文档库 最新最全的文档下载
当前位置:文档库 › 螺栓最大扭紧力矩计算

螺栓最大扭紧力矩计算

螺栓最大扭紧力矩计算
螺栓最大扭紧力矩计算

螺栓最大扭紧力矩计算

一、背景

安装时对于一般的零件装配,靠操作者在扭紧时的感觉和经验来拧紧螺栓就已经能满足安装要求。但对于重要的联接,就需提供具体的扭紧力矩值来保证产品质量与安全。针对这一问题,现参考机械设计手册及相关的机械设计资料,对螺栓的最大扭紧力矩进行详细的分析计算,并把不同等级不同规格的螺栓的最大扭紧力矩计算结果列成表格,供参考使用,为安装现场提供准确的扭紧力矩依据。

二、分析计算

拧紧螺栓需要的预紧力矩T=KFd×10-3(N.m)

1. K——扭矩系数。

K值大小主要与螺纹副摩擦、支承面摩擦有关,K=0.15~0.2,加润滑油的可达0.12。根据《机械设计》(濮良贵主编)建议,按K=0.2计算。

2. F——预紧力(N)

拧紧后螺纹连接件的预紧力F不得超过其材料屈服极限的80%,推荐按以下关系式确定F。

螺栓:F≤(0.6~0.7)σs A1;

不锈钢螺栓:F≤(0.5~0.6)σs A1,

即F≤K1σs A1,螺栓K1取0.6,不锈钢螺栓K1取0.5。

1)σs——对应等级螺栓的材料屈服极限(MPa)(需查表)

2)A1——螺栓危险截面的面积,单位mm2

根据《机械设计》(濮良贵主编),危险截面按螺栓小径d1计算,即

A1=1/4×π×d12

故F≤K1σs A1

=K1σs×1/4×π×d12 ( N)

3. d——螺栓螺纹外径(mm)

由以上分析,综合得

T=KFd×10-3

≤K×(K1×σs×1/4×π×d12)×d×10-3

=1/4×K×K1×σs×π×10-3×d12×d(N.m)

即螺栓最大扭紧力矩T max=1/4×K×K1×σs×π×10-3×d12×d(N.m)

三、扭紧力矩值表

相同外径的粗牙螺栓对应一种螺栓小径,而相同外径的细牙螺栓存在几种螺栓小径。其中细牙螺栓优选规格如下:

注:P——螺距

根据螺栓最大扭紧力矩T max计算公式,分别计算出不同规格螺栓最大扭紧力矩值T max。以下列出常用的T max供设计使用。(注:对于细牙螺栓,选用细牙螺栓优选规格计算。)

四、参考文献

[1] 《机械设计手册(新版)第2卷》.王文斌主编——北京:机械工业出版社,2006

年4月第3版。

[2] 《机械设计》.刘迎春主编——北京:高等教育出版社,2004年4月第1版。

[3] 《机械设计》.濮良贵主编——北京:高等教育出版社,1996年5月第6版。

螺栓最大扭紧力矩计算(参考资料)

螺栓最大扭紧力矩计算 一、背景 安装时对于一般的零件装配,靠操作者在扭紧时的感觉和经验来拧紧螺栓就已经 能满足安装要求。但对于重要的联接,就需提供具体的扭紧力矩值来保证产品质量与 安全。针对这一问题,现参考机械设计手册及相关的机械设计资料,对螺栓的最大扭 紧力矩进行详细的分析计算,并把不同等级不同规格的螺栓的最大扭紧力矩计算结果 列成表格,供参考使用,为安装现场提供准确的扭紧力矩依据。 二、分析计算 拧紧螺栓需要的预紧力矩T=KFd×10-3(N.m) 1. K——扭矩系数。 K值大小主要与螺纹副摩擦、支承面摩擦有关,K=0.15~0.2,加润滑油的可达0.12。根据《机械设计》(濮良贵主编)建议,按K=0.2计算。 2. F——预紧力(N) 拧紧后螺纹连接件的预紧力F不得超过其材料屈服极限的80%,推荐按以下关系 式确定F。 螺栓:F≤(0.6~0.7)σs A1; 不锈钢螺栓:F≤(0.5~0.6)σs A1, 即F≤K1σs A1,螺栓K1取0.6,不锈钢螺栓K1取0.5。 1)σs——对应等级螺栓的材料屈服极限(MPa)(需查表) 螺栓 3.6 4.6 4.8 5.6 5.8 6.88.89.810.912.9 性能等级 屈服极限δs 1902403003404204806407209401100 min/Mpa 不锈钢螺栓性能等级A2-50A2-70A2-80 屈服极限δs 210450600 min/Mpa 2)A1——螺栓危险截面的面积,单位mm2

