文档库 最新最全的文档下载
当前位置:文档库 › 镀锌与镀镍技术资料

镀锌与镀镍技术资料

镀锌与镀镍技术资料
镀锌与镀镍技术资料

?М ? ??,?М ? ?????? ?

? ??? 咗?? Τ ?? Τ 8.9/g.cm-2Τ?咲?14530C?? ? ⒊????Τ?⒊?呑? ??Τ ??Ё??? ? ? ぎ?Ё?????Τ????? ????? ?Τ? ?Τ呐 ????????? 呐??????

??? ?????-0.25Τ??? ? o ????仒 ? ??

??三 ???( ?)

1. ??? 々 ? ?Τ? ??? ? ??Τ ??? ? ??? ???Τ ???Τ??? ???ㄝ?

???Ψ??? ? ??? 储 ? ??? ? ? ?

??Ψ???? ? Τ ??⑿ ???Τ三??⑤Τ???? ?

???Ψ?? ?????Τ??? ?? ? ? ? ??? ?2. ??? ?

? 〡?? ??? ? Τ ??∈⒊?Τ? ? ЁΤ ?伒∈?? ?储〡Τ?? ?储〡Τ??╘?Τ???? ??ò ??? ?o ?⒊?? ? ???⒊?Τ Τ ? Τ?? ?? ? Τ ???

3. ?????

??? ?? ??Ё ?????Τ?? ? >99%Τ????? ???∵ Τ?? ??? ?? ?

??Ё??? ???? ?? 。Ψ1. ????Τ2. ????Τ3. ?????

??三 ??

? ?? 咲Τ? ?? ??? Τ ???Τ三??? Τ?? 催? ?? Τ ? ?? ??Τ? ??? Ё ?Τ ? ? Τ?? ? ? ? Τ?? ???咲Τ ?? ?? ?Τ?? ?″? ? ?? 乃?? ?

??三催??

催???? ??0.12~~0.25%??。? ??Τ?? Τ ?Τ ??Τ ??Τ?ㄝ?催?? ? ?催??? ?????Τ? ? 储?? -?仒 ? ? ?Ё? Τ ? ? ???? ?? ??催Τ

?????? ???? 100~~140mΤ???? ?? ????g

? ??Τ? ?? 储?? ????

? 三?

? ?? ???Ё ? 0.01~~1umП???⒊ 储 ?

(Sio2ㄝ)Τ ??? ?〡 ? ?Τ??? ??? ?〡? ?? ?? ?。 ?? ???〡? Τ?? ?? ???? 储 ?? ?Τ????〡 ????Τ ? ?? ?? ? Τ ? ??? ? ? Τ ? ??? ?? Ё ? Τ ?? ?? ? ??Τ ???? ? ?? ? Τ ? ???? ?〡 ? ?Τ ????????Τ???? ???∴Τ? ???Τ ? ??? ???????Τ ? ?? ?? ?????? Τ? ???? Т? ?? ?Τ ?????? ????? 储? ? ????? Τ ?? ???? ? Τ? ? ? Τ ? ?? 储? Τ乃?? 催?? ???? ??

??三???

??? ????????? ?≦ ?? ? ???? ?Τ?? ? ??? ???? ? Τ ????? ? ? ? Τ ???? ? ???? ??串? ?? ?Τ??? ? o

??? ?Τ″ ??Τ????ㄝ?? ????br>? 三??三催 ?

? ????Ё ???? Τ?? ? ? 啰? ???? Τ?。? Τ 催 ??

催 ? ?????? ?? 1um ?? ???催 ?? Τ ? ??? ? ?0.2~~0.3um? ?? Τ ? ?催 ? ??????Τ催 ? ?? ? ??Τ ?? ??г ? ????? ??Τ? ? ? ?Τ ?催 ? ? ?Τ ????????Τ??????? ? ?∴Τ????? ???Τ ?? ? ??? ? 乃? 催Τ?? 1-4

??三??三? ?

? ? ? 储?Τ??? ??? ???Τ? ? ? ??? Τ?? ? ? ??? ? ??Τ ? ???? ?? ??? ?? ? ?/?? ??

? ? ??/ ??/?

? ? ??/催??/ ??/?

??/ ??/? /?( ?)

??/ ??/催 ?/?( ???)

? 三??三? ??呑??

? ??呑????? 咲 ??? ?Τ???〡? Τ? ???Τ???? ?? ?? ???

?б三? 三???呑??

???呑?? ?????? ??????????? Ψ ?

??????呑П? 1Ψ1.1~~1.2Τ⑿ ? ?催Τ??????呑 ?Τ ? ΤpH Τ?? ????? ??(2~~3A/dm2)? ?? ? ? ? ????

?????? ???? ???Мк ? ???????? ??

?? ??? ??????? ???佄 ? ????

? ??? ???? ??

? ?????? ???

有 ??? ?????г?

??? ? ???? ??? ? ? ????? ? ??? ? ?????

??

??ゴ??? ?

?? ??? ?呑串⒊?ЁΤ??? 储? ???Τ??????Τ???Ё??? ??? 储? ???〡 ?Τ ? ??。?? ??? ?? ? 储? Τ ?? ?? ? ? ? ??? ? Τ?仒 ? ? ? ? ?

??ゴ??? ??

??三???

1. ?呑

?呑 ??Ё? ????〡 ??? ? ?呑Τ?? ?? ? ???Ё?呑? ? ? ???? Τ?呑? ? Τ ????? Τ? ??〡?? ?? ?? ??? Τ?呑? 催Τ?? ? 催Τ? ?〡? Τ? ???Τ⒊? ? ???

2. ?

? ⊕?Τ???Ё?呑?? ? ?? ? Τ ? ?? Τ ?Τ???? ? ????? ? ? ? ? ? Τ ?? ?呑?? ? ? ?????? ? ?。?? ?????? ?“ ?”? ? ????ЁΤ ??? ??? ?呑?? ?? ?Τ ? ????Τ?? ? ??

3. ? 呑

? 呑 ??Ё???呑 ? ?呐? 呐 ? 呑串Τ???? 催???? ? Τ ?呑Ё?? ? ??? ??? ?? 呑?? ?????? Τ ? Τ?????? ?

4. ??

?? ??? ⒊??呐 ?????串???? ? ? ?呑 呐

呐呑? ?Τ??⒊?? 呐 ? Τ⒊??pH ? ? ?

5. ???

??Ё? ???? ???々??? ???? ??? 催??? ? ??? Τ ? ?????? ? ??? ⒊????? ??? ??⒊??? Τ?呑? ???? Τ ????? ? ? Τ????? ???

6. ?

? ? 乃 ?? ? Τ??乃? ? ?????? ??Ё ????Τ? ?Ψ ? Τ Τ ? ㄝ?

??三??

1. ?

? ????? Τ????????Τ????⑤?????Τ? ??????⑤?????Τ???? ? ??Ё?? ?? ?? ? ?? Τ ???? ? Ψ ?? ? ?? ?????? ? Mn+ ???? n ? Τ? ? M

? ?Τ ?? ????? ? ? Τ ???????? M?⒊?Τ? n ? ? ? ? M n+?

2. ? ?

?????? Τ???⒊????? Τ???? ? Τ??? ? ⒊?? ?Τ? ? ( ⒊?)? ?????? ??? ? 倫? Τ? ? ?? ( ⒊?)??????П????? ?

? ?? Ψ??? ( ⒊?)?????????? ????? ??Τ Ψm=kQ=kIt(m???? ⒊??????ΧQ?????? ΧK??? ΧI???Χt??? ??

? ??? Ψ ? ????ЁΤ??? ???? Τ ??? (

⒊?)???????ㄝΤ ? ( ⒊?)1mol????? ??????

9.65X104C.?? 々?? ? Τ?F???K=M/F

3. ?? ?

?? Τ??? ? ?????? ?ㄝ?? ? ???? Τ ? ? ??? Τ? ?????? ? ? Τ? ?? Τ ????????? Τ? ?? ?

4. ???? ?

?⒊?? ? ??? ??? ?? Τг々 ?? ????? ? ? Τ ? ???? ?〡 ?? ? ?

5. ???????

????ЁΤ ? ? ? ? ??? Τ?々??? Τ ??

? ?????? ??〡?? ? ?? ? ? ??? ? Τ ? ? ? ???? ? ? 丠Τ ? ????? ? Χ? ? ? ?????? ? ??〡 ? 丠.

??三?? ″?

A. ????

?? ??? ?? ? ?⒊?Ё Τ ?? ?Τ ? ? ?⒊??⒊?? ? ? ? ? ? ?? Ψ

Mn++ne M

????? ? ⒊??⑿ Τ? ????有????? ???? ?Τ? ? ?⒊?⑿ ?250CΤ? ? ?? ?1mol/L Τ? ??? ? ?????? ????? ? ?? ? ? ?? Τ?? ????? ? ?? ? ? ?? ?

