文档库 最新最全的文档下载
当前位置:文档库 › 2011年高考数学专题讲义:: 向量与圆锥曲线

2011年高考数学专题讲义:: 向量与圆锥曲线

2011年高考数学专题讲义:: 向量与圆锥曲线
2011年高考数学专题讲义:: 向量与圆锥曲线

第十八讲 向量与圆锥曲线(一)

★★★高考在考什么 【考题回放】

1.20年(重庆)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线40

x +

+=有且

仅有一个交点,则椭圆的长轴长为 ( ) (A )2

3

(B )6

2

(C )7

2

(D )2

4

2.年(全国)设12F F ,分别是双曲线2

2

19

y

x -

=的左、右焦点.若点P 在双曲线上,且

120P F P F ?= ,则12P F P F +=

( )

A B . C D .3.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A,B 两点,点Q 与点P 关

于y 轴对称,O 为坐标原点,若2B P P A =

且1O Q A B ?= ,则点

P 的轨迹方程是( )

A .22

331(0,0)2

x y

x y +=>> B .2

2

331(0,0)2

x y

x y -=>> C .

2

2

331(0,0)2

x y

x y -=>> D .

2

2

331(0,0)2

x y

x y +=>>

4.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足

0=?+?NP MN ,则动点P (x ,y )的轨迹方程为( )

(A )x

y 82

= (B )x

y 82

-= (C )x

y 42

= (D )x

y 42

-=

5.若曲线y 2

=|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是

★★★高考要考什么

【热点透析】 知识要点:

1.直线与圆锥曲线的公共点的情况

00),(0

2

=++??

?

?==++C Bx Ax y x f c by ax 曲线:直线:)

0'''(2

=++C y B y

A 或

(1)没有公共点 → 方程组无解 (2)一个公共点 →

,0)0)=?≠→

=→A ii A i 相切

相交

(3)两个公共点 → 0

,0>?≠A

2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系

来计算弦长,常用的弦长公式:1212A B x y y =

-=

-

3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题

主要题型:

1.三点共线问题; 2.公共点个数问题; 3.弦长问题; 4.中点问题; 5.定比分点问题; 6.对称问题;

7.平行与垂直问题; 8.角的问题。

近几年平面向量与解析几何交汇试题考查方向为

(1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。

(2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。

特别提醒:?法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。

★★★突破重难点

【例1】在平面直角坐标系x O y 中,直线l 与抛物线y 2

=2x 相交于A 、B 两点.

(1)求证:“如果直线l 过点T (3,0),那么→

--OA →

--?OB =3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

[解](1)设过点T(3,0)的直线l 交抛物线y 2

=2x 于点A(x 1,y 1)、B(x 2,y 2). 当直线l 的钭率不存在时,直线l 的方程为x=3,此时,直线l 与抛物线相交于 点A(3,6)、B(3,-6). ∴OB OA ?=3;

当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,

由2

2(3)

y x y k x =??=-?得 2122606k y y k y y --=?=- 又 ∵ 22

112211,22

x y x y =

=, ∴2121212121

()34

?=+=+=

O A O B x x y y y y y y ,

综上所述,命题“如果直线l 过点T(3,0),那么OB OA ?=3”是真命题;

(2)逆命题是:设直线l 交抛物线y 2

=2x 于A 、B 两点,如果OB OA ?=3,那么该直线过点

T(3,0).该命题是假命题.

例如:取抛物线上的点A(2,2),B(

2

1,1),此时?

O A O B =3,直线AB 的方程为:

2

(1)3

y x =

+,而T(3,0)不在直线AB 上; 说明:由抛物线y 2

=2x 上的点A (x 1,y 1)、B (x 2,y 2) 满足OB OA ?=3,可得y 1y 2=-6,或y 1y 2=2,如果y 1y 2=-6,可证得直线AB 过点(3,0);如果y 1y 2=2,可证得直线AB 过点(-1,0),而不过点(3,0).