根据《机械设计》(濮良贵主编),危险截面按螺栓小径d1计算,即 A1=1/4×π×d12 故F≤K1σs A1 =K1σs×1/4×π×d12 ( N) 3. d——螺栓螺纹外径(mm) 由以上分析,综合得 T=KFd×10-3 ≤K×(K1×σs×1/4×π×d12)×d×10-3 =1/4×K×K1×σs×π×10-3×d12×d(N.m) 即螺栓最大扭紧力矩T max=1/4×K×K1×σs×π×10-3×d12×d(N.m) 三、扭紧力矩值表 相同外径的粗牙螺栓对应一种螺栓小径,而相同外径的细牙螺栓存在几种螺栓小径。其中细牙螺栓优选规格如下: 细牙螺栓优选规格 d M6 M8 M10 M12 M16 M20 M24 d×P - M8×1 M10×1 M12×1.5 M16×1.5 M20×1.5 M24×2 注:P——螺距 根据螺栓最大扭紧力矩T max计算公式,分别计算出不同规格螺栓最大扭紧力矩值 T max。以下列出常用的T max供设计使用。(注:对于细牙螺栓,选用细牙螺栓优选规格 计算。)

拧紧力矩的计算方法

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm K 值表(参考) 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

螺栓拧紧力矩标准全

螺栓拧紧力矩标准 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235)

螺栓拧紧力矩标准

M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235)

螺栓拧紧力矩及标准

螺栓拧紧力矩标准 M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。

★对于设计图纸有明确力矩要求的,应按图纸要求执行。 套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235)

管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头

螺栓拧紧方法

以下均以(牛.米)为单位。 温馨提示:当准备拧紧螺栓时,需要在螺栓的螺纹上涂少许机油,以便我们拧紧的时候减少多螺栓的损害;注意:机油不能涂太多,如涂太多后会造成“液锁”现象。 螺栓的拧紧方式及拧紧的质量评估 在汽车制造业中,将各种汽车零部件装配成整车的过程,需要很多种不同类型的联接,比如焊接、螺栓联接和粘胶联接等。其中螺栓联接是最重要的联接方法之一。由于螺栓联接可以获得很高的联接强度,又便于装拆,具有互换性,通过标准化实现了大批量生产,成本低而且价格便宜,经常被应用到发动机、变速箱和底盘等重要位置的装配中。所以,螺栓的拧紧质量直接影响到产品的安全性和可靠性。 螺栓联接质量控制原理 螺栓联接的实质是通过将螺栓的轴向预紧力控制到适当范围,从而将两个工件可靠地联接在一起。为了确保螺纹联接的刚性、密封性、防松能力和受拉螺栓的疲劳强度,联接螺栓对预紧力的精度要求是相当高的。所以,轴向预紧力是评价螺栓联接可靠性的重要指标。轴向预紧力的最低限是由联接结构的用途决定的,该值必须保证被联接工件在工作过程中始终可靠贴合。轴向预紧力的最高值必须保证螺栓及被联接工件在预紧和工作过程中不会发生脱扣、剪断和疲劳断裂等损坏。