B. ?

?? ?????? Τ???? ? ????????? ?Τ ??-?? ?々?? ????? ??? ?? ? ? ? ? ?

(1) ? ?

?????? ? ? ?⑤??? ?? Τ ?????? ?? ? ? ??? ???

(2) ? ?

???????? ?? ?⒊??储?? ?? ?????? 々? ? Τ? ??⒊?Ё? ? ?? ? ? ??

? 三? ??〡??

???? ??Ё?? ? ? ????Τ??? ? ? ?????? ?〡????? (1-2) ??〡??? Τ ??〡?? ?????? ?倳Ψ

?? ?Ψ??Ё?∈ ? ? ?? ⒊? ? ?????Τ ?????? ⒊?? ?

? Ψ∈ ? ? ?? ???? Τ ?∈ ??储 Τ ??? ? ? ? ? ?。 Ψ???Τ ? ??? Ψ? ?? ?? ? ??咲Τ?? ? Τ ? ?

?? Τ??? ?倳 ???Τ????? ? Τ? ?? ?々? ?〡??? ?三?? ?倳?? ?三Τ ???〡? ?????

??三 ?????? ?

?????? ? Τ ??? 。 ? 。?? ? ??? Ё ??? ??????

1. pH ? ?

??Ё?pH ? ??? ???Τ呐 ????▅Τ? ? ?? ? ∈ ??? ? ? ? ?? ?? Τ 。 ?? ?? ??? ??? ??pH ????倫? ? ? ? ???ЁΤpH ? ? ?? 。? ?? ?Τ ? ?? ? ?? ?????ЁΤ?pH Τ ?? ???? ?催ΤpH ? П??? ?? ? pH ? ? ? ?

2. ? ? ?

??Ё? ? Τ Τ┸? ㄝ? ? 乃 ? ??? ?? ?″ ″П ??″? ???? ?? ???Ё 催 ??? ? ? ??储Τ ? ??????? Τ 催??? ??? ″? ???? ?串? ???? ??Τ ? ???? ? ??Τ??? Τ ? 催??? ??? Τ ? ″? ???Ё ?储Τ ?? ? ? ?储-? ? ? ?Τ??? ? ?? 催??? ???

3. ?? ? ?

????? ? ? ???? ? ??? ? ???? ?? Τ??? ??? Τ? ? ? Τ??≦ ? ????? ? Τ??? ???? Τ? ????????? ?催Τ?????? Τ? ??? Τ?? ???储Τ ?Τ?? ?咥ㄝ??? ?? ??? ?? ????? Τ? Τ⑿ ㄝ ?? ???? ⊕?Τ?呑? Τ? ⑿ 催Τ? ????Τ ? ???? ??? ?

4. ??? ? ?

??? ? ? ?????? ?? ?? ? ????〡???Τ

?? ?? ?????Τ?? Τ?? ? ???? ? ?? Τ?? ? ? ? ????Τ ? ?? Т≦ ?М ?Τ? ?? ?? ?

5. ⑿ ? ?

??⑿ ? 催? Τ??? ? Τ? Τ ⑿???? ??∈?? ?? ????? Τг???? ? Τ ?? ??? ? ?Τ⑿ 催? 呑串?⒊? Τ ? ? ? Χ? ? 催?? ??Τ ? 催?? ??

6. ? ?

????? Τ? ???Τ? 催?? Τ ? 催????? ? ? ?

??ゴ?? ?

?? ????? ?? ???Τ?? ? ??? ???

??三? ???

? ?????? ?? ? 冂?? ??Τ? ? 催??? ? ???????Τ ??Τ ? ㄝ ???倳 ?Ψ

???????企 ? ? ??Τ ????? Τ ㄝ ? ?? ??

??? ??Τ ??⒊ ⒊?? Τ? ㄝ ?? ??

?????Τ ?″?Τ??? ? ????

? ?? ??Τ?? ?Ё ?? ???? ? ??

??三? ??

1. ? ???

?? ?? ? ?⒊?Ё?? ??Τ ? ? ? ? ?Τ? 催???????? ??? ?? ?? 催 ? ?? ? ∵ ? ??。 ??? o?Zn,Cuㄝ Τ? ??? ???2. ?????

?? ?Τ ??〡??ЁΤ????〡 ? Τ? ?? ?Τ?? ?? ? ЁΤ?????? Τ?? ?Τ々??????????Τ ?? Τ??? ? ?⑿ ???? Τ々??????

? ゴ??

??? ? ? ???Τ? ?????-0.76Τ ⒊??Τ⒊?呐Τ ? ? ?? ?ぎ?Ё Т???? Τ??????? ?70%Τ ? ╂? ?Ё???? ? ???? ? ???呐 ???? ???Τ? ? ? ?????Τ??? ?ㄝ ? ?? ? ? ?Χ? ?? ??Τ ?∈Ё?? ?

?? ? ?乼??Τぎ?╂?????Τ??? ? ??(? ??Τ?Τ?Τ?ㄝ) ? Τ? ???Τ? ??? ?????Τ 々”??”?? 催⑿Τ催?Τ ????Τ?? Τ??Τ ? ? ?? ?Τ? ????? ? Τ 々”??”

???? ?????Τ ???? ?? ? Τ ? ??? ?? ? ?Τ? ? ?? ?Ё????? ? ?? ? Τ ?? Т?? ????? ? ?∵ ? ?ЁΤ?? ??? ??? Τ ?? ?∈Ё ? ?

??? ???呑? П Τ?? 催6~~8 ? ??? ?? ? ???倳? ? ???? ″ ?Τ ???? ???---?仒? ??????? ? 催??? Τ ? ? 。 Ψ? 催? ????Τ ???Τ??Τ???Τ咥?? ? ?? ??? ?Τ ??? ? ??? Χ? ???? ?0.3%~~0.6%?Zn-Fe ?Τ ?6%~~10%?Zn-Ni ?? ??? Τ?? ? 催? ??Τ ?夜?? ???偑 \?

??? ???⑿ ? ??2500C, ?⑿ ??? ??? Τ??Τ?? ??? ??Τ??????? ?Zn-Ni ? ?

?????? ?呐 ? 串Τ ?? ????呑??Τ? ??Τ?呑??Τ? ???Τ??呑??ㄝ? ??Τ????呑??? ???? ?????? ? ?? ? 催Τ? ??? ?? ???? ? Τ??呑?? ?????

?? ???? ?? ?Τ ?Τ ???? Τ ? ? ??Τ? ??? ???? ??? ??呐 ??Χ? ?? ??? ? ? ??????? 。 ?? ??? Τ ?? ?

??三??呑??

1. ??呑????咲Ψ1Τ?? ??? ?Τ ∈ ??Χ2Τ? ? ? Τ ? Τ ? ??? ?? ??Τ? ? ??????Χ3Τ??? Τ ? Χ4Τ ? ??? Χ5Τ? ?△ ? ??。??? ?〡? Τ ?⑿ ? じ(催?400C? )Τ ??15um ? Τ???????? ? ?? ▔ ?储? Τ ?? ??乼??ㄝ?咲?

2. ??呑??П?? ΨAΤ? ?(? ?98%)ΧBΤ?? ?ΧCΤDE DPE? ΧDΤ ? ΧEΤ∈

3. ???? ΨAΤ ? ?Τ呐? ? ΧBΤ?? ? ? ???倫? ΧCΤ? ⑿ ?? ?????ΧDΤ???? ?? ΧEΤ??? ??ΧFΤ ???? ? ?? ?

??三? ??

1. ? ?? ? ??? Τ? ? Τ? 储? Τ?? ? Τ ?? Τ??? ?Τ ??? ㄝ 咲?? ?Τ ?∵ ?? ? ?????Τ ?????

2. ? ?????? ΨAΤ? ?ΧBΤ? ?ΧCΤ?? ?ΧDΤ? ?? ? Χ

??三?呑??

1. ? ?-??? ?????Ё?〡?? Τ? ??Τ? ???Τ ? ??? Τ? ? ???????? ? ? ?Τ? ??Ё???串?? ? ? ??Τ???? Τ ∈Ё?? ???Τ? 儮串 ?ㄝ 丠? 70 ? ?┌???呑?? ???? ???? 咲?80 ??Τ??? ??? ?Τ?呑?? ? ? ???

? 三? ???

1. ? ??? ? ? ??? ??? ??? ?????咲ΨA Τ ? ? ? 呑??Τ ∈? ??ΧBΤ? ? ? ? ??储?ΧCΤ?? ?催Τ?〡? ΧDΤ??????? 催??Τ??Τ??ㄝ ??

2. ? ????? ΨAΤ? ?ΧBΤ? ?ΧCΤ??ΧDΤ? (? ? Τ?储 ? Τ? ? )

??三??呑??

