文档库 最新最全的文档下载
当前位置:文档库 › 正丁醇水分离工艺流程图册

正丁醇水分离工艺流程图册

正丁醇水分离工艺流程图册
正丁醇水分离工艺流程图册

目录

一、第一工段PFD图

二、第二工段PFD图

三、PFD总图

四、第一工段PID图

五、第二工段PID图

六、PID总图

七、第一工段进料预热器

八、第一工段塔顶冷凝器

九、第一工段塔底再沸器

十、第二工段塔顶冷凝器

十一、第二工段塔底再沸器十二、第二工段出料冷却器

第一工段进料预热器

4.0

2 Bolts Fixe d

2.0

12.1

3.0313

4.0

2 Bolts Slidin g

2.0

12.1

3.0313

13.2 I /D 0.375

35.625 Overall 8.6875

5.125

3.750.25

5.125

8.83

Pullin g L en gth

-5

T1

T2

S1S2

A

Nozz le Dat a

Ref

OD Wall S t and ard

Not es

S 1 1.66"0.14"150 ANS I S lip on S 2 1.66"0.14"150 ANS I S lip on T1 1.66"0.14"150 ANS I S lip on T2 1.315"0.133"

150 ANS I S lip on

E m pt y 1100 lb

Flood ed 1275 lb

B und le 381 lb

Weig ht S um m ar y

I nt ern al V olum e

f t 0.4283 1.9757

P WH T

Radio graphy Num b er of P ass es 1

8

Test Pressure

psig

Corro sion A llow ance in 0.1250.125Full Vacuum

Desig n Tem per at ure F 260.170.Desig n P ressur e

psig 50.50.Desig n Dat a

Unit s S hell Chan nel

Cust o m er S pec if icat ions

Desig n Codes

A S M E S ect ion V II I Div. 1

TE M A R Revis ion

Dat e

2012-10-23

Dwg.

Chk.

A pp.

Aspen Shell & Tube Ex changer

Se ttin g Plan

BEM 13 - 8

Drawing Number

13

13

T1

T2

13

S1 S2

14

View s o n arrow A

5.56 i n

5.62 i n

Des ign Codes

A SME Code S ec VIII Div 1TEMA R - refinery service

Cus tomer S pec ific ations

Aspen Shell & T ube

Tube Layout

Drawing Number

Rev ision

Date Dwg.

A pp.

2012-10-23

S hell inside diameter in 13.25Fr ont head ID

in 13.25Outer tube limit diameter in

12.75Number of tubes (total)112

Tube outs ide diameter

in 0.75Tube pitch in

0.9375Tube pattern 30Tube pas ses 8Number of tie rods 0

Tie r od diameter

in 0.376Number of s ealing strip pairs 0

B affle ty pe

Unbaffled Impingement pr otection devic e None

Tube length

in 0.6667S hell S ide Inlet Nozzle Inside Diameter in 1.38S hell S ide Outlet Noz zle Inside Diameter

in

1.38

13

16 16 12 12 16

16

11

0.75

0.94

第一工段塔顶冷凝器

4.0

2 Bo lts Fixed

2.0

7.5

1.875

4.0

2 Bo lts Slid in g

2.0

7.5

1.875

8.1 I /D

0.277

31.277 Ove rall 7.2948

5.125

3.251.125

5.125

5.17

Pu llin g L en gth

-7

T1

T2

S1

S2A

Nozz le Dat a

Ref OD Wall S t and ard

Not es

S 10.84"0.147"150 ANS I S lip on S 20.84"0.147"150 ANS I S lip on T10.84"0.147"150 ANS I S lip on T2

0.84"

0.147"

150 ANS I S lip on

E m pt y 592 lb

Flood ed 616 lb

B und le 165 lb

Weig ht S um m ar y

I nt ern al V olum e

f t 0.11060.6806

P WH T

Radio graphy Num b er of P ass es 1

4

Test Pressure

psig

Corro sion A llow ance in 0.1250.125Full Vacuum

Desig n Tem per at ure F 250.150.Desig n P ressur e

psig 50.50.Desig n Dat a

Unit s S hell Chan nel

Cust o m er S pec if icat ions

Desig n Codes

A S M E S ect ion V II I Div. 1

TE M A R Revis ion

Dat e

2012-10-23

Dwg.

Chk.

A pp.

Aspen Shell & Tube Ex changer

Setting Plan

BEM 8 - 4

Drawing Number

10

10

T1

T2

10

10S1

S2

12

View s o n arrow A

3.4 i n

2.59 i n

Des ign Codes

ASME C ode Sec VIII Di v 1TEMA R - refinery s erv ic e

Cus tomer Spec ific ati ons

Aspen Shell & T ub e

Tube Layout

Drawin g Num ber

Rev is i on

Date Dwg.

App.

2012-10-23

Shell i ns i de diam eter i n 8.071Front head ID

i n 8.071O uter tube li mit di ameter i n

7.571Number of tubes (total )

35

Tube outs i de diam eter i n 0.75Tube pitc h i n

0.9375Tube pattern 30Tube pas s es 4Number of ti e rods 0

Tie rod di ameter

i n 0.376Number of s eal ing stri p pairs 0

Baffle ty pe

Unbaffled Im pingement protection dev i c e None

Tube l ength

i n 0.3333Shell Side Inlet Noz z le Ins ide Diameter i n 0.546Shell Side O utlet Noz z le Ins ide D i ameter

i n

0.546

12

9

9

5

0.75

0.94

第一工段塔底再沸器

168

1733 O v e r a l l

183

130120

495365

130

360

P u l l i n g L e n g t h

910

T 1

T 2

S 1

S 2S 3

A

Nozz le Data

Ref OD Wall Standard

Notes

S121 mm 3.7 mm 300 ANSI Slip on S221 mm 3.7 mm 300 ANSI Slip on S321 mm 3.7 mm 300 ANSI Slip on T121 mm 3.7 mm 150 ANSI Slip on T221 mm 3.7 mm

150 ANSI Slip on

Empty 240 k g

Flooded 289 k g

Bundle 49 kg

Weight Summar y

Internal Volume

m 0.05170.0117

PWHT

Radiography Number of Pass es 1

4

Test Pressure barg

Corrosion Allowance mm 3.175 3.175Full Vacuum

Design Temper ature C 180.120.Design Pressur e barg 5. 3.Design Data

Units Shell Channel Customer Spec ifications

E302-DESIGN

Design Codes ASME Section VIII Div. 1

TEMA R E301-DESIGN

Revis ion

Date 2012-10-23

Dwg.

Chk.

App.

Aspen Shell & Tube Exchanger

Setting Plan

BJS 205 - 1200

Drawing Number

260260

T1

T2

260

260S1

S2

260

Views on arrow A

52.39 m m

52.39 m m

E301-DESIGN

Des ign Codes

ASME Code S ec VIII Div 1TEMA R - refinery service

Cus tomer Spec ific ations

E302-DESIGN

Aspen Shell & T ube

Tube Layout

Drawing Number

Rev ision

Date Dwg.