【例2】已知A,B 为抛物线x 2

=2py (p >0)上异于原点的两点,0O A O B ?=

,点C 坐标为

(0,2p )

(1)求证:A,B,C 三点共线;

(2)若AM =BM λ(R ∈λ)且0O M A B ?=

试求点M 的轨迹方程。

(1)证明:设2

2

1

2

12(,

(,

22x x A x B x p

p

,由0O A O B ?=

2

2

2

1

2

12120,422x x x x x x p p p

+

=∴=-,

又222121121(,2(,22x x x A C x p A B x x p p

-=--=- 22

2

21

1

121(2)()022x x x x p x x p p

-∴-?

--?-=,

//A C A B ∴

,即A,B,C 三点共线。

(2)由(1)知直线AB 过定点C ,又由0O M A B ?=

及AM =BM λ(R ∈λ)知OM ⊥AB ,垂足为M ,所以点M 的轨迹为以OC 为直径的圆,除去坐标原点。即点M 的轨迹方程为x 2+(y-p )2=p 2(x ≠0,y ≠0)。

【例3】椭圆222

2

1(,0)x y a b a

b

+

=>的两个焦点F 1、F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,

| PF 1|=

3

4,| PF 2|=

3

14.

(I )求椭圆C 的方程;

(II )若直线l 过圆x 2+y 2

+4x -2y =0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程。

解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt△PF 1F 2中,,52

2

1

22

21=-=

PF PF

F F 故椭圆的半焦距c =5,

从而b 2

=a 2

-c 2

=4, 所以椭圆C 的方程为

4

9

2

2

y

x

+

=1.

(Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2).

由圆的方程为(x +2)2+(y -1)2

=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y =k (x +2)+1, 代入椭圆C 的方程得

(4+9k 2)x 2+(36k 2+18k )x +36k 2

+36k -27=0.

因为A ,B 关于点M 对称. 所以.2949182

2

2

2

1-=++-

=+k

k

k

x x

解得9

8=

k ,

所以直线l 的方程为,1)2(9

8++=

x y 即8x -9y +25=0. (经检验,符合题意)

解法二:(Ⅰ)同解法一.

(Ⅱ)已知圆的方程为(x +2)2+(y -1)2

=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且 ,14

9

2

12

1=+

y x

,14

9

2

22

2=+

y x

由①-②得

.04)

)((9

)

)((21212121=+-+

+-y y y y x x x x ③

因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2, 代入③得

2

121x x y y --=

9

8,即直线l 的斜率为

9

8,

所以直线l 的方程为y -1=9

8(x +2),即8x -9y +25=0.

(经检验,所求直线方程符合题意.)

【例4】(湖南)已知双曲线2

2

2x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.

(I )若动点M 满足1111F M F A F B F O =++

(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使C A ·C B

为常数?若存在,求出点C 的坐标;

若不存在,请说明理由.

解:由条件知1(20)F -,

,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则1(2)F M x y =+ ,,111(2)F A x y =+

,, 1221(2)(20)F B x y F O =+= ,,,,由1111F M F A F B F O =++ 得

121226x x x y y y +=++??=+?,即1212

4x x x y y y +=-??+=?, 于是A B 的中点坐标为422x y -??

???,. 当A B 不与x 轴垂直时,

1212

2

48

2

2

y

y y y x x x x -=

=----,即1212()8

y y y x x x -=

--.

又因为A B ,两点在双曲线上,所以22112x y -=,22

222x y -=,两式相减得

12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.

将1212()8

y y y x x x -=

--代入上式,化简得22

(6)4x y

--=.

当A B 与x 轴垂直时,122x x ==,求得(80)M ,

,也满足上述方程. 所以点M 的轨迹方程是22

(6)4x y --=.

(II )假设在x 轴上存在定点(0)C m ,

,使C A C B ?

为常数. 当A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±.

代入222x y -=有2222

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以2

122

41

k x x k

+=

-,2122

421

k x x k

+=

-,

于是21212()()(2)(2)C A C B x m x m k x x ?=--+--

2

2

2

2

1212(1)(2)()4k

x x k

m x x k

m =+-++++

2

2

22

2

2

2

2

(1)(42)

4(2)

41

1

k

k k k

m k

m k

k

+++=

-

++--

2

2

2

2

2

2(12)2

442(12)1

1

m k

m m

m m k

k

-+-=

+=-+

+--.