1. ??呑??? ? ? ? 。??⒊? ?Τ?? ??Τ? ?? ?Τ ? ??? ???Τ ? ? Τ??⑤??????? ?? ???????佭 ? ???呑Τ?? ? ?佭 ??呑? ? ? Τ??? ? ?? Τ? ??Τ ?????。?? ?Τ?? ?催Τ ?? 催??? Τ?〡? Τ? ??? ? ?? Τ Τ ? ? ????pH ??Τ ?? ? ?Τ ? ? ?? ?

2. ??呑????? ΨAΤ??? ?呑ΧBΤ???Τ? ? ?呑ΧCΤ???Τ ? ?? ?? ΧDΤ?有?? ? Τ 催 ? ΧE Τ??

? 三?? ? ? ?? ?(1-3)

?? ? ? ?? ?

??? ???? ?? ?

? ?企Τ? ⒊????? ?催

pH 催

?? ??

? ??????

??pH

? ??

?

?〡? ? ??

pH ?

?呑??

?? ? ???

催pH

?呑

催??

? ? Τ??? ?? ?

? ??

pH 催

? ?? 催??

? ?

??pH

????? ??? ??

? ??Τ?? ?催?? ?

pH 催

?呑

? ?? ?

??pH

?

? ?

? ???? ”??” ? ???? ? ??

??三?? ????

1. ????????ЁΤ?????〡 Τ ? ? ?? ? ?? Τ?? ?? ? ?储? Τ? ?? ??? ? ? 储? ??咲?Ё Τ? ?? Τ?? Τ? 储??Τ? 々П???????? ???? ? ?? ?? ??? ???⑿ Τ ⑿ ? ??⑿ 催Τ ??Τ??? ?? ?⑿ ?? 催Τ??2500C?? ??? Τ??Τ?? 乃???????

190~~230OCΤ2~~3h???? ?????⑿ 140~~160OCΤ ⑿3h?? 三?? ?? ??

1. ?? ??┥Τ ?Ё ? ? Τ ?????????????呑??Τ? ????? ? ?Τ??┥?? ??? Τ? ??呑????? 0.5um?????? 催6~~8 Τ ?????呫

? ? ∵ ? ?

2. ? ? ? ?? Τ???Τ ??? Τ?咗?Τ咥?? Τ???? ???? ??? ?? ???>咥?> ??>?咗?>???>??? ? ??????″?????? ??? ??? ?

3. ? ??? ?催? ΤЁ? Τ?? ?。? ? Ё????????5%Τ?95%??? Τ? ??? ∵ ????? ? ? ???? Τ??∵ Τ? ????催? ??? ??Τ ???? ???

4. ? ??? ?????Ψ?Τ?呑 ? Χ?Τ? ? Χ?Τ? ??? ? (pH )

?? ??∵ ? ???

?⒊?? ? ?咏???

??? ??? ?????? ?????????? ????? ?????买????????? ??????? ???? ?佄??? ? ? ? ㄝ?

?? ? ???? ?佄 ??????-??????????? ?????????? ???(????????? ???? ?? ? ???П??

??? ? ? ??∵ ??? ? ??? ?? ??? ???? ? ??? ? ?∈?? ?ㄝ?∵ ? ?? ? ???? ??????? ? ? ??? ???? ? ?? ???? ? ?? ? ???⑤?? ??? ? ? ??г???? ?

??EL/IMDS? ?? ??? ?? ?? ,??? ???? ????, ? ? ?Ⅺ

????? ? ?∵ ? ??????? ? ??

???? ????? ? ????,? ????????,佂?∈ ???? ??????, ? ∈? ∵ .

?? ? ??? ??????????????……………

jtm-shaoai ?? ………… [s:15] [s:15] [s:15]

?? ?????/? ??????? ? ???

? ? ??? ? ?

? ????

∵ ? ? ? ??? ∈?∵

? ∈Ё ?? ?? ?? ? ?

? ?? ?

? ??

? ? ? ?

化学镀镍液的主要组成及其作用

化学镀镍液的主要组成及其作用 优异的镀液配方对于产生最优质的化学镀镍层是必不可少的。化学镀镍溶液应包括:镍盐、还原剂、络合剂、缓冲剂、促进剂、稳定剂、光亮剂、润湿剂等。 主盐 化学镀镍溶液中的主盐就是镍盐,如硫酸镍、氯化镍、醋酸镍等,由它们提供化学镀反应过程中所需要的镍离子。早期曾用过氯化镍做主盐,但由于氯离子的存在不仅会降低镀层的耐蚀性,还产生拉应力,所以目前已很少有人使用。同硫酸镍相比用醋酸镍做主盐对镀层性能是有益的。但因其价格昂贵而无人使用。其实最理想的镍离子来源应该是次磷酸镍,使用它不至于在镀浴中积存大量的硫酸根,也不至于在使用中随着补加次磷酸钠而带入大量钠离子,同样因其价格因素而不能被工业化应用。目前应用最多的就是硫酸镍,由于制造工艺稍有不同而有两种结晶水的硫酸镍。因为硫酸镍是主盐,用量大,在镀中还要进行不断的补加,所含杂质元素会在镀液的积累,造成镀液镀速下降、寿命缩短,还会影响到镀层性能,尤其是耐蚀性。所以在采购硫酸镍时应该力求供货方提供可靠的成分化验单,做到每个批量的质量稳定,尤其要注意对镀液有害的杂质尤其是重金属元素的控制。 还原剂 用得最多的还原剂是次磷酸钠,原因在于它的价格低、镀液容易控制,而且合金镀层性能良好。次磷酸钠在水中易于溶解,水溶液的pH值为6。是白磷溶于NaOH中,加热而得到的产物。目前国内的次磷酸钠制造水平很高,除了国内需求外还大量出口。 络合剂 化学镀镍溶液中除了主盐与还原剂以外,最重要的组成部分就是络合剂。镀液性能的差异、寿命长短主要取决于络合剂的选用及其搭配关系。 络合剂的第一个作用就是防止镀液析出沉淀,增加镀液稳定性并延长使用寿命。如果镀液中没有络合剂存在,由于镍的氢氧化物溶解度较小,在酸性镀液中便可析出浅绿色絮状含水氢氧化镍沉淀。硫酸镍溶于水后形成六水合镍离子,它有水解倾向,水解后呈酸性,这时即析出了氢氧化物沉淀。如果六水合镍离子中有部分络合剂存在则可以明显提高其抗水解能力,甚至有可能在碱性环境中以镍离子形式存在。不过,pH值增加,六水合镍离子中的水分子会被OH根取代,促使水解加剧,要完全抑制水解反应,镍离子必须全部螯合以得到抑制水解的最大稳定性。镀液中还有较多次磷酸根离子存大,但由于次磷酸镍溶液度较大,一般不致析出沉淀。镀液使用后期,溶液中亚磷酸根聚集,浓度增大,容易析出白色的NiHPO3.6H2O沉淀。加入络合剂以后溶液中游离镍离子浓度大幅度降低,可以抑制镀液后期亚磷酸镍沉淀的析出。 络合剂的第二个作用就是提高沉积速度,加络合剂后沉积速度增加的数据很多。加入络合剂使镀液中游离镍离子浓度大幅度下降,从质量作用定律看降低反应物浓度反而提高了反应速度是不可能的,所以这个问题只能从动力学角度来解释。简单的说法是有机添加剂吸附在工件表面后,提高了它的活性,为次磷酸根释放活性原子氢提供更多的激活能,从而增加了沉积反应速度。络合剂在此也起了加速剂的作用。 能应用于化学镀镍中的络合剂很多,但在化学镀镍溶液中所用的络合剂则要求它们具有较大的溶解度,存在一定的反应活性,价格因素也不容忽视。目前,常用的络合剂主要是一些脂肪族羧酸及其取代衍生物,如丁二酸、柠檬酸、乳酸、苹果酸及甘氨酸等,或用它们的盐类。在碱浴中则用焦磷酸盐、柠檬酸盐及铵盐。不饱和脂肪酸很少使用,因不饱和烃在饱和时要吸收氢原子,降低还原剂的利用率。而常见的一元羧酸如甲酸、乙酸等则很少使用,乙酸常用作缓冲剂,丙酸则用作加速剂。 稳定剂 化学镀镍溶液是一个热力学不稳定体系,由于种种原因,如局部过热、pH值提高,或