App.

2012-10-23

Shell inside diameter mm 205.Fr ont head ID

mm 205.Outer tube limit diameter mm

164.Number of tubes (total)

20

Tube outs ide diameter mm 19.05Tube pitch mm

25.Tube pattern 30Tube pas ses 4Number of tie rods 4

Tie r od diameter

mm 9.55Number of s ealing strip pairs 4

Baffle ty pe

Single s egmental

Impingement pr otection devic e None

Tube length

mm 1200.Shell Side Inlet Nozzle Inside Diameter mm 13.8684Shell Side Outlet Noz zle Inside Diameter mm 13.8684Shell Side Outlet Noz zle Inside Diameter

mm

13.8684

5

5 5

5

19.05

25.00

第二工段塔顶冷凝器

4.0

2 Bo lts Fixed

2.0

7.5

1.875

4.0

2 Bo lts Slid in g

2.0

7.5

1.875

8.1 I /D

0.277

31.277 Ove rall 7.2948

5.125

3.251.125

5.125

5.17

Pu llin g L en gth

-7

T1

T2

S1

S2A

Nozz le Dat a

Ref OD Wall S t and ard

Not es

S 10.84"0.147"150 ANS I S lip on S 20.84"0.147"150 ANS I S lip on T10.84"0.147"150 ANS I S lip on T2

0.84"

0.147"

150 ANS I S lip on

E m pt y 592 lb

Flood ed 616 lb

B und le 165 lb

Weig ht S um m ar y

I nt ern al V olum e

f t 0.11060.6806

P WH T

Radio graphy Num b er of P ass es 1

4

Test Pressure

psig

Corro sion A llow ance in 0.1250.125Full Vacuum

Desig n Tem per at ure F 260.150.Desig n P ressur e

psig 50.50.Desig n Dat a

Unit s S hell Chan nel

Cust o m er S pec if icat ions

Desig n Codes

A S M E S ect ion V II I Div. 1

TE M A R Revis ion

Dat e

2012-10-23

Dwg.

Chk.

A pp.

Aspen Shell & Tube Ex changer

Setting Plan

BEM 8 - 4

Drawing Number

10

10

T1

T2

10

S1 S2

12

View s o n arrow A

第二工段塔底再沸器

168

1734 O v e r a l l

184

130120

495365

130

360

P u l l i n g L e n g t h

910

T 1

T 2

S 1

S 2S 3

A

Nozz le Data

Ref OD Wall S tandard

Notes

S 121 mm 3.7 mm 300 ANS I S lip on S 221 mm 3.7 mm 300 ANS I S lip on S 321 mm 3.7 mm 300 ANS I S lip on T121 mm 3.7 mm 150 ANS I S lip on T221 mm 3.7 mm

150 ANS I S lip on

E mpty 243 k g

Flooded 291 k g

B undle 51 kg

Weight S ummar y

Internal V olume

m 0.05160.0117

P WHT

Radiography Number of P ass es 1

4

Test Pressure barg

Corrosion A llowance mm 3.175 3.175Full Vacuum

Design Temper ature C 180.125.Design P ressur e barg 5. 3.Design Data

Units S hell Channel

Customer S pec ifications

E302-DESIGN

Design Codes A S ME S ection V III Div. 1

TE MA R E301-DESIGN

Revis ion

Date 2012-10-23

Dwg.

Chk.

A pp.

Aspen Shell & Tube Exchanger

Setting Plan

BJS 205 - 1200

Drawing Number

261261

T1

T2

260

260S1

S2

260

Views on arrow A

52.39 m m

52.39 m m

E301-DESIGN

Des ign Codes

ASME Code S ec VIII Div 1TEMA R - refinery service

Cus tomer Spec ific ations

E302-DESIGN

Aspen Shell & T ube

Tube Layout

Drawing Number

Rev ision

Date Dwg.

App.

2012-10-23

Shell inside diameter mm 205.0034Fr ont head ID

mm 205.0034Outer tube limit diameter mm

164.0034Number of tubes (total)

20

Tube outs ide diameter mm 19.05Tube pitch mm

25.Tube pattern 30Tube pas ses 4Number of tie rods 4

Tie r od diameter

mm 9.55Number of s ealing strip pairs 4

Baffle ty pe

Single s egmental

Impingement pr otection devic e None

Tube length

mm 1200.Shell Side Inlet Nozzle Inside Diameter mm 13.8684Shell Side Outlet Noz zle Inside Diameter mm 13.8684Shell Side Outlet Noz zle Inside Diameter

mm

13.8684

5

5 5

5

19.05

25.00

第二工段出料冷却器

4.0 2 Bolts Fixed 2.0

7.5

1.875

4.0

2 Bolts Sliding

2.07.5

1.875

72.9105 Overall

7.3303

5.125 3.25

40.5

5.125

9.625

28.75

Pulling Length

37

T1

T2

S1

S2A

Nozz le Data

Ref OD Wall Standard

Notes

S1 1.66"0.14"150 ANSI Slip on S20.84"0.147"150 ANSI Slip on T1 1.66"0.14"150 ANSI Slip on T2 1.315"0.133"

150 ANSI Slip on

Empty 988 lb

Flooded 1181 lb

Bundle 310 lb

Weight Summar y

Internal Volume

ft 1.33250.6866

PWHT

Radiography Number of Pass es 1

4

Test Pressure psig

Corrosion Allowance in 0.1250.125Full Vacuum

Design Temper ature F 290.150.Design Pressur e psig 50.50.Design Data

Units Shell Channel Customer Spec ifications

Design Codes ASME Section VIII Div. 1

TEMA R Revis ion

Date 2012-10-23

Dwg.Chk.

App.

Aspen Shell & Tube Exchanger

Setting Plan BEM 8 - 48

Drawing Number

10

10

T1

T2

10

10S1

S2

12

Views on arrow A

2.97 i n

3.03 i n

Des ign Codes

ASME Code S ec VIII Div 1TEMA R - refinery service

Cus tomer Spec ific ations

Aspen Shell & T ube

Tube Layout

Drawing Number

Rev ision

Date Dwg.

App.