因为C A C B ? 是与k 无关的常数,所以440m -=,即1m =,此时C A C B ?

=1-. 当A B 与x 轴垂直时,点A B ,

的坐标可分别设为(2

,(2-,,

此时(1(11C A C B =?-=-

故在x 轴上存在定点(10)C ,,使C A C B ?

为常数.

解法二:(I )同解法一的(I )有12124x x x y y y

+=-??

+=?,

当A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±. 代入2

2

2x y -=有2

2

2

2

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以2

122

41

k x x k

+=

-.

2

1212244(4)411k k y y k x x k k k ??+=+-=-= ?--??

由①②③得2

2

441

k x k

-=

-.…………………………………………………④

2

41

k y k

=

-.……………………………………………………………………⑤

当0k ≠时,0y ≠,由④⑤得,

4x k y

-=,将其代入⑤有

22

2

2

444(4)(4)(4)1

x y x y

y x x y

y

-?-=

=----.整理得22

(6)4x y --=.

当0k =时,点M 的坐标为(40),,满足上述方程.

当A B 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 故点M 的轨迹方程是2

2

(6)4x y --=.

(II )假设在x 轴上存在定点点(0)C m ,,使C A C B ?

为常数,

当A B 不与x 轴垂直时,由(I )有2

12241k x x k

+=

-,2122

421

k x x k

+=

-.

以上同解法一的(II ).

第十九讲 向量与圆锥曲线(二)

【例5】设F 1、F 2分别是椭圆

14

2

2

=+y

x

的左、右焦点.

(Ⅰ)若P 是该椭圆上的一个动点,求12P F P F ?

的最大值和最小值;

(Ⅱ)设过定点M(0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 解:(Ⅰ)解法一:

易知2,1,a b c ===

,所以(

))

12

0,0F F ,设(),P x y

则(

))

2

2

12,,

,3P F P F x y x y x y ?=--=+-

()2

2

2

113384

4

x

x x

=+-

-=

-

因为[]2,2x ∈-,故当x=0,即点P 为椭圆短轴端点时,12P F P F ?

有最小值-2 当x=±2,即点P 为椭圆长轴端点时,12P F P F ?

有最大值1

解法二:易知2,1,a b c ===

(

))

12

0,0F F ,设(),P x y ,则

2

22

1

2121212121212

c o s 2P F P F F F P F P F P F P F F P F P F P F P F P F +-?=??∠=??

?

(

(

2

2

2

2

22112

32x y x y x y ?

?

=

+++-

+-=+-???

?

(以下同解法一) (Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,

联立22

2

14

y k x x y =-???+=?

?,消去y ,整理得:2

214304k x k x ??+++= ???

∴12122

2

43,114

4

k

x x x x k

k

+=-

?=

+

+

由()2

2

14434304k k k ?

??=-+

?=-> ??

?

得:2

k <

或2

k >-

又00

0090

c o s 000A B A B O A O B <∠??> ,∴12120O A O B x x y y ?=+>

又()()()2

121212122224y y kx kx k x x k x x =++=+++2

2

2

2

384114

4

k

k k

k

-=

+

++

+

2

2

114

k k

-+=

+

2

2

2

310114

4

k k

k

-++

>++

,即2

4k

< ∴22k -<<

故由①、②得22

k -<<-

22

k <<

【例6】(全国一)已知椭圆

2

2

13

2

x

y

+

=的左、右焦点分别为1F 、2F ,过1F 的直线交椭

圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且A C B D ⊥,垂足为P.