怎样控制和监控预紧力的数值,使之能够达到产品要求显然是一个值得研究的课题。 螺栓拧紧方法 螺栓拧紧方法主要有两类,分别是弹性拧紧和塑性拧紧。弹性拧紧一般指扭矩拧紧法,塑性拧紧主要包括转角拧紧法、屈服点拧紧法等。 1.扭矩拧紧法 扭矩拧紧法的原理是扭矩大小和轴向预紧力之间存在一定关系。通过将拧紧工具设置到某个扭矩值来控制被联接件的预紧力。在工艺过程、零件质量等因素稳定的前提下,该拧紧方式操作简单、直观,目前被广泛采用。 根据经验,在拧紧螺栓时,有50%的扭矩消耗在螺栓端面的摩擦上,有40%消耗在螺纹的摩擦上,仅有10%的扭矩用来产生预紧力。由于外界不稳定条件对扭矩拧紧法的影响很多,所以通过控制拧紧扭矩间接地实施预紧力控制的扭矩法将导致对轴向预紧力控制精度低。 而且有极少数的螺栓联接,扭矩已达到规定值,而螺栓头还未完全与被联接件贴合或间隙有时很小,目视不容易发现。此时扭矩值是合格的,但预紧力很小,甚至没有,所以在这种情况下,如果仅仅提出保证扭矩合格,那么保证装配拧紧质量就成了一句空话。 图1 转角拧紧法的拧紧曲线

螺栓标准扭紧力矩

螺栓标准扭紧力矩 螺纹紧固件扭紧力矩规范 QY/JG-2003 材料 35、45 15MnVB、45 40Cr、40Mn 硬度 HB167-207 HB285-321 HRC35-40 机械性能等级 5.6级 8.8级 10.9级 扭紧力矩 规格N.m(δs=300N/mm2)N.m(δ0.2=640N/mm2)N.m(δ0.2=800N/mm2) M6 4~6.5 6~12 M8 8~15 16~30 M8×1 9~16 18~34 M10 18~30 36~63 50~80 M10×1 20~35 40~70 60~85 M12 30~47 70~110 90~135 M12×1.5 35~54 75~115 95~145 M12×1.25 37~56 80~120 100~150 M14 55~82 120~160 145~210 M14×1.5 56~84 130~180 160~230 M16 85~127 180~240 220~300 M16×1.5 90~136 190~260 240~320 M18 118~170 250~300 310~400 M18×1.5 130~190 280~320 350~430 M20 167~250 350~410 440~520 M20×1.5 185~270 390~450 490~580 M22×1.5 250~370 510~580 660~750 M24×1.5 330~490 620~700 870~960 注: 1、本标准参照汽研标准科提出的相关标准; 2、本标准适用于在图纸和技术文件中,未规定扭紧力矩的螺纹紧固件,对重要部位的螺纹紧固件,其扭紧力矩必须在图样或技术文件中注明。 3、本标准不适用于承受交变载荷及有特殊扭矩要求的螺纹紧固件,不适用于轻金属如铝等及薄壁金属件(厚度小于4mm),弹簧零件组及软垫的联结组。装配时如果使用润滑油,其扭紧力矩值减少10%。 4、装配时根据扭紧力矩值要求选取合适的风扳机(我厂常用风扳机扭紧力矩见附表一)。下表仅说明风扳机的许用扭矩,装配时根据实际风压进行调整。 5、新产品试装阶段,在不特殊说明情况下,螺栓扭矩可执行该标准。 常用风扳机规格及扭矩 规格许用扭矩(N.m/3mm) QGB10 70 QGB16 200

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

螺栓大扭紧力矩计算

螺栓大扭紧力矩计算

作者:日期:2

安装时对于一般的零件装配,靠操作者在扭紧时的感觉和经验来拧紧螺栓就已经能满足安装要求。但对于重要的联接,就需提供具体的扭紧力矩值来保证产品质量与安全。针对这一问题,现参考机械设计手册及相关的机械设计资料,对螺栓的最大扭紧力矩进行详细的分析计算,并把不同等级不同规格的螺栓的最大扭紧力矩计算结果列成表格,供参考使用,为安装现场提供准确的扭紧力矩依据。 二、分析计算 -3 拧紧螺栓需要的预紧力矩T=KFd×10-3(N.m) 1. K ——扭矩系数。 K 值大小主要与螺纹副摩擦、支承面摩擦有关,K=0.15 ~0.2 ,加润滑油的可达 0.12 。根据《机械设计》(濮良贵主编)建议,按K=0.2 计算。 2. F ——预紧力(N)拧紧后螺纹连接件的预紧力F 不得超过其材料屈服极限的80%,推荐按以下关系式确定F。 螺栓:F≤(0.6 ~0.7 )σs A1; 不锈钢螺栓:F≤(0.5 ~0.6 )σs A1, 即F≤K1σs A1,螺栓K1取0.6, 不锈钢螺栓K1取0.5 s——对应等级螺栓的材料屈服极限()(需查表) 1