2012-10-23

Shell inside diameter in 8.071Fr ont head ID

in 8.071Outer tube limit diameter in

7.571Number of tubes (total)

32

Tube outs ide diameter in 0.75Tube pitch in

0.9375Tube pattern 30Tube pas ses 4Number of tie rods 4

Tie r od diameter

in 0.376Number of s ealing strip pairs 3

Baffle ty pe

Single s egmental

Impingement pr otection devic e None

Tube length

in 4.Shell Side Inlet Nozzle Inside Diameter in 1.38Shell Side Outlet Noz zle Inside Diameter

in

0.546

8

8

8

8

0.75

0.94

油砂

选修课期末论文 课程:非常规油气资源开发理论与技术 论文题目:油砂分布与开采的相关问题研究分析 10级勘查技术与工程专业一班 1400100102 李阳

油砂分布与开采的相关问题研究分析 一、非常规油气资源的前景 世界范围内的非常规资源蕴藏十分丰富,非常规油产量超过7500×104t∕a,非常规天然气超过1800×108m3∕a。近年来非常规油气资源的勘探开发,已经使人们认识到了它对未来世界资源格局的影响。作为非常规油气资源的主要来源,在世界能源供给中起着巨大作用。 我国非常规油气资源也比较丰富,油页岩、油砂、煤层气和天然气水合物等开发潜力巨大。与世界非常规油气资源研究与利用相比,我国在非常规油资源的研究和开发方面相对比较滞后,对油砂矿的资源潜力研究与评价技术、开采技术及综合利用技术研究得比较少,有待进一步的加大科研投入。 油砂及其利用前景 油砂是一种非常规性含原油的砂状矿藏,由砂、沥青、矿物质、黏土和水以相互结合的方式构成,是地壳表层的碎屑物或岩石与其中所含的水和沥青形成的混合物的统称。不同地区油砂矿的组成不同,沥青是其主要成分,含量可占到1%~20%,砂和粘土占80% ~85%,水占3% ~6%。又称“沥青砂”、“稠油砂”、“重油砂”或“焦油砂”。 其中的沥青经过焦化、蒸馏、催化转换、加氢处理等复杂的工艺环节被从油砂中提取出来后,可产生类似天然石油的“合成原油”。用油砂生产合成石油的第一步,是将其中的沥青与砂、矿物质、黏土以及水分进行分离。然后在分选厂,

通过加热过程,将漂浮在大型分离池表面的沥青加工成各种石油产品。 油砂的特点:1、通常含有80%~90%的无机质(砂、矿物等)、3%~6%的水和6%~20%的沥青。油砂沥青是烃类和非烃类有机物质,是稠粘的半固体2、沥青流动性极差,一般不能以打井开采原油、稠油的方法来获取油砂沥青。3、油砂中的沥青大部分溶于有机溶剂,而有别于油页岩中有机质不能溶于有机溶剂。 4、油砂中的沥青多来自降解作用,正构石蜡族烃达到了几乎耗尽的程度,因此饱和馏分中没有或几乎没有正构石蜡族烃。 油砂资源分布广泛,根据美国地质调查局的相关数据表明,世界油砂油可开采资源量为6510亿桶,约占世界石油资源可开采总量的32%,开发潜力巨大。如果全部开发利用,大概可使世界消费上百年。 由于其开采成本较高,起初并不被人们所重视,但随着油价的飙升与油砂开采技术的革新,油砂越来越吸引投资者的目光。随着世界经济对烃类需求的不断上升,未来能源的巨大缺口在很大程度上要依靠包括油砂在内的非常规油气资源来弥补。目前,对于油砂资源的研究和开发,世界各国均在加速进行,其占世界烃类能源的比重在不断增加,在今后的能源结构中起着至关重要的作用,勘探前景巨大,综合利用前景广泛。

油砂的传统开采方法及新技术展望

(一)、油砂的开采方法 最近几年, 油砂开发技术的进步不断推进着油砂工业的发展, 并已经取得了巨大的进步。主要有以下几方面: 用巨型卡车和铲车开采油砂, 增加了开采的灵活性, 同时降低了成本; 用水力运输管道系统代替了传送带系统, 使油砂达到管输要求, 并简化了把沥青和砂分离开来的萃取过程; 在萃取阶段, 降低了加工的温度; 采用固化或合成残渣的技术, 加快了大面积残渣池的治理, 并在努力研究一种覆盖技术来处理残渣。 目前,油砂开采方式有两种,一类是露天开采,适用于埋深小于75m,厚度大于3m,另一类是井下开采,适用于埋深大于75m的矿层。针对莫尔图克矿一层埋深较浅(0-46m),因此采用露天开采。 露天开采程序上分为采矿和萃取两个部分,主要用于开采埋藏较浅的近地表油砂,具有回收率高、效率高、安全的特点。露天开采所需的设备及费用、油砂油采收率较其他方法好,技术上较为成熟,在加拿大及委内瑞拉等都已形成大规模工业开采。多年来,油砂的露天开采技术已经取得的重要进步如下: 采矿过程主要分为以下几个部分: ?用卡车和铲车除去盖层; ?用电动或水力铲车挖出油砂; ?把油砂从矿场运送到压碎机; ?把油砂加工碾碎; ?将油砂混合成砂浆; ?用离心泵和管线(常称为水力输送)把油砂从矿区运送到萃取区域。

图1-1 采矿过程示意图 (二)、油砂的萃取分离 1、油砂的分离工艺步骤 采矿设备和某些采矿操作是油砂工业所独有的, 现在这一操作主要受到下一分离过程的限制;而萃取过程也是沥青损失最大的过程, 因此, 必须综合考虑采矿和萃取两个步骤。 在过去的15 年里, 水力传输已经代替了其他的设备。从矿石浆中萃取沥青由两个步骤组成: 步骤一: 分离初级分离器( primary separat io nvessel) 中的沥青泡沫, 其中含60% 沥青, 30%水, 10% 微固体。 步骤二: 稀释发泡处理(见图2-1) : 提取沥青, 尽可能排除水和固体。如今, 实现此过程主要有两种方法: 最初的石脑油溶剂处理过程需要斜板分离器 ( inclined plate separators) 和离心分离机除去残余固体和水; 新的石蜡溶剂处理过程需要沉降容器, 但是由于不用离心分离机, 可以得到较纯净的产品。 图2-1 萃取过程示意图 ( 1) 初级分离 初级分离器是一个巨大、昂贵、固定不易移动的装置。运行条件必须稳定, 对矿石等级、温度、进料速度和其他因素的微小变化非常敏感。35℃以上的温度条件需要大量的能量, 占一桶合成原油能量消耗的40%。此过程还需要加入添加剂, 将pH值控制在8.5 左右。

-筏板基础基础施工工艺

一、施工工艺流程 测量定位放线→垫层施工→测量定位放线→筏板基础钢筋绑扎→筏板基础侧模安装→柱插筋→验收→筏板基础混凝土浇注→混凝土养护 防雷接地应随着筏板基础施工随着进行。 二.主要分项工程施工方案 1、测量定位放线 1.1定位点依据:根据业主提供的控制点坐标、标高及总平面布置图、施工图纸进行定位。 1.2场区内控制网布置:在各单体工程测量定位放线之前,在场区内布置好测量控制点控制网(包括坐标控制点和高程控制点)。 1.3测量工具: 1.3.1场区内坐标控制点和高程控制点设置采用全站仪进行; 1.3.2建筑物坐标点定位采用全站仪进行; 1.3.3建筑物高程控制点设置采用水准仪进行; 1.3.4建筑物轴线定位采用经纬仪进行; 1.3.5其他辅助工具:50m钢尺、木桩、钢筋桩、墨斗、油漆等等。 1.4.建筑物轴线定位:根据已知轴线坐标控制点采用经纬仪进行建筑物轴线的定位,其他相应线采用钢尺进行排尺。 1.5.建筑物标高测量:根据已知高程控制点采用水准仪进行测量建筑物各工序的标高。 2、模板工程 2.1材料选择 模板采用δ=18mm厚九夹板制作加工,采用60×90mm木方模板背楞,木方间距不得超过200mm。 对拉螺栓杆采用φ14圆钢制作,两端丝扣长度不得小于150mm。 模板钢管支撑系统中钢管为φ48×3.5。 2.2模板安装 2.2.1筏板基础侧壁模板