(Ⅰ)设P 点的坐标为00(,)x y ,证明:2

2

0013

2

x y +

<;(Ⅱ)求四边形ABCD 的面积

的最小值。

(Ⅰ)证明:

椭圆的半焦距1c =

=,

由A C B D ⊥知点P 在以线段12F F 为直径的圆上,

故22

001x y +=,所以,

2

2

2

2

0000113

2

2

2

2

x y x y +

+

=

<≤

(Ⅱ)(ⅰ)当B D 的斜率k 存在且0k ≠时,B D 的方程为(1)y k x =+,

代入椭圆方程

2

2

13

2

x

y

+

=,并化简得2

222

(32)6360k

x k x k

+++-=.

设11()B x y ,,22()D x y ,,则:2

122

632

k x x k

+=-

+,2122

3632

k x x k

-=

+,

2

122

1)

32

k B D x x k

+=-=

=

+;

因为AC 与BC 相交于点P ,且AC 的斜率为1k

-

所以,2

22

2111)12332

k k A C k k

?

+?+?=

=+?+. 四

ABCD

2

2

2

2

2

2

22

2

124(1)

(1)

962

(32)(23)

25

(32)(23)2

k k

S B D A C k

k

k k

+24+=

??=

=

++??

+++???

?

≥.

当k 2

=1时,上式取等号.

(ⅱ)当BD 的斜率k=0或斜率不存在时,四边形ABCD 的面积S=4.

综上,四边形ABCD 的面积的最小值为9625

【例7】

已知两定点(

))

12

0,0F F ,满足条件212P F P F -=

的点

P 的轨迹

是曲线E ,直线y=kx-1与曲线E 交于A,B

两点。如果A B =,且曲线E 上存在点C ,

使O A O B m O C +=

,求m 的值和?ABC 的面积S 。

由双曲线的定义可知,曲线E

是以(

))12

0,0

F F 为焦点的双曲线的左支,

且1

c a =

=,易知1b =,故曲线E 的方程为()2

2

10x y x -=<

设()()1122,,,A x y B x y ,由方程组2

2

11

y k x x y

=-??

-=?

消去y ,得()221220k x kx -+-= 又已知直线与双曲线左支交于两点,A B ,有

()()2

22

122

1221028102012

01k k k k x x k x x k ?-≠??=+->???

-?+=

-?=>?-?

解得1k <<-

又∵ 12A B x x =

-

=

=

=

依题意得

=

整理后得42

2855250

k k

-+=

∴2

5

7

k=

或2

5

4

k=但1

k

<<-∴

2

k

=-

故直线A B10

2

x y

++=

设()

,

c c

C x y,由已知O A O B m O C

+=

,得()()()

1122

,,,

c c

x y x y m x m y

+=

∴()1212

,,

c c

x x y y

x y

m m

++

??

= ?

??

,(

)0

m≠

122

2

1

k

x x

k

+==-

-

()

2

121222

22

228

11

k

y y k x x

k k

+=+-=-

==

--

∴点8

C

m m

??

?

?

??,

将点C的坐标代入曲线E的方程,得

22

8064

1

m m

-=得4

m=±,但当4

m=-时,所得的点在双曲线的右支上,不合题意

∴4

m=,C点的坐标为()2,C到A B

1

3

A B C

?的面积

11

23

S=?=

【例8】已知函数y k x

=与22(0)

y x x

=+≥的图象相交于

11

()

A x y

,,

22

()

B x y

,,

1

l,

2

l 分别是22(0)

y x x

=+≥的图象在A B

,两点的切线,M N

,分别是

1

l,

2

l与x轴的交点.(I)求k的取值范围;

(II)设t为点M的横坐标,当

12

x x

<时,写出t以

1

x为自变量的函数式,并求其定义域和值域;

(III)试比较O M与O N的大小,并说明理由(O是坐标原点).

解:(I)由方程

22

y k x

y x

=

?

?

=+

?

消y得220

x k x

-+=.····①

依题意,该方程有两个正实根,故

2

12

80

k

x x k

?

?=->

?

+=>

?