根据《机械设计》(濮良贵主编),危险截面按螺栓小径d1 计算,即 2 A1=1/4 ×π×d1 故F≤K1σs A1 =K1σs×1/4×π×d12(N) 3. d ——螺栓螺纹外径(mm) 由以上分析,综合得 -3 T=KFd×10 2 - 3 ≤K×(K1×σs×1/ 4 ×π×d1 )×d×10 -3 2 =1/4 ×K×K1×σs×π× 10 ×d1 × d(N.m) -3 2 即螺栓最大扭紧力矩T max=1/4 × K× K1×σ s×π× 10 ×d1 ×d(N.m) 三、扭紧力矩值表 相同外径的粗牙螺栓对应一种螺栓小径,而相同外径的细牙螺栓存在几种螺栓小径。其中细牙螺栓优选规格如下: P 根据螺栓最大扭紧力矩T max 计算公式,分别计算出不同规格螺栓最大扭紧力矩值T max。以下列出常用的T max 供设计使用。(注:对于细牙螺栓,选用细牙螺栓优选规格计算。)

高强度螺栓预紧力和拧紧力矩比较分析

高强度螺栓预紧力和拧紧力矩比较分析 在钢结构连接中经常使用高强度螺栓。高强度螺栓连接对于防止松动有良好的可靠性,尤其用于连接动载荷的构件。在高强度螺栓连接中,预紧力和拧紧力矩是一个很重要的参数。下面就高强度螺栓的预紧力及拧紧力矩进行探讨,以期得到合理的结果,在今后的设计中应用。 1 预紧力大小的确定 高强度螺栓预紧力的大小跟螺栓的材料及其横截面面积有关。所用材料需要经过调质处理以提高其机械性能,满足使用要求。国内高强度螺栓的材料一般为45钢、40B钢及40Cr钢。45钢用作级的螺栓,40B钢及40Cr 钢用作级的螺栓。 预紧力大小由下式计算: P=σ b F i (1-1) 式中σ b —高强度螺栓材料经热处理后的抗拉强度限, F i —螺栓的计算面积(按内螺纹直径计算),按下表取。 高强度螺栓的螺纹内径d 1和计算面积F i 螺栓公称直径M16 M18 M20 M22 M24 螺纹的内径(mm) 计算面积(mm2)149 182 235 292 2 拧紧力矩的计算 拧紧力矩是为了使螺栓产生预紧力,其大小由预紧力确定。 拧紧力矩由下式计算: M =(kg·m)(2-1)

式中 P —高强度螺栓需要的预紧力(t ); d —高强度螺栓的公称直径(mm )。 3 下面就国内外高强度螺栓,根据它们的材料的机械性能计算其预紧力和拧紧力矩,并进行比较和分析,从中找到适合我们应用的预紧力和拧紧力矩。 (1) 根据《机械设计手册》(机械工业出版社) 材料: 45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下表所示。 预紧力F v (kN)及扭紧力矩M A (N·m) (2) 根据《起重机设计手册》(辽宁人民出版社) 材料:45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下: 预紧力F v (kN)及扭紧力矩M A (N·m)

螺栓紧固力矩标准

目次 1 总则 1.1 范围 1.2 引用标准 2 计算方法 2.1 一般要求 2.2 计算步骤 附录A法兰螺栓紧固力矩的计算实例 附录B常用的法兰螺栓紧固力矩 1 总则 1.1 范围 1.1.1本标准规定了法兰螺栓紧固力矩的计算方法。 1.1.2本标准适用于设计压力不大于35 MPa、钢材的使用温度在允许范围之内的法兰螺栓紧固力矩的计算。 1.2引用标准 使用本标准时。应使用下列标准最新版本。 GB 150 《钢制压力容器》。 GB/T 196 《普通螺纹基本尺寸(直径1~600 mm)》。 2 计算方法 2.1 一般要求 2.1.1 本标准考虑了流体静压力及垫片压紧力的作用,未考虑外力、外力矩的作用。 2.1.2 法兰螺栓紧固力矩是指为避免操作状态下法兰泄漏,在法兰安装时扭紧螺栓所需的扭力矩。该扭力矩在避免法兰泄漏的同时, 不致造成垫片损坏、法兰永久变形和螺栓屈服。由于理论计算模型不可能与实际情况完全吻合,因此本标准的法兰螺栓紧固力矩数值只作为施工中的参考,在操作状态仍需考虑进行热紧。 2.2 计算步骤 2.2.1 垫片基本密封宽度b0 根据垫片型式及尺寸,按表2.2.1确定垫片基本密封宽度b0(mm)。 2.2.2 垫片有效密封宽度b 垫片有效密封宽度b(mm)按以下规定计算: a) 当b0≤6.4 mm时,b=b0;