筏板基础侧模支设示意图 2.3模板拆除 筏板基础侧模应待浇筑完毕3d后方可松动对拉螺栓和拆除钢管三角支撑体系,7d后方可拆除基础侧模。 待模板拆除完后应及时将对拉螺杆抽出或切割。 三、钢筋工程 3.1钢筋加工制作 3.1.1.进场钢筋应按级别、种类和直径分类架空堆放,不得直接放置在地上,以免锈蚀和油污,进场钢筋应有出厂质量合格证明,并及时抽样进行复检,复检合格后方可进行加工。 3.1.2.钢筋加工应先按图纸设计要求及《09G101-2》图集、《09G101-3》图集、《06G101-1》图集、《04G101-3》图集和《03G101-1》图集进行翻样,然后经相关部门核认后开始加工。 3.1.3.加工的半成品钢筋应按型号、品种及规格尺寸等挂牌堆放。 3.1. 4.Ⅰ级钢筋末端需做180o弯钩,其圆弧曲线直径不小于钢筋直径的2.5倍,平直部分长度不小于钢筋直径的3倍;Ⅱ级钢筋末端须作90o或135o弯折

铸造实用工艺流程

消失模铸造工艺流程 一、工艺流程示意图 二、工艺流程 模样生产工艺流程图 铸件 清砂(抛丸机)、 打磨浇冒口 上涂料 烘干 粘接 发泡膜 浇注及 冷却 埋箱 造型 落砂 铸件 热处理 铸件成品 EPS EPMMA STMMA 预热 → 加料、搅拌 → 抽真空 → 喷水雾 → 停止抽真空 → 出料 → 干燥 → 料仓 珠粒 可发性 预发泡 发泡成型 干燥 筛分 熟化 闭模 → 预热模具 → 加料 → 合模 → 发泡成型 → 冷却 → 脱模 浇冒 口 组合 落砂斗 → 水平振动筛 → 型砂冷却 → 提升机 → 磁选、除尘 → 储砂斗 零件图 铸件图 模样图 模具 图 模具 EPS 珠粒 预发泡 熟化 成型 冷却 出模 干燥 模样组合 检验 新砂、旧砂、覆塑料膜密封砂箱、置浇口杯

(一)预发泡: 预发泡目的:为了获得低密度、表面光洁、质量优良的泡沫模样。 流程:预热→ 加料、搅拌→ 抽真空→ 喷水雾→ 停止抽真空→ 出料→ 干燥→ 料仓、熟化 EPS预发温度100~105℃;STMMA预发温度105~115℃;EPMMA预发温度120~130℃。进入预发机的加热蒸汽压力在0.15~0.20MPa范围调节。 说明: ①间歇式蒸汽预发泡机必须满足加热均匀(蒸汽与珠粒接触)筒体内 温度在90~130℃范围容易调节和控制。搅拌要充分、均匀,筒体底部和侧壁要有刮板,防止珠粒因过热而粘壁,搅拌速度可调。筒体底部冷凝水的排除要畅通,否则影响预发泡效果。 ②加热蒸汽压力可调并稳定,且蒸汽中不能夹带水分。 ③出料要干净,每批发泡后,筒体内残留的料要吹扫干净。 熟化:把预发泡珠放置几小时以上,让空气进入珠粒内,使珠粒变得干燥有弹性,变形后又能复原的过程。熟化时间一般为10~24h,熟化时间不能太长否则发泡剂损失太多影响发泡成型质量。 (二)成形发泡的工艺过程为: 闭模→ 预热模具→ 加料→ 合模→ 发泡成型→ 冷却→ 脱模→ 模样熟化 要点:珠粒均匀填满模具,模具必须预热到100℃,水蒸气温度一般在120℃左右,压力为0.15MPa。 模样熟化:将模样置入50~70℃的烘干室强制干燥5~6h,可达到在室温下自然熟化2天的效果。 (三)模样的粘合 对复杂的模样往往不能整体发泡成形,而分块制造,最后需要将各块粘合成整体。另外,模样与浇冒口系统组成模样组,也需要粘合工序。粘合工序一般是采用粘结剂来完成的。目前国内使用的消失模铸造用的粘结剂可分为热熔胶型、水溶型和有机溶剂型粘胶。 粘接剂要求:

厂房混凝土地面施工工艺

本工艺标准适用于工业与民用建筑的水泥砂浆地面 2.1 材料及主要机具: 2.1.1 水泥:硅酸盐水泥、普通硅酸盐水泥,其标号不应小于32.5号,并严禁混用不同品种、不同标号的水泥。 2.1.2 砂:应采用中砂或粗砂,过8mm孔径筛子,含泥量不应大于3%。 2.1.3 主要机具:搅拌机、手推车、木刮社、木抹子、铁抹子、劈缝溜子、喷壶、铁锹、小水桶、长把刷子、扫帚、钢丝刷、粉线包、錾子、锤子。 2.2 作业条件: 2.2.1 地面(或楼面)的垫层以及预埋在地面内各种管线已做完。穿过楼面的竖管已安完,管洞已堵塞密实。有地漏房间应找好泛水。 2.2.2 墙面的+50cm水平标高线已弹在四周墙上。 2.2.3 门框已立好,并在框内侧做好保护,防止手推车碰坏。 2.2.4 墙、顶抹灰已做完。屋面防水做完。 3.1 工艺流程: 基层处理→找标高、弹线→洒水湿润→抹灰饼和标筋→搅拌砂浆→ 刷水泥浆结合层→铺水泥砂浆面层→木抹子搓平→铁抹子压第一遍→ 第二遍压光→第三遍压光→养护 3.1.1 基层处理:先将基层上的灰尘扫掉,用钢丝刷和錾子刷净、剔掉灰浆皮和灰渣层,用10%的火碱水溶液刷掉基层上的油污,并用清水及时将减液冲净。 3.1.2 找标高弹线:根据墙上的+50cm水平线,往下量测出面层标高,并弹在墙上。 3.1.3 洒水湿润:用喷壶将地面基层均匀洒水一遍。 3.1.4 抹灰饼和标筋(或称冲筋):根据房间内四周墙上弹的面层标高水平线,确定面层抹灰厚度(不应小于20mm),然后拉水平线开始抹灰饼(5cm×5cm),横竖间距为1.5~2.00m,灰饼上平面即为地面面层标高。 如果房间较大,为保证整体面层平整度,还须抹标筋(或称冲筋),将水泥砂浆铺在灰饼之间,宽度与灰饼宽相同,用木抹子拍抹成与灰饼上表面相平一致。 铺抹灰饼和标筋的砂浆材料配合比均与抹地面的砂浆相同。 3.1.5 搅拌砂浆:水泥砂浆的体积比宜为1∶2(水泥∶砂),其调度不应大于35mm,强度等级不应小于M15。为了控制加水量,应使用搅拌机搅拌均匀,颜色一致。 3.1.6 刷水泥浆结合层;在铺设水泥砂浆之前;应涂刷水泥浆一层,其水淡比为0.4~0.5(涂刷之前要将抹灰饼的余灰清扫干净;再洒水湿润),不要涂刷面积过大,随刷随铺面层砂浆。 3.1.7 铺水泥砂浆面层:涂刷水泥浆之后紧跟着铺水泥砂浆,在灰饼之间(或标筋之间)将砂浆铺均匀,然后用木刮杠按灰饼(或标筋)高度刮平。铺砂浆时如果灰饼(或标筋)已硬化,木刮杠刮平后,同时将利用过的灰饼(或标筋)敲掉,并用砂浆填平。 3.1.8 木抹子搓平:木刮杠刮平后,立即用木抹子搓平,从内向外退着操作,并随时用2m靠尺检查其平整度。 3.1.9 铁抹子压第一遍:木抹子抹平后,立即用铁抹子压第一遍,直到出浆为止,如果砂浆过稀表面有泌水现象时,可均匀撒一遍干水泥和砂(1∶1)的拌合料(砂子要过