解得k>

(II)由()2

f x x

'=,求得切线

1

l的方程为

111

2()

y x x x y

=-+,

由2

112y x =+,并令0y =,得11

12

x t x =

-

1x ,2x 是方程①的两实根,且12x x <

,故12

x =

=

k >

1x 是关于k 的减函数,所以1x

的取值范围是(0.

t 是关于1x

的增函数,定义域为(0,所以值域为()-∞,0,

(III )当12x x <时,由(II )可知11

12

x O M t x ==-

+

类似可得22

12

x O N x =

-

.12

1212

2

x x x x O M O N x x ++-=-

+

由①可知122x x =.从而0O M O N -=. 当21x x <时,有相同的结果0O M O N -=. 所以O M O N =.

★★★自我提升

1、平面直角坐标系中,O 为坐标原点,已知A (3,1),B (-1,3),若点C 满足

OB OA OC βα+=,其中α,β∈R ,且α+β=1,则点C 的轨迹方程为( D )

A . 3x +2y -11=0

B .(x -1)2+(y -2)2

=5 C . 2x-y =0 D . x +2y -5=0

2、已知j i ,是x,y 轴正方向的单位向量,设a

=j y i x +-)2(, b =j y i x ++)2(,且

满足|a

|+|b |=4.则点P (x ,y )的轨迹是.( C )

A .椭圆

B .双曲线

C .线段

D .射线 3、中心在原点,焦点在坐标为(0,±52

)的椭圆被直线3x -y -2=0截得的弦的中点

的横坐标为

2

1,则椭圆方程为(C )

2

2

2

2

2

2

2

2

2222A. 1 B.

1 C.

1 D.

125

75

7525

25

75

75

25

x

y

x

y

x

y

x

y

+

=+=+

=+

=

4、直线y=kx +1与椭圆

152

2

=+

m

y

x

恒有公共点,则m 的取值范围是(A ).

A、m≥1且m≠5

B、m≥1

C、m≠5

D、m≤5

5、已知j

i

,是x,y轴正方向的单位向量,设a

=j y

i

x

+

-)

3

(, b

=j y

i

x

+

+)

3

(,且满足|a

|-|b

|=2.则点P(x,y)的轨迹C的方程为__________.(

2

21(0)

2

y

x x

-=<).

6.已知A、B为抛物线x2=2py (p>0)上两点,直线AB过焦点F,A、B在准线上的射影分别为C、D,则①y轴上恒存在一点K,使得0

=

?KF

KA;②0

=

?DF

CF;③存在实数λ使得AO

ADλ

=;④若线段AB中点P在在准线上的射影为T,有0

=

?AB

FT。中说法正确的为___________①②③④

7.已知椭圆

2

21

2

x

y

+=,过P(1,0)作直线l,使得l与该椭圆交于A,B两点,l与y 轴的交点为Q,且A Q P B

=

,求直线l的方程。

解:直线l过P(1,0),故可设方程为y=k(x-1),因为

A Q P B

=

,所以AB的中点与PQ的中点重合.

2

21

2

(1)

x

y

y k x

?

+=

?

?

?=-

?

得(1+2k2)x2-4k2x+2(k2-1)=0

所以

2

2

4

12

A B

k

x x

k

+=

+

,又x P+x Q=1

2

2

4

1

12

k

k

=

+

2

k=±(1)

2

y x

=±-。

8.已知椭圆)5

2(1

1

2

2

=

-

+m

m

y

m

x

左到右依次变于A、B、C、D,设f(m)=||AB|-|CD

解:(1)椭圆1

1

2

2

=

-

+

m

y

m

x

中,a2=m,b2=m-

则BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m

得(m-1)x2+m(x+1)2-m2+m=0

∴(2m-1)x2+2mx+2m-m2=0

设B(x1,y1),C(x2,y2),则x1+x2=-2(

1

2

2

-

m

m

m

1212

())(

)()

B A D C

A D

f m A B C D x x x x

x x x x x

=-=---

=+-+=+=

(2))

1

2

1

1(

2

1

2

1

1

2

2

)