b) 当b 0>6.4 mm 时,b = 2.530b 。 2.2.3 垫片压紧力作用中心圆直径D G 2.2. 3.1 对于活套法兰,垫片压紧力作用中心圆直径D G (mm )即为法兰与翻边接触面的平均直径。 2.2. 3.2 对于其他型式的法兰,按下述规定计算D G (mm ): a) 当b 0≤6.4 mm 时,D G 等于垫片接触面的平均直径; b) 当b 0>6.4 mm 时,D G 等于垫片接触面外直径减2b 。 2.2.4 操作状态下内压力引起的螺栓总轴向力按式(2.2.4)计算: (2.2.4) 式中: F ——操作状态下内压力引起的螺栓总轴向力,N ; P ——设计压力,MPa 。 2.2.5 操作状态下需要的最小垫片压紧力按式(2.2.5)计算: F P =2π D G b m P (2.2.5) 式中: F P ——操作状态下需要的最小垫片压紧力,N ; m ——垫片系数,由表2.2.5查得。 表2.2.1 垫片基本密度宽度 压紧面形状(简图) 垫片基本密封宽度b 0 Ⅰ Ⅱ 1a 1b 1c ω<N (最大) (最大) 1d ω≤N 2 ω<N /2 3 ω<N /2 4① 5① 2N 2N 2 g δω+2 g δω+4N +ω4N +ω4 N +ω8 3N +ω4N 83N 8 3N 4 N 83N 167N P D F ??= 2 G 4 π

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

螺栓紧固力矩确认

工业装配中使用最多的就是紧固件,譬如螺母螺帽、螺丝等。通常之前的方法是工人靠自己的感觉,认为紧到不能紧时就可以结束。这个不同的人拧紧同一个工位,往往会造成紧固力度不统一。小的方面就是产品品质无法统一标准,大点将可能因此出现事故。 过紧,会导致螺栓张力过大,造成螺栓屈服,一种会螺栓断裂或者滑丝,失去紧固效果。过松,实际没有起到紧固的作用。 那么一般怎么确定螺栓的紧固扭矩呢,下面转述一篇关于机螺丝的确认方法。 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我们应该计算一下合理的拧紧力矩。紧固机螺丝的这些力矩与紧固螺栓、螺母的力矩相比起来要小得多。 1、机螺丝拧紧力矩的计算 常用的计算螺纹紧固件拧紧力矩的公式为: T=D×K×P 其中: T:力矩(牛顿?米/英寸?磅1Nm=9 in.1b) D:螺纹的外径(1mm=0.03937 in) K:螺母的摩擦系数 (光杆螺栓 K=0.20 镀锌螺栓 K=0.22 上蜡或带润滑螺栓 K=0.10) P:夹紧力(一般是屈服点抗拉强度值的75%) 以下扭矩表格首先要参考摩擦系数,此点为造成各扭矩表格不一致的主要原因。所以使用表格,请确定好摩擦系数螺纹外径螺距等等。 1.1米制机螺丝 米制机螺丝(Metric Machine Screws)有不同的强度等级,每个等级都有相应合适的拧紧力矩。在ISO国际标准中来制机螺丝 (Metric Machine Screws)有两个主要的强度等级:4.8级(类似 SAE 60M)和8.8级(类似SAE 120M)。强度等级4.8表示最小的抗拉强度是480MPa,这约等于每英寸70,000磅(即70,000 Psi)。强度等级8.8 表示最小的抗拉强度是880MPa,约等于每英寸127,000磅(127,000Psi)。米制电镀锌机螺丝拧紧力矩见表1。