水处理膜分离技术

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下图简单示意了四种不同的膜分离过程:(箭头反射表示该物质无法透过膜而被截留): 微滤又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1-1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在 1000-300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广

膜分离实验报告

膜分离实验报告 一、实验目的 1.了解不同膜分离工艺的原理、设备及流程。 2.掌握RO、NF的适用范围和对象。 二、实验原理 1.反渗透(RO) 反渗透膜的孔径在0.1-1nm之间。反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。 为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。 溶液进行实验,用在线电导仪测定进水、“淡水”和实验采用NaCl、MgSO 4 “浓水”的电导率变化,表示反渗透膜的处理效果。 图1 反渗透(RO)示意图 2.纳滤(NF) 纳滤膜的孔径范围介于反渗透膜和超滤膜之间。纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。 纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。 为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。 实验采用NaCl、MgSO 溶液进行实验,用在线电导仪测定进水、“淡水”和 4 “浓水”的电导率变化,表示纳滤膜的处理效果。同时将纳滤和反渗透对一价和

加拿大油砂开采脱砂工艺简述

加拿大油砂开采脱砂工艺简述 油砂从矿场开采完成后,重要的是对油砂进行分离处理。加拿大油砂分离处理工艺经过20多年的研究和实践,形成了以热水/表面活性剂洗油法、有机溶剂提取法和干溜法为主的油砂分离方法。 在分离方法的选择上主要考虑油砂特点、性质以及成本和环保等方面因素,本着优先选择热水/表面活性剂洗油法,然后再考虑干溜法、有机溶剂提取法。 (一)热水/表面活性剂洗油法 1、工作原理 通过热碱的作用,改变砂子表面润湿性,使砂子表面更加亲水,实现砂与吸附在上面的沥青分离,分离后的原油上浮进入碱液中,而油砂沉降在下部,以达到分离的目的。表面活性剂的目的是降低油水界面张力,增强油的乳化能力,促使油砂与油的分离。;表面活性剂还可产生协同效应,降低界面张力,提高洗油效率。 该方法适合油砂性质比较好,沙粒表面有水膜,表面润湿性为亲水的油砂。 2、工艺流程 油砂经过传送系统运输到分离中心,在反应器中加入热碱活性剂,在一定温度(一般为80摄氏度)下化学剂与油砂相互作用形成砂浆,原油乳化脱落;然后进入分离器将油砂与液体、油分离。砂子通过输送系统再返回矿场掩埋或在专门地方存放;分离油再经过破乳、提取分离,得到原油与分离出的液体,回收的液体通过补充可以重复利用。

(二)有机溶剂萃取法 1、工作原理 主要是根据物质的相似相容原理来实现油砂分离。即:采用石脑油或甲苯/酒精混合物,在室温状态下,溶剂与油砂混合搅拌,油砂溶解到溶剂中,然后进行蒸馏,实现油砂分离。 这种方法是洗油效率高,溶剂可重复利用。 2、工艺流程 粉碎油砂进入离心分离前加入溶剂萃取,通过分离后,干净砂子回填或堆放在指定地点,混合物进行蒸馏,产生的溶剂回收再利用,分离出的油进行精炼。 (三)干馏法 (1)工作原理 采用250摄氏度以上高温进行裂解,经过高温处理后,沥青的质量得到很大改变,分子质量变小,胶质减少,高温处理过程中产生轻质油。 该方法适合地表干燥油砂资源的开发利用。 (2)工艺流程 油砂进行粉碎,通过送料系统进入干馏炉高温燃烧,然后进入洗涤塔洗涤、分离塔进行分离,产生的副产品天然气可补充燃烧。

膜分离制备多肽

膜分离法制备多肽的研究 一、膜分离技术简介 1、膜分离技术 膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下面简单介绍四种不同的膜分离过程: (1)微滤(MF) 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 (2)超滤(UF) 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留 分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、

铸造工艺流程

消失模铸造工艺流程 一、工艺流程示意图 r A EPS EPMMA 预热T加料、搅拌T抽真空T喷水雾T停止抽真空T出料T干燥T料仓闭模T预热模具T加料T合模T发泡成型T冷却T脱模 新砂、旧砂、覆塑料膜密封砂箱、置浇口杯 落砂斗T水平振动筛T型砂冷却T提升机T磁选、除尘T储砂斗 二、工艺流程模样生产工艺流程图 STMMA 干上 { 抛 丸 机 ? 打 磨 浇 冒 口 却浇 珠 粒 可 发 性 铸 件 成 品砂件