镀锌时ph对镀层的影响

氯化物镀锌时pH对镀层的影响 1.PH值对镀液和镀层的影响 生产实践表明,PH值对氯化钾镀锌也是至关重要的。镀液的PH值一般控制在5-6之间,过髙或过低都是不利的。镀液值的大小会影响镀液性能,诸如阴极电流效率,分散能力和阳极溶解性能等。 值过高时,工艺性能将严重恶化,主要表现为,镀件光亮范围缩小〈即电流密度变窄〉,凹陷处镀层发暗;而髙电流密度处(如边缘和夹角处)容易烧焦,镀层粗糙、不光亮,同时也会影响镀层的韧性和结合力。如果PH>6.8,并长时间在这样条件下进行电镀将会阻碍阳极溶解,并在阳极表面生成碱式锌盐膜,增加槽电压,还会使镀层局部出现灰黑色或黑色条纹。这时就要注意镀锌光亮剂的选择。过髙时,还会造成锌离子以氢氧化锌的形式沉淀,使镀液浑浊,巔终导致无法正常生产。 如果值过低(例如PH<5),则会使阳极溶解加快,镀液中锌离子浓度就增髙,将会降低电流效率和分散能力。PH值过低时,还会导致镀液中铁杂质不能形成氢氧化铁沉淀,因此,铁杂质会越积越多。在滚镀时,因有铁杂质的干扰,还容易出现滚桶眼印。为此,PH值应控制得略比5高一些为好。此时,铁杂质容易沉到槽底,对镀层干扰较少。 氯化物镀锌出现漏镀的处理方法 (1)首先分析镀液的组成,若Zn离子和Cl-离子的浓度,严重失调,则必须稀释镀液以降低离子浓度,同时提髙氯离子浓度,即增加氯化钾。 (2)新的光亮剂在加入镀槽之前,最好在实验室用赫尔槽检验一下它的质量。然后,按正常量加入。总电流开1A、若赫尔槽试验片能全光亮,表明光亮剂质量好。若低端无镀层,表明该光亮剂质量欠隹,应更换另一厂家的镀锌光亮剂。 ⑶pH调节值的正确方法,应把浓盐酸稀释1-2倍,一边搅拌镀液,一边加入稀盐酸,并随时用精确的pH试纸测定pH。当PH= 5.5时,要更小心地加盐酸。当PH=5时,应停加盐酸。如PH值太低,可用稀碱溶液(如5%NaOH)来调节。当碱加入后,也许会出现白色的沉淀物,这是Zn(OH)2此沉淀物在激烈地搅拌下,会慢慢地溶解,而少量的不溶解物会自然地沉淀于槽底,不影响生产。将pH值控制在5-6,镀液性能最好。 (4)如果所用的光亮剂,在本地区侦用镀液温度没有突破该光亮剂的使用温度范围时,只要镀液性能、镀层性能好,仍可选用。 如果在夏天该地区的镀液温度已突破该光亮剂的使用温度范围时,应该把该光亮剂停止使用,而选用宽温的镀锌光亮剂;或差的镀锌光亮剂继续使用,而另补加HW-2增溶剂,也可达到镀液的宽温目的。 有些地方,镀液温度超过了光亮剂使用温度,就采用冷冻机冷冻,或另配一槽轮流生产。我们认为:前者做法浪费了电力;后者做法,不是加强工人劳动强度,就是减少了设备和镀液的利用率。 氯化物镀锌常见故障排除 1、控制电镀原材料的质量。对电镀生产使用的化工原材料,需经检验才能确定为生产线上使用的原材料。保证镀锌溶液中杂质含量控制在最低。

化学镀工艺流程

化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。 化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 机械粗化:用机械法或化学方法对工件表面进行处理(机械磨损或化学腐蚀),从而在工件表面得到一种微观粗糙的结构,使之由憎水性变为亲水性,以提高镀层与制件表面之间结合力的一种非导电材料化学镀前处理工艺。 1.1 化学除油 镀件材料在存放、运输过程中难免沾有油污,为保证预处理效果,必须首先进行除油处理,去除其表面污物,增加基体表面的亲水性,以确保基体表面能均匀的进行金属表面活化。化学除油试剂分有机除油剂和碱性除油剂两种;有机除油剂为丙酮(或乙醇)等有机溶剂,一般用于无机基体如鳞片状石墨、膨胀石墨、碳纤维等除油;碱性除油剂的配方为:NaOH:80g/l,Na2CO3(无水):15g/l,Na3PO4:30g/l,洗洁精:5ml/l,用于有机基体如聚乙烯、聚氯乙烯、聚苯乙烯等除油;无论使用哪种除油试剂,作用时都需要进行充分搅拌。 1.2 化学粗化 化学粗化的目的是利用强氧化性试剂的氧化侵蚀作用改变基体表面微观形状,使基体表面形成微孔或刻蚀沟槽,并除去表面其它杂质,提高基体表面的亲水性和形成适当的粗糙度,以增强基体和镀层金属的结合力,以保证镀层有良好的附着力。粗化是影响镀层附着力大小的很关键的工序,若粗化效果不好,就会直接影响后序的活化和化学镀效果。化学粗化试剂的配方为:CrO3:40g/l,浓H2SO4:35g/l,浓H3PO4(85%):5g/l。化学粗化的本质是对基体表面的轻度腐蚀作用;因此,有机基体采用此处理过程,无机基体因不能被粗化液腐蚀而不需此处理。 1.3 敏化 敏化处理是使粗化后的有机基体(或除油后的无机基体)表面吸附一层具有还原性的二价锡离子Sn2+,以便在随后的活化处理时,将银或钯离子由金属离子还原为具有催化性能的银或钯原子。敏化液配方为:SnCl2·2H2O:20g/l,浓HCl:40ml/l,少量锡粒;加入锡粒的目的是防止二价锡离子的氧化。 1.4 活化 活化处理是化学镀预处理工艺中最关键的步骤, 活化程度的好坏,直接影响后序的施镀效果。化学镀镀前预处理的其它各个工序归根结底都是为了优化活化效果,以保证催化剂在镀件表面附着的均匀性和选择性,从而决定化学镀层与镀件基体的结合力以及镀层本身的连续性。活化处理的目的是使活化液中的钯离子Pd2+或银离子Ag+离子被镀件基体表面的Sn2+离子还原成金属钯或银微粒并紧附于基体表面,形成均匀催化结晶中心的贵金属层, 使化学镀能自发进行。目前,普遍采用的活化液有银氨活化液和胶体钯活化液两种;化学镀铜比较容易,用银即能催化;化学镀钴、化学镀镍较困难,用银不能催化,必须使用催

化学镀镍与电镀镍工艺相互之间的区别

化学镀镍与电镀镍工艺及相互之间的区别 1 电镀镍 电镀是一种电化学过程,也是一种氧化还原过程。电镀镍是将零件浸入镍盐的溶液中作为阴极,金属镍板作为阳极,接通直流电源后,在零件上就会沉积出金属镍镀层。电镀镍的配方及工艺条件见表1。 电镀镍的工艺流程为:①清洗金属化瓷件;②稀盐酸浸泡;③冲净;④浸入镀液; ⑤调节电流进行电镀; ⑥自镀液中取出;⑦冲净;⑧煮;⑨烘干。 表1 电镀镍的配方及工艺条件 成分含量/g/L 温度 /0C PH值电流密度 /A/dm2 硫酸镍硫酸镁硼酸氯化钠 100-170 21-30 14-30 4-12 室温5-6 0.5 电镀镍的优点是镀层结晶细致,平滑光亮,内应力较小,与陶瓷金属化层结合力强。电镀镍的缺点是:①受金属化瓷件表面的清洁和镀液纯净程度的影响大,造成电镀后金属化瓷件的缺陷较多,例如起皮,起泡,麻点,黑点等;②极易受电镀挂具和在镀缸中位置不同的影响,造成均镀能力差,此外金属化瓷件之间的相互遮挡也会造成瓷件表面有阴阳面的现象;③对于形状复杂或有细小的深孔或盲孔的瓷件不能获得较好的电镀表面;④需要用镍丝捆绑金属化瓷件,对于形状复杂、尺寸较小、数量多的生产情况下,需耗费大量的人力。 2 化学镀镍 化学镀镍又称无电镀或自催化镀,它是一种不加外在电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍层,当镍层沉积到活化的零件表面后由于镍具有自催化能力,所以该过程将自动进行下去。一般化学镀镍得到的为合金镀层,常见的是Ni-P合金和Ni-B合金。相较Ni-P合金而言,Ni—B合金的熔焊能力更好,共晶温度高,内应力较小,是一种更为理想的化学镀镍方式。但本文着重讨论的是Ni-P合金镀层。 化学镀镍的配方及工艺条件见表2。 表2化学镀镍的配方及工艺条件 成分含量/g/L 温度 /0C PH值 硫酸镍次磷酸钠柠檬酸钠氯化铵 45-50 45-60 20-30 5-8 85 9.5 化学镀镍的工艺流程为:①清洗金属化瓷件;②冲洗;③活化液浸泡;④冲净; ⑤还原液浸泡;⑥浸入镀液并不时调节pH值;⑦自镀液中取出;⑧冲净;⑨煮;

