铸造机的铸型是绕水平轴旋转的。 离心铸造可采用多种的铸型,如金属型、砂型、石膏型、石墨型陶瓷型及熔

铸造高温合金发展的回顾与展望

第20卷 第1期2000年3月 航 空 材 料 学 报 JOURNAL OF AERONAUT ICAL M ATERIALS Vol.20,No.1 M arch2000 铸造高温合金发展的回顾与展望 陈荣章1 王罗宝1 李建华2 (1.北京航空材料研究院,北京100095; 2.中国人民大学,北京100872) 摘要:回顾了20世纪40年代以来铸造高温合金发展中的若干重大事件:叶片以铸代锻;真空 熔炼技术;定向凝固及单晶合金;合金成分设计;Ni3Al基铸造高温合金;合金凝固过程数值 模拟;细晶铸造。展望了铸造高温合金21世纪的发展:单晶高温合金仍然是最重要的涡轮叶 片材料;继续靠工艺的发展挖掘合金潜力;发展有希望的替代材料。 关键词:合金发展;铸造高温合金;燃气涡轮叶片 中图分类号:T G24 文献标识码:A 文章编号:1005 5053(2000)01 0055 07 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。众所周知,航空发动机的发展与高温合金的发展是齐头并进、密不可分的,前者是后者的主要动力,后者是前者的重要保证。占据着航空发动机中温度最高、应力最复杂的位置的铸造涡轮叶片的合金发展尤其是这样。半个世纪以来,航空发动机涡轮前温度从40年代的730 提高到90年代的1677 ,推重比从大约3提高到10[1],这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是,高性能的铸造高压涡轮叶片合金的应用更是功不可没。40年代以来,标志着铸造高温合金性能水平的在140M Pa/100h条件下的承温能力从750 左右提高到当前的1200 左右(图1),是十分令人鼓舞的巨大成就。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件。 叶片以铸代锻 1943年,美国GE公司为其J 33航空发动机选用了钴基合金H S 21制作涡轮工作叶片,代替原先用的锻造高温合金H astelloy B。当时为了考核铸造高温合金作为转动件的可靠性,宇航局(NASA)有关部门曾对两种合金叶片同时进行台架试车鉴定。结果表明, HS 21完全可以代替H astelloy B制作涡轮转子叶片,从此开创了使用铸造高温合金工作叶片的历史[2,3]。之后,又谨慎地对X 40,GM R 235等铸造合金进行类似的考核研究,使铸造叶片的应用有所扩大。随着发动机推力的增大,叶片尺寸增大,当时发现叶片的主要失效模式从蠕变断裂转变为疲劳断裂,而铸造叶片由于晶粒粗大且不均匀,疲劳性能远低于锻造合金,加之当时出现了性能较高的沉淀硬化型镍基锻造高温合金,例如Nimonic80A, Udimet500,W aspaloy, 437 , 617等,而且锻造技术有所进步,这就使设计师又把叶片选 收稿日期:1999 09 20 作者简介:陈荣章(1937 ),男,研究员