(一)预发泡:预发泡目的:为了获得低密度、表面光洁、质量优良的泡沫模样。 流程:预热f加料、搅拌f抽真空f喷水雾f停止抽真空f 出料f干燥f料仓、熟化 EPS预发温度100~105C;STMMA 预发温度105~115°C;EPMMA 预发温度120~130C。进入预发机的加热蒸汽压力在0.15~0.20MPa范围调节。 说明: ①间歇式蒸汽预发泡机必须满足加热均匀(蒸汽与珠粒接触)筒体内温度在90~130C 范围容易调节和控制。搅拌要充分、均匀,筒体底部和侧壁要有刮板,防止珠粒因过热而粘壁,搅拌速度可调。筒体底部冷凝水的排除要畅通,否则影响预发泡效果。 ②加热蒸汽压力可调并稳定,且蒸汽中不能夹带水分。 ③出料要干净,每批发泡后,筒体内残留的料要吹扫干净。熟化:把预发泡珠放置几 小时以上,让空气进入珠粒内,使珠粒变得干 燥有弹性,变形后又能复原的过程。熟化时间一般为10~24h,熟化时间不能太长否则发泡剂损失太多影响发泡成型质量。 (二)成形发泡的工艺过程为: 闭模f预热模具f加料f合模f发泡成型f冷却f脱模 f 模样熟化 要点:珠粒均匀填满模具,模具必须预热到100C,水蒸气温度一般在 120C左右,压力为0.15MPa。 模样熟化:将模样置入50~70C的烘干室强制干燥5~6h可达到在室温下自然熟化2 天的效果。 (三)模样的粘合对复杂的模样往往不能整体发泡成形,而分块制造,最后需要将各块粘 合成整体。另外,模样与浇冒口系统组成模样组,也需要粘合工序。粘合工序一般是采用粘结剂来完成的。目前国内使用的消失模铸造用的粘结剂可分为热熔胶型、水溶型和有机溶剂型粘胶。 粘接剂要求: ①足够的粘接强度,大于100MPa。 ②快干性好,最好能在1h 内干燥,并具有一定的粘接强度,不致在加工或搬运过程中损坏模样。

地面工程施工工艺流程大全

地面工程施工工艺流程大全 地面与楼面工程 炉渣垫层施工工艺流程: 基层处理→ 炉渣过筛与水闷→ 找标高、弹线、做找平墩→ 基层洒水湿润、拌合炉渣→ 铺炉渣垫层→ 刮平、滚压→ 养护 混凝土垫层施工工艺流程: 基层处理→ 找标高、弹水平控制线→ 混凝土搅拌→ 铺设混凝土→ 振捣 → 找平→ 养护 陶粒混凝土垫层施工工艺流程: 基层处理→ 找标高弹水平控制线→ 陶粒过筛、水闷→ 搅拌→ 铺设陶粒 混凝土→ 养护

细石混凝土地面施工工艺流程: 找标高、弹面层水平线→ 基层处理→ 洒水湿润→ 抹灰饼→ 抹标筋→ 刷素水泥浆→ 浇筑细石混凝土→ 抹面层压光→ 养护 水泥砂浆地面施工工艺流程:

基层处理→ 找标高、弹线→ 洒水湿润→ 抹灰饼和标筋→ 搅拌砂浆→ 刷水泥浆结合层→铺水泥砂浆面层→ 木抹子搓平→ 铁抹子压第一遍→第二遍压光→ 第三遍压光→ 养护 现制水磨石地面施工工艺流程: 基层处理→ 找标高→ 弹水平线→ 铺抹找平层砂浆→ 养护→ 弹分格线→ 镶分格条→ 拌制水磨石拌合料→ 涂刷水泥浆结合层→ 铺水磨石拌合料→ 滚压、抹平→ 试磨→ 粗磨→ 细磨→ 磨光→ 草酸清洗→ 打蜡上光

预制水磨石地面施工工艺流程: 基层处理→ 定线→ 水磨石板浸水→ 砂浆拌制→ 基层洒水及刷水泥浆→ 铺水泥砂浆结合层及预制水磨石板→ 养护灌缝→ 贴镶踢脚板→ 酸洗打蜡 陶瓷锦砖地面施工工艺流程: 清理基层、弹线→ 刷水泥素浆→ 水泥砂浆找平层→ 水泥浆结合层→ 铺贴陶瓷锦砖→ 修理→ 刷水、揭纸→ 拨缝→ 灌缝→ 养护 塑料板地面施工工艺流程: 基层处理→弹线→试铺→刷底子胶→铺贴塑料地面→铺贴塑料踢脚板→擦光上蜡

正丁醇安全技术说明书

正丁醇 第1部分化学品及企业标识 化学品中文名:正丁醇;丁醇 化学品英文名:n-butyl alcohol;1-butanol 第2部分成分/组成信息 √ 纯品混合物 第3部分危险性概述 危险性类别:第3.3类高闪点液体 侵入途径:吸入、食入、经皮吸收 健康危害:本品具有刺激和麻醉作用。主要症状为眼、鼻、喉部刺激,头痛、头晕、嗜睡、共济失调、精神错乱、谵妄、昏迷。液体对眼和皮肤有刺激性。 环境危害:对水体和土壤可造成污染。 燃爆危险:易燃,其蒸气与空气混合,能形成爆炸性混合物。 第4部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐。就医。 第5部分消防措施 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触猛烈反应。在火场中,受热的容器有爆炸危险。 有害燃烧产物:一氧化碳。 灭火方法:用泡沫、干粉、二氧化碳、雾状水、1211灭火剂、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 第6部分泄漏应急处理 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用飞尘或石灰粉吸收大量液体。用抗溶性泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用防爆泵转移至槽车或专用收集器内。 第7部分操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。充装要控制流速,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损

铸造工艺流程

消失模铸造工艺流程 一、工艺流程示意图 r A EPS EPMMA 预热T 加料、搅拌 T 抽真空 T 喷水雾 T 停止抽真空 T 出料T 干燥T 料仓 二、工艺流程 模样生产工艺流程图 STMMA 干上 闭模T 预热模具 T 加料T 合模T 发泡成型 T 冷却T 脱模 珠粒 可发性 组浇 合冒 落砂斗 T 水平振动筛 T 型砂冷却 T 提升机 T 磁选、除尘 T 储砂斗 冒打机 口磨) 浇、 铸件成品 却浇

(一)预发泡: 预发泡目的:为了获得低密度、表面光洁、质量优良的泡沫模样。 流程:预热f加料、搅拌f抽真空f喷水雾f停止抽真空f 出料f干燥f料仓、熟化 EPS预发温度100~105C;STMMA 预发温度105~115°C;EPMMA 预发温度 120~130C。进入预发机的加热蒸汽压力在0.15~0.20MPa范围调节。 说明: ①间歇式蒸汽预发泡机必须满足加热均匀(蒸汽与珠粒接触)筒体内温度在 90~130C范围容易调节和控制。搅拌要充分、均匀,筒体底部和侧壁要有刮板,防止珠粒因过热而粘壁,搅拌速度可调。筒体底部冷凝水的排除要畅通,否则影响预发泡效果。 ②加热蒸汽压力可调并稳定,且蒸汽中不能夹带水分。 ③出料要干净,每批发泡后,筒体内残留的料要吹扫干净。 熟化:把预发泡珠放置几小时以上,让空气进入珠粒内,使珠粒变得干燥有弹性,变形后又能复原的过程。熟化时间一般为10~24h,熟化时间不能太长否则发泡剂损失太多影响发泡成型质量。 (二)成形发泡的工艺过程为: 闭模f预热模具f加料f合模f发泡成型f冷却f脱模f模样熟化 要点:珠粒均匀填满模具,模具必须预热到100C,水蒸气温度一般在 120C左右,压力为0.15MPa。 模样熟化:将模样置入50~70C的烘干室强制干燥5~6h可达到在室温下自然熟化2天的效果。 (三)模样的粘合 对复杂的模样往往不能整体发泡成形,而分块制造,最后需要将各块粘合成整体。另外,模样与浇冒口系统组成模样组,也需要粘合工序。粘合工序一般是采用粘结剂来完成的。目前国内使用的消失模铸造用的粘结剂可分为热熔胶型、水溶型和有机溶剂型粘胶。 粘接剂要求: ①足够的粘接强度,大于lOOMPa。 ②快干性好,最好能在1h内干燥,并具有一定的粘接强度,不致在加工或搬运过程中损坏模样。