螺栓预紧力的计算

1螺栓的预紧力可按下式计算: P0—预紧力 P0=σ0×As As=π×ds^2/4 ds—螺纹部分危险剖面的计算直径 2ds=(d2+d3)/2 d3= d1-H/6 H—螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs—螺栓材料的屈服极限kgf/mm^2 (与强度等级相关,材质决定) 2 也可查表: 螺栓性能等级的含义 2007年11月23日星期五 14:29 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级

是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

高强度螺栓预紧力及拧紧扭矩(全)

常用高强度螺栓预紧力和拧紧扭矩 (参考件) 李毅民 By liyimin 2004-7-18 预紧力Fv(kN)及扭紧力矩MA(N·m) 螺 纹 直 径 螺 栓 的 性 能 等 级 直 径 d mm螺 距p mm 8.8 10.9 Fv(kN) MA(N·m) Fv(kN) MA (N·m) M12 1.75 45 100 55 110 M16 2 70 230 100 320 M20 2.5 110 455 155 590 M24 3 155 775 225 1000 M30 3.5 250 1570 335 2100 此表为参考建议,计算方式决定扭紧力矩见下面公式。请注意国产10.9s高强度螺栓部分扭矩此表数据会偏高一些。 Tightening torques and prestressing force for HV and HVP 10.9s 国际标准 Thread diameter d M12M16M20M22M24M27M30 Hold diameter13172123252831 Required Prestressing force Pv [kN] 50100160190220290350 Ma1) [N.m]MoS2 lubricated10025045065080012501650 slightly oiled120350600900110016502200 Prestressing force Pv 2)[kN] 60110175210240320390 1)Torque to be applied with torque spanners 2).Prestressing force to be applied with impact wrenches 计算方式决定施工高强度螺栓扭矩: Ma=1.1 k Pv d 式中: k---扭矩系数 ,此数据由高强度螺栓制造商提供或在安装前实验 得到。通常k=0.11-0.15,详细数据见 供货商的质量报告。 Pv---高强度螺栓预拉力, [kN]; d---高强度螺栓直径,mm。 如何确定机螺丝的紧固力矩 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我

螺丝破坏扭力的计算

在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。 螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。国内尚未发现相应的行业标准,仅少数企业制定了企业标准。尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。这也就是制定此项标准的初衷。 日本国家标准JIS B 1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B 1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。因此,在制定标准时,在充分消化、分析日本标准的基础上,提出了等效采用的意见。 因此,本系列标准也包括了下列三个国家标准: 1、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》; 2、GB/T16823.2-1997《螺纹紧固件紧固通则》; 3、GB/T16823.3-1997《螺纹紧固件拧紧试验方法》 一、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》 本标准等效采用JIS B 1082-1987《螺纹紧固件应力截面积和承载截面积》标准,本标准是设计螺纹紧固件扭-拉关系系列标准之一。 1、范围 本标准规定的螺纹紧固件的应力截面积(As)适用于计算外螺纹紧固件的最小拉力载荷、保证载荷以及内螺纹紧固件的保证载荷。外螺纹紧固件包括螺栓、螺钉和螺柱等标准件和专用件;内螺纹紧固件包括螺母标准件、专用件及机体中的螺孔。其螺纹尺寸及公差均应符合GB/T193、GB/T196和GB/T197的规定。本标准不适用于寸制螺纹、统一螺纹、惠氏螺纹等其他螺纹紧固件。 2、螺纹紧固件应力截面积计算公式 本标准规定的螺纹紧固件应力截面积计算公式有两个,即公式(1)和公式(2)。 螺纹紧固件应力截面积计算公式(1)与已发布的国家标准,即 GB/T3098.1《紧固件机械性能螺栓、螺钉和螺柱》、GB/T3098.2《紧固件机械性能螺母》、GB/T3098.4《紧固件机械性能细牙螺母》和GB/T3098.6《紧固