离心铸造的优势

离心铸造技术在铝硅合金结构构件生产中 的优势 G. Chirita, D. Soares, F.S. Silva* Mechanical Engineering Department, School of Engineering, Minho University, Campus de Azurem, 4800-058 Guimaraes, Portugal Received 12 June 2006; accepted 12 December 2006 Available -online- 28 December 2006 文摘 本文探讨了利用立式离心铸造工艺生产结构零件相比传统重力铸造法的力学性能优势。我们对由离心力引发的材料机械性能中最重要的性质进行了分析。也对离心铸造技术和重力铸造技术所获得的式样的机械性能进行了比较。 研究表明,离心铸造技术较重力铸造技术可以多提高材料强度35%,刚度160%。弹性模量也多增了18%。抗疲劳寿命延长了约1.5%,抗疲劳极限提高了45%。因此,就获得机械性能及抗疲劳性能而言,离心铸造技术比重力铸造技术更有效。 前期效果随浇铸情况而变化,这是依据样品从浇铸地被拿开的相对位置而言的。与旋转中心(更大的离心力或重力)相距越远,机械性能提高得越好。于是,机械性能随旋转轴的转动而改变了,材料也就具备了梯度功能。这种功效在不同部位所需不同组件的生产中可能是有用的。 引擎活塞就是一个潜在的应用示例。在本文献中,我们也将展示离心铸造技术在这些结构零件生产中是如何有优势的。 @2006 Elsevier Ltd. All rights reserved 关键词:离心浇注、铝硅合金、机械的、抗疲劳性质 1.简介 铝硅铸造合金作为结构材料的使用是基于它们的物理性质(主要受其化学组织影响)和机械性质的(受化学成分及微观结构影响)。铝合金较高的比抗拉强度受其多元组织微观结构强烈影响。特殊合金的机械性能有助于零件主要相位的物理性质,提高容积比和改善组织形态。根据[1]铸造铝合金的抗拉性能和抗断裂性能,半固态A356合金和A357合金相当依赖二次枝臂间距(二次晶壁间距)、镁合金以及尤其是共晶硅和富铁金属间化合物的大小和形状。所以,铝硅铸造合金的机械性质不仅依赖化学组织成分,而且更重要的是微观结构特征,如枝晶形态、α铝、共晶体硅粒以及其它出现在微观结构中的金属间化合物。 现有不同的方法来控制这些微观结构特征,例如通过引进特殊元素[2,3]来细化晶粒。然而,提高铝硅铸造合金机械性质最常见的措施是改善浇铸技术[4]。每种技术都有干扰微观结构和影响机械性能的地方。 传统的离心浇铸工艺主要用于得到圆柱部分。实际上有两个基本类型的离心浇铸机:卧式,绕水平轴旋转的;立式,绕垂直轴旋转的。卧式离心浇铸机一般用来做管材,管件,套管,汽缸套(衬层),以及形状简单的圆柱或管状铸件。立式离心浇铸机的应用范围相对较

高温合金基础知识

中文名称:铸造高温合金 英文名称:cast superalloy 定义:在铸造组织状态下具有良好性能并可直接铸成零件的高温合金。具有比同成分的变形合金高的抗蠕变性能。 中文名称:变形高温合金 英文名称:wrought superalloy 定义:适宜进行塑性成形的高温合金。所属学科:航空科技(一级学科);航空材料(二级学科) 弥散强化 弥散强化指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。是指用不溶于基体金属的超细第二相(强化相)强化的金属材料。为了使第二相在基体金属中分布均匀,通常用粉末冶金方法制造。第二相一般为高熔点的氧化物或碳化物、氮化物,其强化作用可保持到较高温度。弥散强化是强化效果较大的一种强化合金的方法,很有发展前途。 沉淀强化 合金通过相变得到的合金元素与基体元素的化合物会引起合金强化,为沉淀强化,弥散强化则是机械混掺于基体材料中的硬质颗粒引起的强化。两者的区别是沉淀强化中沉淀相和基体有化学交互作用,而弥散强化沉淀相和基体无化学交互作用。 高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性, 高温合金产品图片融品科技提供 基于上述性能特点,且高温合金的合金化程度较高,又被称为“超合金”,是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按基体元素来分,高温合金又分为铁基、镍基、钴基等高温合金。铁基高温合金使用温度一般只能达到750~780℃,对于在更高温度下使用的耐热部件,则采用镍基和难熔金属为基的合金。镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。若以150MPA-100H持久强度为标准,而目前镍合金所能承受的最高温度〉1100℃,而镍合金约为950℃,铁基的合金〈850℃,即镍基合金相应地高出150℃至250℃左右。所以人们称镍合金为发动机的心脏。目前,在先进的发动机上,镍合金已占总重量的一半,不仅涡轮叶片及燃烧室,而且涡轮盘甚至后几级压气机叶片也开始使用镍合金。与铁合金相比,镍合金的优