正丁醇MSDS-GHS版

化学品安全技术说明书 (正丁醇) 版本 3.2(CN)/GHS 修订时间:2016年8月31日 第一部分化学品及企业标识 化学品中文名称:正丁醇 英文名称:n-butyl alcohol;1-butanol 企业名称: 地址: 邮编: 电子邮件地址: 联系电话: 传真号码: 企业应急电话: 国家应急电话: 110,119,120 产品推荐用途:主要用于制造邻苯二甲酸、脂肪族二元酸及磷酸的正 丁酯类增塑剂,它们广泛用于各种塑料和橡胶制品中,也是有机合成 中制丁醛、丁酸、丁胺和乳酸丁酯等的原料。还是油脂、药物(如抗 生素、激素和维生素)和香料的萃取剂,醇酸树脂涂料的添加剂等, 又可用作有机染料和印刷油墨的溶剂,脱蜡剂。 生效日期: 2016-8-31 第二部分危险性概述 危险性类别:第3.2类高闪点液体

紧急情况概述:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触猛烈反应。在火场中,受热的容器有爆炸危险。 GHS危险性类别:根据化学品分类、警示标签和警示性说明规范系列标准,该产品属于易燃液体,类别3;皮肤腐蚀/刺激,类别2;严重眼睛损伤/眼睛刺激,类别1 签要素: 象形图: 警示词:危险 危险信息:易燃液体和蒸气。对皮肤有刺激。造成眼的严重损伤健康防范说明:预防措施:远离火种、热源,工作场所严禁吸烟。得到专门指导后操作。阅读并了解所有预防措施。按要求使用个体防护装备。使用不产生火花的工具。使用防爆型电器和设备。采取防静电措施,防止静电积聚。防止蒸气泄漏到工作场所空气中。避免接触眼睛、皮肤,避免吸入、食入,操作后彻底清洗。避免与氧化剂接触。工作场所不得进食、饮水。 事故响应:如果发生火灾,使用抗溶性泡沫、干粉、二氧化碳、雾状水等灭火。眼睛接触,立即翻开上下眼睑,用流动清水彻底冲洗。立即送医院或寻求医生帮助,不得延迟。眼睛受伤后,应由专业人员取出隐形眼镜。皮肤接触,立即脱去所有被污染的衣物,包括鞋类。用流动清水冲洗皮肤和头发(可用肥皂)。如果出现刺激症状,就医。吸入,如果吸入蒸气或燃烧产物,脱离污染区。静卧,保暖。开始急

国内外油砂分离技术研究

第42卷第2期 当 代 化 工 Vol.42,No.2 2013年2月 Contemporary Chemical Industry February, 2013 收稿日期:2012-09-11 作者简介:崔清军(1986-),男,河南濮阳人,硕士研究生在读,辽宁石油化工大学化学工程专业,研究方向:从事油砂分离技术工作。E-mail: menghun225@https://www.wendangku.net/doc/099416539.html,。 通讯作者:李东胜(1965-),男,教授,博士在读,研究方向:清洁燃料生产工艺,化工新技术。E-mail:Lds8783@https://www.wendangku.net/doc/099416539.html,。 国内外油砂分离技术研究 崔清军,李东胜,李晓鸥,谭 克,李春笋 (辽宁石油化工大学, 辽宁 抚顺 113001) 摘 要:对油砂成矿特性进行分析,并对油砂分离技术进展进行概述。概括了水洗分离技术、溶剂抽提技术、超声波辅助分离技术、热解干馏技术和生物处理技术等室内研究及其分离原理。对各种油砂分离方法的优劣及发展发向进行讨论。 关 键 词:油砂;成矿特性;分离技术 中图分类号:TE 3 文献标识码: A 文章编号:1671-0460(2013)02-0193-04 Research on Oil-sand Separation Technologies at Home and Abroad CUI Qing-jun ,LI Dong-sheng ,LI Xiao-ou ,TAN ke ,LI Chun-sun (Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : Metallogenic characteristics of the oil sand were analyzed ,and separation technologies and separation principles of the oil sand were introduced, such as washing separation technology, solvent extraction technology, ultrasonic assisted separation technology and so on. At last ,Advantages and disadvantages of these separation technologies were discussed as well as their development direction. Key words : Oil sand ;Metallogenic characteristics ;Separation technology 近些年,油气资源的日益紧缺己成为严重制约我国国民经济和社会可持续性发展的重大问题。 据有关资料[1] 显示,2012年国内石油需求将继续增加,可能达到4.93亿t,同比增长5%,略高于2011年。2011年我国原油进口量超过了总需求量的55%,估计在2012年我国原油进口的依存度将上升到57%。目前,油页岩、重质原油、油砂及超重原油等被IEA(国际能源机构)称为非常规石油资源[2] ,并且他们认为非常规石油的供应和利用对未来世界能源的安全提供有力的保障。 随着常规能源的日益枯竭, 寻找新的替代资源越来越受到人们的重视, 发展非常规石油资源—油砂就成为一个后石油时代的大趋势。开发油砂资源符合国家能源政策, 对确保我国的能源安全具有重要的战略意义。在目前的技术条件下,油砂分离的主要方法有:热水碱洗提取法,有机溶剂提取法,热裂解干馏法,超声波辅助分离提取法等。近几年,对于油砂等非常规能源的开采和利用已取得重大进展,随着科技的进步,原油的紧张,这方面的研究力度逐渐扩大。 1 油砂组成 油砂主要是由油砂油(油砂沥青)和矿砂组成, 其中还有一部分水和其他杂质。其成分比例大致为:其中油砂油(油砂沥青)的质量比约为4%~20%,非结合水约占1%~6%,无机质(以硅酸盐和碳酸盐为主)约占80%~90%。具体的油砂矿品质划分标准是:富矿的油砂油含量要求高于10%,而贫矿则一 般小于6%[3] 。当然如果油砂资源开采地区不一样,其中各成分的比例可能不尽相同。其中我国内蒙古的油砂含沥青约12%~15%,含水约1%~3%,其余为二氧化硅等矿物质。印尼油砂矿中含油砂油20%~30%,含水量10%~20%,其余都为碳酸盐 和杂质[4] 。 油砂油在常规条件下粘度是超过超过1×104 mP a·s ,油品密度也是大于1 g/cm 3,所以流动性极差,对开采带来了很大的困难,尽管采用一般开采稠油的方法获取油砂沥青也是不可行的。 1.1 油砂油 油砂中的油即油砂油,有些文献也成油砂沥青,其在元素上的组成与常规的原油及稠油十分相似,但由于油砂油的分子量更大,成分和结构更复 杂,约含有几千种化合物共同组成[5] 。 依照目前的分析测试条件,依然不能把油砂油彻底分成单个化合物的形式来评价。目前只能认为油砂油是是粘稠的半固体状有机质,主要是由烃类