(

-

+

=

-

+

-

=

m

m

m

m

f

∴当m =5时,92

10)(min =m f 当m =2时,32

4)(max =

m f

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高中数学竞赛_直线 圆锥曲线 平面向量

专题五 直线 圆锥曲线 平面向量 一 能力培养 1,函数与方程思想 2,数形结合思想 3,分类讨论思想 4,转化能力 5,运算能力 二 问题探讨 问题1设坐标原点为O,抛物线2 2y x =与过焦点的直线交于A,B 两点,求OA OB ? 的值. 问题2已知直线L 与椭圆22 221x y a b +=交于P,Q 不同两点,记OP,OQ 的斜率分别为 OP k ,OQ k ,如果22OP OQ b k k a ?=-,求PQ 连线的中点M 的轨迹方程. 问题3给定抛物线C:24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A,B 两点. (I)设l 的斜率为1,求OA 与OB 夹角的大小; (II)设FB AF λ= ,若[4,9]λ∈,求l 在y 轴上截距的变化范围. 问题4求同时满足下列三个条件的曲线C 的方程: ①是椭圆或双曲线; ②原点O 和直线1x =分别为焦点及相应准线; ③被直线0x y +=垂直平分的弦AB 的长为

三 习题探 选择题 1已知椭圆2215x y k +=的离心率e =,则实数k 的值为 A,3 B,3或 253 3 2一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为 A,圆 B,椭圆 C,双曲线的一支 D,抛物线 3已知双曲线的顶点为(2,1)-与(2,5),它的一条渐近线与直线340x y -=平行,则双曲 线的准线方程是 A,925y =± B,925x =± C,1225y =± D,1225x =± 4抛物线22y x =上的点P 到直线4y x =+有最短的距离,则P 的坐标是 A,(0,0) B,1(1,)2 C,1(,1)2 D,11(,)22 5已知点F 1 (,0)4,直线l :14 x =-,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段 BF 的垂直平分线交于点M,则点M 的轨迹是 A,双曲线 B,椭圆 C,圆 D,抛物线 填空题 6椭圆22 221x y a b +=(0)a b >>上的一点到左焦点的最大距离为8,到右准线的最小距离 为103 ,则此椭圆的方程为 . 7与方程3x y =的图形关于y x =-对称的图形的方程是 . 8设P 是抛物线2 440y y x --=上的动点,点A 的坐标为(0,1)-,点M 在直线PA 上, 且分PA 所成的比为2:1,则点M 的轨迹方程是 . 9设椭圆与双曲线有共同的焦点12(1,0),(1,0)F F -,且椭圆长轴是双曲线实轴的2倍, 则椭圆与双曲线的交点轨迹是 . 解答题 10已知点H (3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上, 且满足0HP PM ?= ,32 PM MQ =- .

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

专题12向量与圆锥曲线教师版

专题12 向量与圆锥曲线 ★★★高考在考什么 【考题回放】 1.点P(-3,1)在椭圆22 221(0)x y a b a b +=>>的左准线上.过点P 且方向为a =(2,-5)的 光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A ) 33 ( B ) 31 ( C ) 22 ( D ) 2 1 2.已知双曲线22 12 y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ?=则点M 到x 轴的距离为(C ) (A ) 43 (B )5 3 (C 23 (D 3 3.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB =,则点P 的轨迹方程 是( D ) A .22331(0,0)2x y x y + =>> B .223 31(0,0)2x y x y -=>> C .22331(0,0)2x y x y -=>> D .223 31(0,0)2 x y x y +=>> 4.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足 0=?+?MP MN ,则动点P (x ,y )的轨迹方程为( B ) (A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 5.若曲线y 2=|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 .0,(1,1)k b =∈- 6.已知两定点()( ) 12 2,0,2,0F F -,满足条件212PF PF -=的点P 的轨迹 是曲线E ,直线y=kx-1与曲线E 交于A,B 两点。如果63AB =,且曲线E 上存在点C ,使OA OB mOC +=,求m 的值和?ABC 的面积S 。 【专家解答】由双曲线的定义可知,曲线E 是以 ()) 122,0,2,0F F -为焦点的双曲线的左支, 且2,1c a ==,易知1b =, 故曲线E 的方程为()2 2 10x y x -=< 设()()1122,,,A x y B x y ,由方程组22 1 1 y kx x y =-?? -=?