离心铸造工艺

离心铸造工艺 将金属液浇入旋转的铸型中,使之在离心力作用下充填铸型并凝固成形的铸造方法,称为离心铸造。 根据铸型旋转空间位置的不同,常用的离心铸造机有立式和卧式两类。铸型绕垂直轴旋转的称为立式离心铸造,铸型绕水平轴旋转的称为卧式离心铸造。 将液态金属浇入旋转的铸型里,在离心力作用下充型并凝固成铸件的铸造方法。离心铸造用的机器称为离心铸造机。按照铸型的旋转轴方向不同,离心铸造机分为卧式立式和倾斜式3种。卧式离心铸造机主要用于浇注各种管状铸件,如灰铸铁球墨铸铁的水管和煤气管,管径最小75毫米,最大可达3000毫米此外可浇注造纸机用大口径铜辊筒,各种碳钢、合金钢管以及要求内外层有不同成分的双层材质钢轧辊。立式离心铸造机则主要用以生产各种环形铸件和较小的非圆形铸件。 离心铸造所用的铸型,根据铸件形状、尺寸和生产批量不同,可选用非金属型(如砂型、壳型或熔模壳型)、金属型或在金属型内敷以涂料层或树脂砂层的铸型。铸型的转数是离心铸造的重要参数,既要有足够的离心力以增加铸件金属的致密性,离心力又不能太大,以免阻碍金属的收缩。尤其是对于铅青铜,过大的离心力会在铸件内外壁间产生成分偏析。一般转速在每分钟几十转到1500转左右。 离心铸造的特点是金属液在离心力作用下充型和凝固,金属补缩效果好,铸件组织致密,机械性能好;铸造空心铸件不需浇冒口,金属利用率可大大提高。因此对某些特定形状的铸件来说,离心铸造是一种节省材料、节省能耗、高效益的工艺,但须特别注意采取有效的安全措施。 离心铸造既是传统、又是一种现代的铸造方法。我国铸件的年产量在1500万t左右,而其中约有220万t是用离心铸造方法生产的,占15%。其中球墨铸铁管125万t,灰铸铁管50万t,内燃机缸套35万t,各种轧辊5万t。随着人民生活水平的提高,国家在城镇化建设、西气东输、南水北调等项目上的大力投资,以及汽车作为支柱产业的兴起,预计到2010年,用离心铸造生产的铸件,每年可达到320万t以上。不言而喻,在生产铸件的各种方法中离心铸造方法将仅次于砂型的铸造方法,具有举足轻重的地位。 人们提出对输水工具的需要要早于工业革命时期。我国在明洪武年代(1368—1399年),就生产了铸管,用在南京武庙闸渠;德国第一根铸管是在1455 年生产的,用在迪伦堡宫殿(Schloss Dillenburg);法国则是在1644年生产的铸管,用在塞纳河至凡尔赛宫34hn长的管线上。由于输水线路—般较长,如何提高铸管的生产效率和质量,在当时成为批量生产的关键。于是英国人埃尔恰尔特(Emhart)在1809年提出了世界上第一个离心铸造法的专利,名称为“用铁液生产更好、更纯净的金属制品”。它要比德国人贝士麦(Bessmmer)提出的连续铸管的方法早d8年(1857年)。随后,离心铸造方法在和连续铸造、砂型铸造的竞争中不断发展,并逐渐推广到其他环形铸件(例如气缸套、轴瓦)的生产中。但真正使离心铸造发展成第二大类的铸造工艺方法,还要归功于巴西人代—拉沃德的水冷金属型离心铸造机的发明与20世纪中球墨铸铁在铸管卜的应用,从而开始了用离心铸造工艺