化学镀镍配方成分,化学镀镍配方分析技术及生产工艺

化学镀镍配方成分分析,镀镍原理及工艺技术导读:本文详细介绍了化学镍的研究背景,分类,原理及工艺等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 禾川化学引进国外配方破译技术,专业从事化学镍成分分析、配方还原、研发外包服务,为化学镍相关企业提供一整套配方技术解决方案。 一、背景 化学镀镍也叫做无电解镀镍,是在含有特定金属盐和还原剂的溶液中进行自催化反应,析出金属并在基材表面沉积形成表面金属镀层的一种优良的成膜技术。化学镀镍工艺简便,成本低廉,镀层厚度均匀,可大面积涂覆,镀层可焊姓良好,若配合适当的前处理工艺,可以在高强铝合金和超细晶铝合金等材料上获得性能良好的镀层,因此在表面工程和精细加工领域得到了广泛应用。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 二、化学镀工艺 化学镀工艺流程为:试样打磨-清洗-封孔-布轮抛光-化学除油-水洗-硝酸除锈-水洗-活化-化学镀-水洗-钝化-水洗-热水封闭-吹干。

图1 化学镀的工艺流程图 三、化学镀镍分类 化学镀镍的分类方法种类多种多样,采用不同的分类规则就有不同的分类法。 四、化学镀镍原理 目前以次亚磷酸盐为还原剂的化学镀镍的自催化沉积反应,已经提出的理论有羟基-镍离子配位理论、氢化物理论、电化学理论和原子氢态理论等,其中以原子氢态理论得到最为广泛的认同。 该理论认为还原镍的物质实质上就是原子氢。在以次亚磷酸盐为还原剂还原Ni2+时,可以以下式子表示其总反应: 3NaH2PO2+3H2O+NiSO4→3NaH2PO3+H2SO4+2H2+Ni(1) 也可表达为: Ni2++H2PO2-+H2O→H2PO3-+2H++Ni(2)

浅析电镀锌及其添加剂

转自:技术论坛时间:2004年8月31日21:43 浙大专家楼·美伦得电镀技术中央研究室(310028)丰志文博士 一、前言 锌镀层一直是众多行业钢铁制件防护的主要防护层,它具有优良的防蚀性能,良好的涂装性和焊接加工性能,且成本较低。同时,电镀锌技术经过上百年的改进完善,目前已有多种成熟的工艺技术,笔者通过对各类工艺的对比试验,现在系统地作一分析,供广大电镀界同仁参考。 二、电镀锌溶液概述 通常,我们按酸度将镀液分为碱性和酸性两大类,具体见表一: 综观各类型镀液,氰化物镀锌工艺成熟,镀层结晶细致,镀液分散能力好,但因其毒性较大,含氰废水的处理也较困难。国内所占比例正在逐渐缩小,取而代之的是无氰工艺,碱性锌酸盐镀锌体系是从70年代初迅速发展起来的,其成份简单,易于维护,镀液对设备无腐蚀,镀层结晶与氰化物型相似,需选用良好的添加剂,如果没有良好的添加剂,只有得到海绵状镀层,并且其镀层脆性也不及氰化镀锌层。酸性类型镀液又以氯化钾/氯化钠型为主流,这种工艺基本上克服了铵盐镀锌和碱性锌酸盐镀锌的工艺缺点,具有深镀能力强,分散能力好,镀层质量相当于氰化物镀锌工艺,并且对环境污染程度小,电镀废水易处理。下面将重点介绍。而硫酸盐型镀锌液因成本低,镀液稳定,电流效率高,沉积速度快,在线材及带材镀锌方面仍为主要应用工艺。 三、国内无氰工艺的研究 无氰工艺现以碱性锌酸盐型和氯化物型两类为主。首先我们来讨论一下碱性锌酸盐镀锌的电镀作用机理: 镀锌液中锌离子与氢氧化钠生成络合物锌酸钠,其反应式为: ZnO + 2Na OH + H2O→Na2〔Zn(OH)4〕

阴极反应过程: Na2[Zn(OH)4] →2 Na+ + [Zn(0H)4]2+ [Zn(OH)4] 2- +2e → Zn + 4OH-碱同时也伴有氢析出 2H++ 2e → H 2 ↑ 阳极反应过程: Zn + 4OH-→ Zn(OH)4 2- + 2e 4OH--2e → O2 ↑+2 H2O 为使镀液能使结晶细致光亮,改善镀液分散能力和均镀能力,需添加光亮剂,现应用的添加剂大多是有机胺与环氧丙烷的合成产物,如:DE、DPE--Ⅰ、DPE--Ⅱ、DPE--Ⅲ、KR—7等,同时还需要添加适量有机与无机添加剂组合,使镀层平滑细致。表二中配方三采用改进型碱性无氰镀锌光亮剂,它的电流密度范围宽,可达0﹒5~6A / dm2,出光速度快,镀层外观光亮平整,装饰效果及防蚀效果比传统的DE型和DPE型优点更为突出,已被众多生产厂家所认可。碱性锌酸盐镀液的典型配方见表二: 镀液组成及工作条件, (g / l ) DE 型 D P E 型 改进型 氧化锌,ZnO 10~15 8~13

电镀镍与化学镀镍

电镀镍的特点、性能、用途: 1、电镀镍层在空气中的稳定性很高,由于金属镍具有很强的钝化能力,在表面能迅速生成一层极薄的钝化 膜,能抵抗大气、碱和某些酸的腐蚀。 2 、电镀镍结晶极其细小,并且具有优良的抛光性能。经抛光的镍镀层可得到镜面般的光泽外表,同时在大 气中可长期保持其光泽。所以,电镀层常用于装饰。 3、镍镀层的硬度比较高,可以提高制品表面的耐磨性,在印刷工业中常用镀镍层来提高铅表面的硬度。 由于金属镍具有较高的化学稳定性,有些化工设备也常用较厚的镇镀层,以防止被介质腐蚀。镀镍层 还广泛的应用在功能性方面,如修复被磨损、被腐蚀的零件,采用刷镀技术进行局部电镀。采用电铸 工艺,用来制造印刷行业的电铸版、唱片模以及其它模具。厚的镀镍层具有良好的耐磨性,可作为耐 磨镀层。尤其是近几年来发展了复合电镀,可沉积出夹有耐磨微粒的复合镍镀层,其硬度和耐磨性比镀 镍层更高。若以石墨或氟化石墨作为分散微粒,则获得的镍-石墨或镍-氟化石墨复合镀层就具有很好的 自润滑性,可用作为润滑镀层。黑镍镀层作为光学仪器的镀覆或装饰镀覆层亦都有着广泛的应用。 4、镀镍的应用面很广,可作为防护装饰性镀层,在钢铁、锌压铸件、铝合金及铜合金表面上,保护基体材 料不受腐蚀或起光亮装饰作用;也常作为其他镀层的中间镀层,在其上再镀一薄层铬,或镀一层仿金层, 其抗蚀性更好,外观更美。在功能性应用方面,在特殊行业的零件上镀镍约1~3mm厚,可达到修复目

的。特别是在连续铸造结晶器、电子元件表面的模具、合金的压铸模具、形状复杂的宇航发动机 部件和微型电子元件的制造等方应用越来越广泛。 5、在电镀中,由于电镀镍具有很多优异性能,其加工量仅次于电镀锌而居第二位,其消耗量占到镍总产量 的10%左右。 化学镀镍的特点、性能、用途: 1、厚度均匀性厚度均匀和均镀能力好是化学镀镍的一大特点,也是应用广泛的原因之一,化学镀镍避 免了电镀层由于电流分布不均匀而带来的厚度不均匀。化学镀时,只要零件表面和镀液接触,镀液中消 耗的成份能及时得到补充,镀件部位的镀层厚度都基本相同,即使凹槽、缝隙、盲孔也是如此。 2、镀件不会渗氢,没有氢脆,化学镀镍后不需要除氢。 3、很多材料和零部件的功能如耐蚀、抗高温氧化性等比电镀镍好。 4、可沉积在各种材料的表面上,例如:钢镍基合金、锌基合金、铝合金、玻璃、陶瓷、塑料、半导体等材 料的表面上,从而为提高这些材料的性能创造了条件。 5、不需要一般电镀所需的直流电机或控制设备。 6、热处理温度低,只要在400℃以下经不同保温时间后,可得到不同的耐蚀性和耐磨性,因此,特别适用 于形状复杂,表面要求耐磨和耐蚀的零部件的功能性镀层等