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

专题12向量与圆锥曲线教师版

专题12向量与圆锥曲线 ★★★高考在考什么 【考题回 放】 2 占 1(a b 0)的左准线上?过点P 且方向为a=(2,-5)的 b 光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 (C) 3 2 x i .点P(-3,i)在椭圆弋 a (A ) 占 八、、 2.已知双曲线X 2 M 到x 轴的距离为( 2 y 2 C ) 1的焦点为 F i 、 F 2, 点M 在双曲线上且 uuu ur MF i 1 (D )- 2 UUULT MF 2 0,则 (A ) 4 3 3.设过点P(x,y)的直线分别与 (B ) 5 3 x 轴的正半轴和y 轴的正半轴交于 UUU UUU UULT UUU (D ) .3 点P 关于y 轴对称, O 为坐标原点,若 BP 2PA 且 OQgAB 1,则点 是 (D ) A . 3x 2 3 2 2y 1(x 0,y 0) B . 3x 2 3 2 尹 1(x 0,y 0) 3 2 C . - x 2 3y 2 1(x 0,y 0) D . 3 2 x 3y 2 1(x 0,y 0) uu r 为坐标平面内的动点,满足 (-2 , 0)、 N 0),点 P 4 .已知两点 M A,B 两点,点Q 与 P 的轨迹方程 (2, MN MP (A ) y 2 5.若曲线 MN NP 0,则动点 P (x , y )的轨迹方程为(B ) 2 2 2 8x (B ) y 8x (C ) y 4x (D ) y 4x y 2 = |x|+ 1与直线y = kx + b 没有公共点,则k 、b 分别应满足的条件是 _ .k 0,b ( 1,1) 2的点P 的轨迹 6 ?已知两定点F i 12,0 ,F 2 .2,0 ,满足条件 UU UU PF 2 PF i 是曲线E ,直线y=kx-1与曲线E 交于A,B 两点。如果 AB UUU uuu UULT C ,使OA OB mOC ,求m 的值和 ABC 的面积 S 。 E 是以 【专家解答】由双曲线的定义可知,曲线 F 1 .2,0 ,F 2 . 2,0为焦点的双曲线的左支, 且c -、2, a 1,易知 故曲线E 的方程为x 2 b 1, y 2 1 x 设 A x i ,y i ,B X 2,y 2 ,由方程组 kx 1 y 2 i 6、, 3,且曲线E 上存在点

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

高三数学教案 平面向量与圆锥曲线的综合问题

平面向量与圆锥曲线的综合问题 例1 已知F 1、F 2分别是椭圆的左、右焦点. (Ⅰ)若P 是第一象限内该数轴上的一点,,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线的斜率的取值范围. 解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力. (Ⅰ)易知,, ∴,.设.则 ,又, 联立,解得,. (Ⅱ)显然不满足题设条件.可设 的方程为,设,. 联立 ∴,由 ,,得.①又为锐角,∴ 又 ∴ 2 214 x y +=125 4 PF PF ?=- l k 2a =1b =c = 1(F 2F (,)P x y (0,0)x y >> 2 2 125(,,)34PF PF x y x y x y ?=---=+-= -2 214 x y +=22 227414 x y x y ?+=????+=??221134x x y y =??=?????==????P 0x =l 2y kx =+11(,)A x y 22(,)B x y 2 222221 4(2)4(14)161204 2x y x kx k x kx y kx ?+=??++=?+++=??=+? 1221214x x k = +1221614k x x k +=-+22(16)4(14)120k k ?=-?+?>22163(14)0k k -+>2430k ->23 4 k > AOB ∠cos 00AOB OA OB ?∠>??>12120OA OB x x y y ?=+>2 12121212(2)(2)2()4y y kx kx k x x k x x =++=+++1212 x x y y +21212(1)2()4 k x x k x x =++++222 1216(1)2()41414k k k k k =+? +?-+++

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

相关文档
相关文档 最新文档