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸

浅谈装配中的螺栓拧紧力矩汇总

浅谈装配中的螺栓拧紧力矩 一、螺纹基本知识 1.1 左旋右旋 1、右旋螺纹:常用的最重要原因有两个:一是右手常用方便、顺手;二是右螺纹车削工艺性好 2、左旋螺纹:符合左手定则。用于右旋螺纹不能满足的地方。 例如:因为运动方向可能导致松动的地方---自行车的左脚踏板芯轴; 保证右旋习惯的地方----机床进给丝杠; 起区分的作用----可燃气体气瓶; 双向运动---拉器等....。 一般机械调节装置会用到左旋螺纹,左右螺纹匹配应用,也就是一根螺杆的两端分别为左旋螺纹和右旋螺纹,这样就可以通过旋转螺杆实现两端螺母的间距;如自行车轮轴,暖气片组螺纹轴等

1.2粗牙细牙 粗牙螺纹:用于紧固件 细牙螺纹:同样的公称直径下,细牙的螺距小,升角小,自锁性能更好,适于薄壁细小零件和冲击变载等情况 1.3 螺纹头数 单头螺纹(n=1):用于紧固 双头螺纹和多线螺纹(n>=2):用于传动 1.4 自锁螺纹 如图所示,螺纹受到向外的力,螺旋角为,导程,中径。当 ,即时,不论有多大,螺纹都不会脱落(脱扣另说)。 二、螺纹联接预紧力的作用 螺纹联接的预紧力就是使螺纹联接在承受工作载荷之前预先受到力的作用,这个预加作用力就是预紧力。合适的预紧力是增强联接可靠性和紧密性的重要前提。预紧力达不到规定要求就会使被联接件受载后出现缝隙或发生相对滑移,造

成零部件的松动,甚至使整机无法正常工作。如果预紧力过大就会引起人为的零部件损坏,例如采用O形圈密处如果预紧力过大就会挤坏0形圈,使密封失效。不合适的预紧力会带来以下后果: (1)螺纹联接零件的静力破坏。 若螺纹紧固件拧得过紧,即预紧力过大,就会引起人为的零部件损坏,螺栓可能被拧断,联接件被压碎、咬粘、扭曲或断裂,也可能使螺纹牙形被剪断而脱扣。 (2)被联接件滑移、分离或紧固件松脱。 对于承受横向载荷的普通螺栓联接,预紧力使被联接件之间产生正压力,依靠摩擦力抵抗外载荷,因此预紧力的大小决定了它的承载能力。若预紧力不足,被联接件将出现滑移,从而导致被联接件错位、歪斜、折皱,螺栓有可能被剪断。对于受轴向载荷的螺栓联接,预紧力使接合面上产生压紧力,受外载荷作用后的剩余预紧力是接合面上工作时的压紧力。若预紧力不足将会导致接合面松动,甚至导致两被联接件分离的严重后果,同时预紧力不足还将引起强烈的横向振动,致使螺母松脱等现象发生。 (3)螺栓疲劳破坏。 不合适的预紧力在大多数情况下会使螺栓因疲劳而失效。减小预紧力虽然能使螺栓上循环变化的总载荷的平均值减小,但却使载荷变幅增大,所以总的效果大多数是使螺栓疲劳寿命下降,引起疲劳破坏。因此在装配工艺中一定要确定预紧力的范围。根据被联接件的重要程度、受力情况、运动方式、结构特点、螺纹规格与等级、被联接件材料与联接的目的等方面综合考虑,确定科学合理的预紧力矩范围;在装配时严格遵守工艺规定的力矩要求。只有这样才能真正提高螺纹联接的可靠性以及联接件的抗疲劳强度。 三、螺栓受力 3.1 受力分析 螺栓在螺母拧紧时受到两种应力:①预紧力引起的拉应力;②螺纹力矩引起的扭转剪切力。 研究表明,当螺栓承受的预紧拉应力(表示)达到其屈服强度(表示)的 0.78倍时,螺纹沟底开始破坏,由此螺栓预紧应力需满足这一前提