航空叶片材料——高温合金

高温合金 高温合金又叫热强合金、超级合金。按基体组织材料可分为三类:铁基、镍基和铬基。按生产方式可分为变形高温合金与铸造高温合金。按强化机理可分为碳化物强化、固溶强化、时效强化和弥散强化。一般用于航空发动机耐高温材料的制造,特别是喷气发动机最后两级压气机和最初两级涡轮叶片、燃烧室、加力燃烧室、涡轮盘、涡轮叶片及紧固件的制造。是重要战略物资,各航空大国都在极其保密的条件下研制。随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。 一、变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。 1、固溶强化型合金 使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa 应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2、时效强化型合金 使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。 例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 二、铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1. 具有更宽的成分范围 由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。 2. 具有更广阔的应用领域 由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。 根据铸造合金的使用温度,可以分为以下三类: 第一类:在-253~650℃使用的等轴晶铸造高温合金 这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、

铸造高温合金

K417(美:IN100) 1、物理性能: 密度:7.8g/cm3熔点:1260-1340℃ 弹性模量:155-220GPa 热导率:13.2 W/(m?℃) 硬度(HRC):30-44 热膨胀系数( 20-100℃):13.2×10-6/℃ 2、主要特征:是一种低密度、高强度的镍基铸造高温合金。 3、用途举例:广泛用于各种航空发动机,涡轮增压器转子叶轮、火药起动机整体涡轮等。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 K418 (美:INCO713C) 1、物理性能: 密度:8.0g/cm3熔点:1295-1345℃ 弹性模量:144-211GPa 热导率:10.15 W/(m?℃) 硬度(HRC):33-37 热膨胀系数( 20-100℃):12.60×10-6/℃ 2、主要特征:在900℃以下具有良好的蠕变强度、热疲劳性能和抗氧化性能。 3、用途举例:适合于在900℃以下工作的燃气轮机的涡轮转子叶片、导向叶片和整铸涡轮以及其他高 温零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 5页

K403 1、物理性能: 密度:8.1 g/cm3 熔点:1260-1338℃弹性模量:125-178GPa 热导率:14.27 W/(m?℃) 硬度:HRC 36-39 热膨胀系数( 20 - 100°C):11.3×10-6/℃ 2、主要特征:具有较高的高温强度,在1000℃,100h的持久强度可达150MPa,1000h的持久强度可 达94MPa,该合金的铸造性能良好,可铸出形状复杂的精铸件。 3、用途举例:适用于制作1000℃以下工作的燃气涡轮导向叶片和900℃以下工作的涡轮转子叶片以及 其他零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 K405 1、物理性能: 密度:8.12 g/cm3 熔点:1290-1345℃动弹性模量:203GPa 热导率:11.72 W/(m?℃) 硬度(HRC):38 热膨胀系数( 20 - 100°C):11.6×10-6/℃2、主要特征:具有较高的中、高温持久性能,特别是零件性能与试样性能比较接近。铸造性能良好, 可铸成形状复杂的空心叶片。 3、用途举例:适用于950℃以下工作的燃气涡轮片和其他高温用零件。 4、品种规格:母合金棒材、精密合金棒材等协商供应,可根据客户要求生产。 6页

离心浇铸

离心铸造是将液体金属浇入旋转的铸型中,使液体金属在离心力的作用下充填铸型和凝固形成的一种铸造方法。 为实现上述工艺过程,必须采用离心铸造机创造使铸旋转的条件。根据铸型旋转轴在空间位置的不同,常用的有立式离心铸造机和卧式离心铸造机两种类型。 立式离心铸造机上的铸型是绕垂直轴旋转的,它主要用来生产高度小于直径的圆环类铸件,有时也可用此种离心铸造机浇注异形铸件。 卧式离心铸造机的铸型是绕水平轴旋转的(图2),它主要用来生产长度大于直径的套类和管类铸件。