化学镀镍溶液的各种成分

化学镀镍溶液的各种成分 优异的化学镀镍溶液产生优异的化学镀镍层是必不可少的。化学镀镍溶液应包括:镍盐、还原剂、络合剂、缓冲剂、加速剂、稳定剂、光亮剂、润湿剂等。 主盐 化学镀镍溶液中的主盐就是镍盐,如硫酸镍、氯化镍、醋酸镍等,由它们提供化学镀反应过程中所需要 的镍离子。早期曾用过氯化镍做主盐,但由于氯离子的存在不仅会降低镀层的耐蚀性,还产生拉应力,所以目前已很少有人使用。同硫酸镍相比用醋酸镍做主盐对镀层性能是有益的。但因其价格昂贵而无人使用。其实最理想的镍离子来源应该是次磷酸镍,使用它不至于在镀浴中积存大量的硫酸根,也不至于在使用中随着补加次磷酸钠而带入大量钠离子,同样因其价格因素而不能被工业化应用。目前应用最多的就是硫酸镍,由于制造工艺稍有不同而有两种结晶水的硫酸镍。因为硫酸镍是主盐,用量大,在镀中还要进行不断的补加,所含杂质元素会在镀液的积累,造成镀液镀速下降、寿命缩短,还会影响到镀层性能,尤其是耐蚀性。所以在采购硫酸镍时应该力求供货方提供可靠的成分化验单,做到每个批量的质量稳定,尤其要注意对镀液有害的杂质尤其是重金属元素的控制。 还原剂 用得最多的还原剂是次磷酸钠,原因在于它的价格低、镀液容易控制,而且合金镀层性能良好。次磷酸钠在水中易于溶解,水溶液的PH值为6。是白磷溶于NaOH中,加热而得到的产物。目前国内的次磷酸钠制造水平很高,除了国内需求外还大量出口。 络合剂 化学镀镍溶液中除了主盐与还原剂以外,最重要的组成部分就是络合剂。镀液性能的差异、寿命长短主要取决于络合剂的选用及其搭配关系。 络合剂的第一个作用就是防止镀液析出沉淀,增加镀液稳定性并延长使用寿命。如果镀液中没有络合剂存在,由于镍的氢氧化物溶解度较小,在酸性镀液中便可析出浅绿色絮状含水氢氧化镍沉淀。硫酸镍溶于水后形成六水合镍离子,它有水解倾向,水解后呈酸性,这时即析出了氢氧化物沉淀。如果六水合镍离子中有部分络合剂存在则可以明显提高其抗水解能力,甚至有可能在碱性环境中以镍离子形式存在。不过,pH 值增加,六水合镍离子中的水分子会被OH根取代,促使水解加剧,要完全抑制水解反应,镍离子必须全部螯合以得到抑制水解的最大稳定性。镀液中还有较多次磷酸根离子存大,但由于次磷酸镍溶液度较大,一般不致析出沉淀。镀液使用后期,溶液中亚磷酸根聚集,浓度增大,容易析出白色的NiHPO3.6H2O沉淀。加入络合剂以后溶液中游离镍离子浓度大幅度降低,可以抑制镀液后期亚磷酸镍沉淀的析出。络合剂的第二个作用就是提高沉积速度,加络合剂后沉积速度增加的数据很多。加入络合剂使镀液中游离镍离子浓度大幅度下降,从质量作用定律看降低反应物浓度反而提高了反应速度是不可能的,所以这个问题只能从动力学角度来解释。简单的说法是有机添加剂吸附在工件表面后,提高了它的活性,为次磷酸根释放活性原子氢提供更多的激活能,从而增加了沉积反应速度。络合剂在此也起了加速剂的作用。 能应用于化学镀镍中的络合剂很多,但在化学镀镍溶液中所用的络合剂则要求它们具有较大的溶解度,存在一定的反应活性,价格因素也不容忽视。目前,常用的络合剂主要是一些脂肪族羧酸及其取代衍生物,如丁二酸、柠檬酸、乳酸、苹果酸及甘氨酸等,或用它们的盐类。在碱浴中则用焦磷酸盐、柠檬酸盐及铵盐。不饱和脂肪酸很少使用,因不饱和烃在饱和时要吸收氢原子,降低还原剂的利用率。而常见的一元羧酸如甲酸、乙酸等则很少使用,乙酸常用作缓冲剂,丙酸则用作加速剂。 稳定剂 化学镀镍溶液是一个热力学不稳定体系,由于种种原因,如局部过热、pH值提高,或某些杂质影响,不可避免的会在镀液中出现一些活性微粒—催化核心,使镀液发生激烈的均向自催化反应,产生大量Ni—P

无氰碱性镀锌光亮剂

无氰碱性镀锌光亮剂 RC碱性无氰镀锌光亮剂是我公司开发研制的新一代环保型镀锌光亮剂,具有光亮电流密度区范围宽,镀层白亮,均镀性良好;脆性低,对杂质具有很好容忍性等优。 工艺特点 1.光亮区宽、在0.1-12A/dm2的宽广电流密度范围内可直接镀得镜面光亮的镀锌 2.层装饰性良好,且镀层均匀; 3.镀层脆性低,可以镀得厚度锌层; 4.均镀性与深镀能力强,可以在复杂零件上获得均镀性良好的镀层; 溶液组成及操作条件: 配制溶液: 1.开缸时,在槽中加入所配溶液1/3的水。 2.小心加入所需要量的氢氧化钠固体,不可过快,注意放热,搅拌溶解。。 3.趁热加入氧化锌搅拌至完全溶解 4.待镀液冷却后,加水至预定的体积; 5.最后加入以上的各种添加剂,便可以开始试镀。 设备要求: 镀槽:内衬塑料的钢槽或者塑料槽。 循环过滤:过滤泵最少能在一小时内将镀液过滤四次。

光亮剂的补充与维护 1.必须严格控制Zn/NaoH比值应在1:10-1:15范围 2.RC光亮剂,消耗量为100-150ml/KAH,夏天镀锌温度高、消耗量大些,滚镀与挂镀消耗量亦有区别: 3.RC走位剂与光亮剂同步添加,消耗量为50-100ml/Kah用量视工件形状,带出量多少而补加; 4.遇到杂质污染严重、硬水程度过高时、加净化剂处理: 5.光亮剂的补充方式应采用少量多次的原则,光亮剂经稀释后补入。 环保与安全 为了避免产品对人及环境的危害,获得产品的安全说明书及环境保护说明书是必要的。本公司产品的安全技术说明书(MSDS)包含了这些说明。 质保 1.我公司为产品质量提供在有效的法律范围内的责任担保。 2.客户对产品进行再包装后的产品质量不在我公司的质保范围内。 3.在使用时,无论用户有任何问题,本公司技术服务人员将随时解答。 产品颜色及包装 无氰碱锌主光剂为棕黄色液体,用塑料桶包装。包装规格为25kg/pcs。 无氰碱锌走位剂为无色或微黄色液体,用塑料桶包装。包装规格为25kg/pcs。

黄亮化学镀镍配方设计与超光亮配方工艺说明

黄亮化学镍配方与四组分超光亮配方工艺 (周生电镀导师) 目前市场上对黄亮型化学镀镍需求增加,黄亮型超光亮化学镍工艺因此被开发出来。PM-5068 黄色超光亮化学镀镍具有镀速高,循环使用寿命长,沉镀能力和分散能力极好,镀层外观黄亮等特点,调整添加剂成分可以发展出黑亮也叫乌亮型,白亮型工艺。本工艺的主要特点如下: 1.溶液稳定性好,可以循环使用,使用寿命达到8-10循环,1个循环的含义是每升镀液 将全部镍镀出再补充到原来的镍含量称为1M.T.O.。 2.沉积速度快,达到18-30μm/hr, 提高了生产效率。 3.周生电镀导师之(@q):(3)(8)(0)(6)(8)(5)(5)(0)(9) 4.镀层防腐性能高。电镀导师之[(微)(Xin)]:(1)(3)(6)(5)(7)(2)(0)(1)(4)(7)(0) 5.对复杂零件具有优异的均镀能力。 6.镀层孔隙率低。 7.操作简单,使用方便。 8.优异的耐磨性能,经热处理镀层硬度可达1050 VHN。 PM-5068化学镀镍适用于大多数材料的零部件,如钢铁、铸铁、铝合金、铜及铜合金、不锈钢、钕铁硼粉末烧焙件、钛合金以及塑料、陶瓷等非金属材料。 需要注意的是:我们的配方是量产的成熟商业配方,网上是找不到的,电镀手册也没有。网上卖配方书籍几百元一本含有几百个配方,那种资料只能当做书籍读读,没有商业价值。有些用户嫌贵了,尽管买书好了。 ●配方平台不断发展完善 我们的配方平台包含的成熟量产商业种类多,已有AN美特、乐思、罗哈、国内知名公等量产成熟的药水配方。

我们的配方平台帮助了很多中小企业提高产品技术水平,也有不少个人因此创业成功,帮助国内企业抢占国外知名企业市场,提升国产占有率是我们长期追求的目标。 ●配方说明 目前市场上有很多类似抄袭的,或者是买过部分配方后再次转卖的,他们有时候会改动数据,而且不会有后期的改进和升级。他们甚至建立Q群或者微@信群推广配方,我们没有建立任何群。所以,一切建&群的都是假冒。(本*公*告*长*期*有*效) ● PM-5068全环保超光亮化学镍浓缩液的使用方法 本产品按四种深缩液供应:PM-5068A、 PM-5068AK、 PM-5068B、 PM-5068C,开缸及维护容易。 1.操作条件 2.槽液的配制方法: ⑴在洁净镀槽中加入一半体积的去离子水; ⑵加入6%(体积)的 PM-5068AK,搅拌均匀; ⑶加入15%(体积)的 PM-5068B,搅拌均匀; ⑷另加去离子水至所需体积,搅拌均匀; ⑸用氨水调节pH值至4.8-5.2; ⑹加热镀液至85-90℃,溶液即可使用。 3.镀液的补加与维护: 工作液镀镍的标准含量为6.0g/L(Ni),经过分析Ni2+含量,镀液Ni含量降低1g/L,则补加 PM-5068A 10mL/L X槽液总体积(L) PM-5068C 10mL/LX槽液总体积(L) 根据分析Ni2+含量。具体补加量如下:

实验15_光亮镀锌及化学镀镍实验报告

5.3数据处理 (1)电镀锌的电流密度:J=I/S=0.8A/(3.5cm×3.5cm×2)=0.0326A/cm2 (2)碱性光亮镀锌的电流效率: 实验中锌的实际析出量为: 第一次镀锌:113.5mg/(0.8A×10min×60s/min)=0.2364mg/C 第二次镀锌:111.0mg/(0.8A×10min×60s/min)=0.2312mg/C 锌的理论析出量为0.339 mg/C 则镀锌的电流效率为: 第一次镀锌:(0.2364 mg/C)/(0.339 mg/C)×100%=69.73% 第二次镀锌:(0.2312mg/C)/(0.339 mg/C)×100%=68.20% (3)质量法测得第一次镀锌的镀层厚度: [0.1135g/(7.17g/cm3)/(3.5cm×3.5cm)]/2=6.461×10-4cm 质量法测得第二次镀锌的镀层厚度: [0.1110g/(7.17g/cm3)/(3.5cm×3.5cm)]/2=6.319×10-4cm (4)镍磷合金镀层的厚度:(0.0403g/(8.30g/ cm3))/( 3.5cm×3.5cm)=3.964×10-4cm 化学镀镍的沉积速度:3.964um/(20min×1/60h/min)=11.892um/h (5) 孔隙率:41/(3.3cm×3.3cm) = 3.76个/cm2 (6)评价两种镀层的外观:用镀锌法镀后得到的铁片表面较光滑和有光泽,而且镀层较厚,但均匀度不够高;用化学镀镍法得到的铁片表面光滑,镀层均匀,但光泽不及化学镀锌好,且镀层较薄。 6 讨论与分析 6.1本实验中镀锌用电流0.8A,因为反应速度较快能得到镀层比较好的铁片。 6.2由计算电流效率可知,本实验电流效率偏小,可能是因为电流较大,搅拌速度较快使得镀层较难附着在铁片上。 6.3计算的孔隙率较小,滤纸上的斑点都是较小的,几乎没有连起来的斑点,可能是因为小气泡,以及预处理不够到位,或者含有其他杂质造成的。 6.4本次实验需要对铁片进行退锌、除灰、除油的预处理,这是实验成功的关键,实验时应尽量避免用手触碰而使其沾上油污,影响镀层质量。 6.5本组比较两种方法发现,镀锌过程出泡不是很均匀,且有一侧有大量气泡,另一侧较少,因此均匀度不够好。而化学镀镍过程气泡均匀出现,因此镀层较均匀。

化学镀镍配方汇编

简述电镀槽液加料方法与溶液密度测定方法 1.电镀生产现场工艺管理的主要内容: 1)控制各槽液成分在工艺配方规范内。遵守规定的化学分析周期。 2)保持电镀生产的工艺条件。如温度、电流密度等。 3)保持阴极与阳极电接触良好。 4)严格的阴极与阳极悬挂位置。 5)保持镀液的清洁和控制镀液杂质。 6)保持电镀挂具的完好和挂钩、挂齿良好的电接触。 2.电镀槽液加料方法:加料要以“勤加”“少加”为原则。 2.1固体物料的补充,某些有机固体料先用有机溶剂溶解,再慢慢加入以提高增溶性。若直接加入往往会使镀液混浊。一般的固体物料,可用镀槽中的溶液来分批溶解。即取部分电镀液把要加的料在搅拌下慢慢加入,待静止澄清,把上层清液加入镀槽。未溶解的部分,再加入镀液,搅拌溶解。这样反复作业,直到全部加完。在不影响镀液总体积的情况下,也可以用去离子水或热的去离子水搅拌溶解后加入镀槽。有些固体料易形成团状,影响溶解过程。可以先用少量水调成稀浆糊状,逐步冲稀以避免团状物的形成。 2.2液体物料的补充,可以用去离子水适当稀释或用镀液稀释后在搅拌下慢慢加入。严禁将添加剂光亮剂的原液加入镀槽。 2.3补充料的时机,加料最好是在停镀时进行。加入后经过充分搅匀再投入生产。在生产中加料,要在工件刚出槽后的“暂休”时段加入。可在

循环泵的出液口一方加入,加入速度要慢,药料随着出液口的冲击力很快分散开来。 2.4加料方法不当可能造成的后果: 2.4 1)如果加入的是光亮剂,则易造成此槽工件色泽差异。 2.4.2)如果加入的是没有溶解的固体料,则易造成镀层毛刺或粗糙。 2.4.3)如果是加入酸调节pH,会造成槽液内部pH不均匀而局部造成针孔。 3.镀液及其它辅助溶液密度的测试方法: 3.1要经常测定溶液的密度,新配制的镀液或其它辅助液,都要测定它的密度并作为档案保存起来供以后对比。镀液的密度一般随着槽龄增加而增加。这是由于镀液中杂质离子、添加剂分解产物等积累的结果,因此可以把溶液密度与溶液成分化验数据一起综合进行分析,判断槽液故障原因以利排除。 3.2溶液密度测定方法,在电镀生产中,常用密度计或波美计测试溶液密度。密度与波美度可以通过下列公式转换。对重于水的液体密度 =145/(145-波美度),波美度=(145x145)/密度,在用波美计测试时,其量程要从小开始试测,若波美计量程选择不当,会损坏波美计。 测试密度不要在镀槽内进行,应取出部分镀液在槽外进行。在镀槽中测试,当比重计或波美计万一损坏,镀液会被铅粒污染。应将待测液取出1.5L左右(用2000mL烧杯),热的溶液可用水浴冷却。然后将样液转移至1000mL直形量筒中,装入量为距筒口约20mm处,就可用比重计测量。 脉冲电镀电源使用须知

快速电镀锌的方法

快速电镀锌的方法 (2008-09-13 16:40:07) 电镀液溶液zncl2杂谈分类:问题讨论 常用的镀锌电镀液为弱酸性,与溶液中的[Zn2+]相比,[H+]仍然较大,在镀件表面存在着氢与锌的共析现象。氢气的生成妨碍锌原子的紧密排列,影响着锌的电沉积速度,因此镀层易成为蓬松的海绵状。另外,课堂演示要等待15分钟方可见到结果,不利于组织教学。 笔者曾多次试改镀液的配方,效果好的是以Na2ZnO2为主的碱性电镀液,用4.5V的电池组,不附加电阻,镀件单侧面不小于5cm2,以控制电流密度。通电10秒钟,镀件上出现明显的银白色镀层;30秒时取出镀件,表面为浅灰色,用软布擦拭,即成为光亮的银白色。溶液稳定,反应迅速,现象明显,重复性好,这些特点能满足课上演示实验和学生实验的要求。镀液的配制 在大烧杯中放入浓的ZnCl2溶液(潮解形成的亦可)20m1,在不断搅拌的情况下缓慢加入浓度为15%的NaoH溶液。当大量的白色沉淀Zn(OH)2生成以后,继续缓慢(最后改为滴加)加入浓碱液,不断搅拌,使沉淀物大部分溶解,生成Na2ZnO2。当所剩沉淀不多时,停止加入碱液,以沉淀物的存在显示碱不过量,这是配液的关键,因为在强碱溶液中锌不能稳定存在。待烧杯中的溶液静置以后,倾取上层清液,即为镀锌电镀液,测其pH值为13;槽镀、刷镀均可,用毕装瓶,胶塞封存,隔年可再用。因[H+]降到很小,排除了氢的共析因素,锌原子在镀件表面的排列快而不乱。 硫锌-30硫酸盐镀锌光亮剂 以硫锌-30为光亮剂的新型线材电镀工艺,保留了原有工艺中主盐成份基本不变,舍去了“阿拉伯胶、桃胶、硫脲”等成份,改善提高了溶液的阴极极化能力和分散能力,提高了镀层的致密度,镀液稳定,工作范围宽,提高了线材的光亮度。 一、推荐配方 硫酸锌: 250 ~ 400 克/升 硼酸: 30 ~ 40 克/升 硫锌-30: 14 ~ 18 毫升/升 P H值: 3 ~ 5.5 电流密度: 4 ~ 10 安培/分米 2 温度:10 ~ 70 ℃ 阴极电流效率大于95%