螺栓拧紧力矩计算

螺栓拧紧力矩计算书 一.相关计算参数: 螺栓规格 d mm 螺距 P mm 螺纹原始三角形高度H mm 外螺纹中径 d2 mm 外螺纹小径 d1 mm 计算直径 d3 mm 螺栓公称应力截面积As mm2 螺栓材料屈服强度s σ MPa 计算拧紧力矩 T Nm 二.计算内容: 根据要求,所需计算DN300及以上接管法兰所配螺栓拧紧力矩,故统计相关法兰如下: N1 N2 N4 N6 一效结晶器 DN1200 DN900 DN1200 DN600 二效结晶器 DN1200 DN1200 DN1200 DN600 三效结晶器 DN1200 DN1600 DN1200 DN600 APU 效结晶器 DN800 DN1400 DN800 DN600 根据管法兰相关标准,DN600所配螺栓为M33 DN800、DN900、DN1200所配螺栓为M39 DN1400、DN1600所配螺栓为M45 三.计算过程: 螺栓规格 d d=33 螺距 P P=3.5 螺纹原始三角形高度H 031.35.3866.0866.0=?=?=P H 外螺纹小径 d1 21.29031.3852338521=??-=??-=H d d 外螺纹中径 d2 73.30031.383 2338322=??-=??-=H d d 计算直径 d3 7.28031.36 1 21.296113=?-=?-=H d d 螺栓公称应力截面积As 14.69327.2873.30414.3242 232=?? ? ??+?=??? ??+?∏=d d A s 螺栓材料屈服强度s σ 114 计算拧紧力矩 T 91.31210003314.69311412.012.0=÷???=???=d A T S S σ 通常取计算值的0.8倍左右作为实际应用的拧紧力矩值

螺栓标准扭矩及预紧力速查表

内六角外六角螺 栓螺 栓S(mm)S(mm)M(mm)Fv(N)Ma(Nm)Fv(N)Ma(Nm)Fv(N)Ma(Nm)Fv(N)Ma(Nm)Fv(N)Ma(Nm)Fv(N)Ma(Nm)1.54M22550.13450.157100.38350.351,1700.51,4150.625M2.54850.266550.351,3100.711,5500.832,180 1.182,620 1.42.25 5.5M36300.371,0500.621,7000.992,250 1.33,150 1.93,800 2.26M3.58500.571,4000.952,250 1.53,00024,250 2.95,100 3.437M41,1000.851,850 1.42,900 2.33,90035,750 4.46,700 5.148、9M51,800 1.73,000 2.84,800 4.56,400 5.99,4008.711,00010510M62,550 2.94,200 4.86,7507.79,0001013,2001515,50018613、14M84,65077,7501212,4001916,5002524,3003628,40043815、17M107,4001412,3002319,7003726,3004938,7007245,200841019、21M1210,8002418,0004028,8006538,4008556,50012566,0001451222、23M1414,8003924,7006439,50010552,50013577,50020090,5002351424、26M1620,4005934,0009854,50015572,500210107,000310125,00036527M1824,8008141,30013566,00021591,000300129,000430152,0005001730M2031,90011553,00019085,000305117,000425166,000610195,00071032M2239,90015566,500260106,000415146,000580208,000820244,0009601936M2445,90020076,500330122,000530168,000730240,0001,050281,0001,22041M2780,500295100,000490161,000780222,0001,100316,0001,550369,0001,8002246M3073,500395122,000660196,0001,050269,0001,450384,0002,100449,0002,45050M3391,500540153,000900244,0001,450326,0001,900458,0002,700550,0003,2502755M36107,000690179,0001,150287,0001,850382,0002,450537,0003,450645,0004,15060M39129,000900215,0001,500345,0002,400460,0003,200646,0004,500775,0005,40032 65M42148,0001,100247,0001,850395,0002,950526,0003,950740,0005,550888,0006,65070M45173,0001,400289,000 2,300 462,0003,700616,0004,950867,000 6,950 1,050,0008,3503675M48195,0001,700325,0002,800520,0004,450693,0005,950974,0008,4001,150,000,10,10080M52234,0002,150390,0003,600624,0005,750832,0007,6501,169,00010,8001,403,00012,9004185M56270,0002,700450,0004,500719,0007,150959,0009,5501,349,00013,4001,618,00016,10090M60315,0003,350525,0005,550841,0008,9001,121,00011,9001,576,00016,7001,892,00020,00046 95 M64 357,000 4,000 595,0006,700951,000 10,700 1,268,000 14,300 1,784,00021,100 2,140,000 24,100 6.98.810.9 12.9 S-内六角或外六方两平行边距离 Fv-螺栓预紧力Ma-螺栓扭矩 螺栓直径DIN267性能等级(螺栓强度等级)3.6 5.6

相关文档