电力铁塔基础施工方案(完整版)

目录 第一章工程概况 (2) 第二章基础施工工艺流程图 (3) 第三章线路复测、分坑 (3) 第四章土石方工程 (5) 第五章基础浇制 (7) 第六章质量要求及检查方法 (14) 第七章安全施工措施 (19) 第八章基础保护、文明施工与环境保护措施 (23) 附件1:基础工程明细表

第一章工程概况 1、工程简况 本工程为110kV青城站电源线路,芦湖—高青县城北T接线T接青城变,新建110kV线路路径长度12.28km,其中同塔双回线路2×12.2km双回电缆线路2×0.08km。 2、交通运输条件 本线路所经地区为高青县境内, 线路交通条件良好。但雨水季节载重汽车难行驶,运输有一定的难度。 3、地形地貌情况:沿线地质条件良好,地貌属冲积平原,农田为主,水位在自然地坪下1.0—2.0m。 4、基础型式及工程量 基础采用现浇阶梯式钢筋混凝土基础,采用C25混凝土,C10打垫层。 5、杆塔基础编号规定 线路方向由小号侧(城北变)至大号侧(青城变)方向,基础编号如下图所示 第二章基础施工工艺流程图

第三章线路复测、分坑 1、线路复测 1.1对所使用的经纬仪、钢卷尺、标尺等测量工具,须在有效使用期内,并且必须进行校正,符合精度要求方可使用,经纬仪最小读数不大于1′。 1.2依据设计平断面图及杆塔明细表,核对现场桩位是否与设计图纸提供的数椐相符(档距、高差、转角、跨越等),复测主要内容和允许误差见第六章线路复测质量要求及检查方法(表1)。 1.3各施工段复测时应向相邻段延伸2-3个桩位,并互相协调,直至线路贯通并与设计图纸相符。 1.4对遗失桩应按要求进行补钉,其精度应满足表1要求。 1.5复测完成后,应及时填写复测记录和复测分坑关键工序把关卡中的复测记录项目。 2、基础分坑 2.1本工程根据塔位的具体地形配置了不同长度的接腿,因此在基础施工分坑时,必须核实塔位中心桩及地形是否正确,各塔位的A、B、C、D四个塔腿与中心桩的高差是否符合《铁塔及基础明细表》中所标注的数据。

油泥分离办法

油泥分离办法 1.离心分离:炼油厂的油泥属于重污油,需要单独处理,一般都是先初步沉降脱水,然后经过蒸汽加热加药进入三相分离离心机处理,这样既可以回收大部分的油,又可以减少整个生产系统运行成本和压力。 2.压滤:一种油泥分离机,在机架上装有挤压装置的容器罐和挤压头,该挤压头的压板形状与容器罐的罐口相应而能伸入罐内,该容器罐的罐壁布满滤油通孔,容器罐外设有挡油罩,该容器罐及挡油罩固接于托盘,该托盘的底面有出油孔连通集油箱,所述挤压装置连接驱动机构,在容器罐内装有用过滤包装袋分装的经加热的原料油泥。本实用新型可在油泥、油沙中分离提取出符合国家标准的油品,提高成品油的利用率,分离出油品后的副产品泥沙还可利用作为蜂窝煤和煤球等的基料,本设备提供的油泥分离加工使油泥、油沙这些对环境产生巨大污染的“废物”变成可利用资源,既产生良好经济效益,又解决了油泥、油沙污染环境的问题。 3.水煮分离,必要时加硫酸铝絮凝剂:在搅拌下,加水煮,泥沉在水里,油浮在水面上,如果不好分离,可以在水里加点硫酸铝,效果会好点 一种油泥分离方法,其特征是: a、加清水和油泥:在反应器中加入清水预热到70~95℃,然后加入油泥,搅拌,使油泥分散在水体中,呈悬浊浆状,在50~70℃温度条件下搅拌保温15~50分钟,使油泥水充分乳化; b、加分离剂:在悬浊泥浆中加入分离剂水溶液,并搅拌,使分离剂与泥浆充分接触,破坏胶体状态,使油与泥沙及水分离,形成混合含油液; c、沉降分离油、水及泥沙:将混合含油液置入到容器或分离池内,静止沉降,油积聚层漂浮在液体的表面,泥沙沉淀在液体的底部,水置于两者之间,收集油,排出污水,清除泥沙,分离出油; d、洗油:将所收集到的油加入到容器或池内,向其内加入清水,并充分搅拌,使油中所含有的水溶性物质释放到水中,收集清洗油; e、油净化处理:将所获得的油置于容器或池中,并使容器或池斜放,加热容器或池在30~50℃,保温60分钟以上,沥出油中所含的水,获得纯净的油。 4.用污油泥分离剂分离 4.1一种污油泥分离剂: 由65-70%重量的磺酸、12-17%重量的硫酸钾铝、15-20%重量的水、0.1-0.3%重量的甲基红、0.1-0.15%重量的马来酸酐混合配制而成。配制方法:按重量百分比称取磺酸、硫酸钾铝、水、甲基红及马来酸酐倒入用水稀释后的磺酸中进行搅拌至完全溶解,配制成污油泥分离剂。用该污油泥分离剂,可将含在污油泥中的源油分离出来,充分回收利用有限的石油资源,污油泥经分离,不仅回收了石油资源,还减少了污油泥对自然环境的污染。 一种污油泥分解剂,其特点是由53°硅酸钠85%、高锰酸钾0.2%、氯化钠10%、水3%、碳酸钙1.8%混合配制成,上述百分比为重量百分比。本发明有如下积极效果:用40°油泥分解剂可将含在废弃的污油泥中的可用原油分解出来,节约了能源;分解剂还能把污油泥中的水和泥沙分离开,水可以无污染排放;泥沙可回归大地。这样不仅有效的利用了资源,还减少了污油泥对自然环境的污染 4.2 热萃取/脱水”污泥处理技术, 在一定温度下利用溶剂油有效破坏油泥原来的油水固界面水化膜,使油泥中的油水固三相得到有效分离。脱出的水去污水场再处理,回收的油去炼油厂进行回炼,干燥后产生的非粘性固体物因有一定的热值送自备电厂重复利用,将一种国家明文规定的危废---含油污泥,经处理后彻底做到无害化,不再产生新的污染。

相关文档