化学镀镍工艺

化学镀镍工艺 化学镀镍机理: 1)原子氢析出机理。原子氢析出机理是1946年提出的,核心是还原镍的物质是原子氢,其反应过程如下: H2P02-+H20→HP032-+H++2H Ni2++2H→Ni+2H+ H2P02-+H++H→2H20+P 2H→H2 水和次磷酸根反应产生了吸附在催化表面上的原子氢,吸附氢在催化表面上还原镍离子。同时,吸附氢在催化表面上也产生磷的还原过程。原子态的氢相互结合也析出氢气。2)电子还原机理(电化学理论)电子还原机理反应过程如下: H2P02-+H20→HP032-+H++2e Ni2++2e→Ni H2P02-+2H++e→2H20+P 2H++2e→H2 酸性溶液中,次磷酸根与水反应产生的电子使镍离子还原成金属镍。在此过程中电子也同时使少部分磷得到还原。 3)正负氢离子机理。该理论最大特点在于,次磷酸根离子与磷相连的氢离解产生还原性非常强的负氢离子,还原镍离子、次磷酸根后自身分解为氢气。 H2P02-+H20→HP032-+H++H- Ni2++2H-→Ni+H2 H2P02-+2H++H-→2H20+P +1/2H2 H-+H+→H2 分析上述机理,可以发现核心在于次磷酸根的P-H键。次磷酸根的空间结构是以磷为中心的空间四面体。空间四面体的4个角顶分别被氧原子和氢原子占据,其分子结构式为: 各种化学镀镍反应机理中共同点是P-H键的断裂。P-H键吸附在金属镍表面的活性点上,在镍的催化作用下,P-H键发生断裂。如果次磷酸根的两个P-H键同时被吸附在镍表面的活性点上,键的断裂难以发生,只会造成亚磷酸盐缓慢生成。对于P-H键断裂后,P-H间共用电子对的去向,各种理论具有不同的解释。如电子在磷、氢之间平均分配,这就是原子氢析出理论;如果电子都转移至氢,则属于正负氢理论;而电子还原机理则认为电子自由游离出来参与还原反应。因此,可以根据化学镀镍机理的核心对各种宏观工艺问题进行分析解释。 化学镀镍工艺过程 化学镀镍前处理工艺 一:除油:

实验15-光亮镀锌及化学镀镍实验报告

光亮镀锌及化学镀镍 1 实验目的 1.1 学习和实践氯化钾光亮镀锌的实验室基本操作流程,了解电镀的基本原理和工艺。 1.2 学习并掌握化学镀镍的原理及实验室的操作方法。 2 实验原理 电镀是利用电化学方法在金属制品表面上沉积出一层其他金属或合金的过程。电镀时,镀层金属做阳极,被氧化成阳离子进入电镀液;待镀的金属制品做阴极,镀层金属的阳离子在金属表面被还原形成镀层。为排除其他阳离子的干扰,使镀层均匀,牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀层比热浸层均匀,一般都较薄,从几个微米到几十微米不等,电镀能增强金属制品的耐腐蚀性,增加硬度和耐磨性,提高导电性,润滑性,耐热性和表面美观等性能。 化学镀就是在不通电的情况下,利用氧化还原反应在具有催化表面的镀层上,获得金属合金的方法,用于提高抗蚀性和耐磨性,增加光泽和美观。管状或外形复杂的小零件的光亮镀镍,不必再经抛光,一般将被镀制件浸入以硫酸镍,次亚磷酸钠,乙酸钠和硼酸所配成的混合溶液内,在一定酸度和温度下发生变化,溶液中的镍离子被次亚磷酸钠还原为原子而沉积于制件表面上,形成细致光亮的镍磷合金镀层。钢铁制件可直接镀镍。锡,铜和铜合金制件要先用铝片接触于其表面上1-3分钟,以加速化学镀镍。化学镀镍的反应可简单地表示为: NiSO4+3NaH2PO2+3H2O=Ni+3NaH2PO3+H2SO4+2H2 反应还生成磷,形成镍磷合金。 镀液由含有镀覆金属的化合物、导电盐、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电场作用下移动到阴极上还原成镀层。阳极的金属形成金属离子进入电镀液,

化学镀镍相关知识.doc

一、化学镀镍溶液的成分分析 为了保证化学镀镍的质量,必须始终保持镀浴的化学成分、工艺技术参数在 最佳范围(状态),这就要求操作者经常进行镀液化学成分的分析与调整。 1.Ni2+浓度 镀液中镍离子浓度常规测定方法是用EDTA络合滴定,紫脲酸胺为指示剂。 试剂 (1)浓氨水(密度:0.91g/ml)。 (2)紫脲酸胺指示剂(紫脲酸胺:氯化钠=1:100)。 (3)EDTA容液0.05mol,按常规标定。 分析方法: 用移液管取出10ml冷却后的化学镀镍液于250ml的锥形瓶中,并加入100ml蒸馏水、15ml浓氨水、约0.2g指示剂,用标定后的EDTA溶液滴定, 当溶液颜色由浅棕色变至紫色即为终点。 镍含量的计算: C Ni2+= 5.87 M·V (g/L) 式中M——标准EDTA溶液的摩尔浓度; V——耗用标准EDTA溶液的毫升数。 2.还原剂浓度 次亚磷酸钠NaH2PO2·H2O浓度的测定 其原理是在酸性条件下,用过量的碘氧化次磷酸钠,然后用硫代硫酸钠溶液反滴定自剩余的碘,淀粉为指示剂。 试剂 (1)盐酸1:1。 (2)碘标准溶液0.1mol按常规标定。 (3)淀粉指示剂1%。 (4)硫代硫酸钠0.1mol按常规标定。 分析方法: 用移液管量取冷却后的镀液5ml于带盖的250mL锥形瓶中;加入盐酸 25mL碘标准溶液于此锥形瓶中,加盖,置于暗处0.5h(温度不得低于25℃); 打开瓶盖,加入1mL淀粉指示剂,并用硫代硫酸钠标准溶液滴定至蓝色消 失为终点。 计算: C NaH2PO2·H2O = 10.6(2M1V1-M2V2) (g/L) 式中M1——标准碘溶液的摩尔浓度; V1——标准碘溶液毫升数;

氯化钾酸性镀锌载体光亮剂的研制

氯化钾酸性镀锌载体光亮剂的研制 摘要氯化钾镀锌由于镀液中不含有络合剂,所以对光亮剂性能要求比较高,氯 化钾镀锌光亮剂按作用分主要有三种:主光亮剂、载体光亮剂、辅助光亮剂。本 次实验主要是载体光亮剂的研制实验,通过大量的实验,得到的实验配方使镀液 浊点达到63℃,与辅助光亮剂配合使用可得到较好的高温性能。镀液的分散能力、覆盖能力也都与某公司产品性能相近。为了能得到较为优良的镀液性能,本 文还对氯化钾镀锌相关的工艺条件进行了了一定的讨论。 关键词: 载体;光亮剂;镀锌 Research on carrier brightener based on acidic potassium chloride zinc plating Abstract It need super performance for brightener because it contains no complex compound. The brightener for potassium chloride zinc plating according to its function can mainly class into the following three kinds: main brightener, carrier brightener, subsidiary brightener. The main purpose for this experiment is study on carrier brightener. Through lots of experiment a carrier brightener has a high temperature tolerance when combine with subsidiary brightener was obtained, which its cloud point can sustain until 63 ℃. The throwing power and covering power for the plating solution are similar to an existing product of one company. In order to achieve a excellent performance, the relevant process conditions for potassium chloride zinc plating were also discussed. Key words: Carrier;Brightener;Zinc plating

化学知识镀镍及其原理.doc

化学镀镍及其原理 目录: 1化学镀 2化学镀镍 3化学镀镍的化学反应 4化学镀镍的热动力学 5化学镀镍的关键技术 6化学镀镍中应注意的问题 7化学镀镍的应用 一化学镀 概括:化学镀是一种新型的金属表面处理技术,该技术以其工艺简便、节能、环保日益受 到人们的关注。化学镀使用范围很广,镀金层均匀、装饰性好。在防护性能方面,能提高产品的耐蚀性和使用寿命;在功能性方面,能提高加工件的耐磨导电性、润滑性能等特殊功能,因而成为全世界表面处理技术的一个发展。 详解:化学镀[1](Electroless plating)也称无电解镀或者自催化镀(Auto-catalytic plating),是在无外加电流的情况下借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到零件表面的 1 种镀覆方法。 化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。 原理 化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。化学镀常用溶液:化学镀银、镀镍、镀铜、镀钴、镀镍磷液、镀镍磷硼液等。 目前以次亚磷酸盐为还原剂的化学镀镍的自催化沉积反应,已经提出的理论有“原子氢态理论”、“氢化物理论”和“电化学理论”等。在这几种理论中,得到广泛承认的是“原子氢态理论”。

相关文档
相关文档 最新文档