由于离心铸造时,液体金属是在旋转情况下充填铸型并进行凝固的,因而离心铸造便具有下述的一些特点: 1)液体金属能在铸型中形成中空的圆柱形自由表面,这样便可不用型芯就能铸出中空的铸件,大大简化了套筒,管类铸件的生产过程,使铸造工艺大大简化,生产率高、成本低; 2)由于旋转时液体金属所产生的离心力作用,离心铸造工艺可提高金属充镇铸型的能力,因此一些流动性较差的合金和薄壁铸件都可用离心铸造法生产; 3)由于离心力的作用,改善了补缩条件,气体和非金属夹杂也易于自液体金属中排出,因此离心铸件的组织较致密,缩孔(缩松)、气孔、夹杂等缺陷较少,力学性能好; 4)消除或大大节省浇注系统和冒口方面的金属消耗,金属利用率高; 5)离心铸造的铸件易产生偏析,不宜铸造密度偏析倾向大的合金;而且内孔尺寸不精确,内表面粗糙,加工余量大;不适于单件、小批量生产,目前,离心铸造已广泛用于制造铸铁管、气缸套铜套、双金属轴承、特殊的无缝管坯、造纸机滚筒等; 6)便于生产双金属铸件,例如钢套镶铜轴承等,其结合面牢固,又节省铜料,降低成本。 离心铸造的第一个专利是在1809年由英国人爱尔恰尔特(Erchardt)提出的,直到二十世纪初期这一方法在生产方面才逐步地被采用。我国在三十年代也开始利用离心管、筒类铸件如铁管、铜套、缸套、双金属钢背铜套等方面,离心铸造几乎是一种主要的方法;此外在耐热钢辊道、一些特殊钢无缝纲管的毛坯,

中国与国外高温合金、铸造高温合金和耐蚀合金牌号近似对照

中国与国外高温合金牌号近似对照 No . 中国 日本 JIS 美国德国① 法国 NF 俄罗 斯 TOCT 英国② DS/DTD GB/T 旧 牌 号 商业牌号AMS/SAE DIN W-Nr. (L-Nr. ) 1 GH10 15 GH1 5 - - - - - - ЭП 868 - 2 GH10 35 GH3 5 - - - - - - ЭП 703 - 4 GH10 40 GH4 - - - - - - ЭП 395 - 5 GH11 31 GH1 31 - - - - - - ЭП 126 - 6 GH11 40 GH1 40 - - - - - - ЭП 602 - 7 GH20 18 GH1 8 - - - - - - - N263 8 GH20 36 GH3 6 - - - - - - ЭП 481 - 9 GH20 38 GH3 8A - - - - - - ЭП 696A - 10 GH21 30 GH1 30 - - - - - - ЭП 617 - 11 GH21 32 - GH132 A286 AMSS525 , 5731; SAEHEV7 X5NiCrTi26- 15 1.4980 (1.494 4) Z6NCT25 ATVSMo ЭП 786 DTD5026 12 GH21 35 GH1 35 - - - - - - ЭП 437 - 13 GH21 36 GH1 36 - V57 - X5NirTi26-1 5 1.4980 Z3NCT25 ; ATVS2 - - 14 GH23 02 GH3 02 - - - - ЭП 617 - 15 GH30 30 GH3 - - - - - ATGR; NC20T ЭП 435 HR5; DTD703B; N203,N403 16 GH30 39 GH3 9 - - - - - - ЭП 602 - 17 GH30 44 GH4 4 - - - - - - ЭП 868 - 18 GH31 28 GH1 28 - - - - - - - - 19 GH40GH3- - - - - - ЭПN80A

Inconel MA956高温合金使用温度

根据铸造合金的使用温度,可以分为以下三类: 第一类:在-253~650℃使用的等轴晶铸造高温合金这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。第二类:在650~950℃使用的等轴晶铸造高温合金这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。 第三类:在950~1100℃使用的定向凝固柱晶和单晶高温合金这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。 随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。 上海荣昆金属供应Incoloy MA956、MA754、MA758、MA6000等铸造高温合金。 目前已实现商业化生产的主要有三种ODS合金: MA956合金在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。 MA754合金在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。 MA6000合金在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。 Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。

相关文档