文档库 最新最全的文档下载
当前位置:文档库 › 09《结构化学》例题

09《结构化学》例题

09《结构化学》例题
09《结构化学》例题

一. 知识点(选择题):

1.一维势箱中的粒子相邻两能级差E n +1-E n 随着n 的增大而(增大) 氢原子的核外电子相邻两能级差E n +1-E n 随着n 的增大而(减小)

2. 方势箱中粒子的能级 (),2222

,28x y z

n n n x y z h E n n n ma

=++ *方势箱中粒子具有E =2

2

812ma

h 状态的量子数n x n y n z 是 ( ) n x 2 + n y 2+n z 2 =12

3.线性算符R

?具有下列性质 R

?(U + V ) = R ?U +R ?V R ?(cV ) = c R ?V 式中c 为复数。

*下列算符中哪些是线性算符? ( )

(A) A

?U =λU , λ=常数; (B) B ?U =U *; (C) C

?U =U 2 ; (D) D ?U = x

U d d (E) E

?U =1/U *下列函数中属于线性算符d 2/d x 2

与d/d x 的共同本征函数的是( )

(A) cos kx ;(B) exp( –kx );(C) exp( –ikx );(D) exp( –kx 2

)

4. H 2+的H ?= 21?2- a r 1- b r 1 +R 1, 这种表达形式已采用了 下列哪几种近似或简化方法---------------------------------( )

(A ) 波恩-奥本海默近似 (B) 单电子近似 (C ) 原子单位制 (D) 中心力场近似

|

轨道角动量|

: M =

|自旋角动量|

:s

M =

|总角动量| = |M + M s |=

*.在 s 轨道上运动的一个电子的 轨道角动量 为 ( )

*基态氢原子的电子总角动量 为----------( )

7. 描述微观粒子体系运动的薛定谔方程------

(并不是逻辑推理得出的,而是量子力学的一个基本假设 。)

8. R l n ,(r )-r 图中,R = 0称为节点,节点数有 ( n -l -1 )

9. 原子的电子云形状是由下列那种函数作的图? ( Y 2

)

10. "分子轨道"的定义:

(分子中单个电子空间运动的波函数)

12.右列分子的键长次序是正确的( OF -> OF > OF + )

13.若以x 轴为键轴,下列何种轨道能与p

y 轨道最大重叠( )

(A) s (B) d xy

(C) p z (D) d xz

14. 单电子原子的6s、5d、4f轨道能级次序为( 6s>5d>4f )

15. Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项为( 5D4 )

16. 下列分子离子具有单电子π键的是----------------------( C )

(A) N2+ (B) C2-

(C) B2+ (D) O2-

17.试比较(1) NH3;(2) C6H5NH2;(3) N(CH3)3;(4) CH3CONH2的碱性大小顺序为------------------------------------------------------( A )

(A) (3)>(1)>(2)>(4) (B) (3)<(1)<(2)<(4)

(C) (1)>(3)>(2)>(4) (D) (3)>(4)>(2)>(1)

18. 下列氯化物中,氯的活泼性最差的是------------------( )

氯的活泼性最强的是------------------( )

(A) C6H5Cl (B) C2H5Cl

(C) CH2=CHCl (D) C6H5CH2Cl

*关于光电效应,下列叙述正确的是-----------( )

(A)光电流大小与入射光子能量成正比

(B)光电流大小与入射光子频率成正比

(C)光电流大小与入射光强度成正比

(D)入射光子能量越大,则光电子的动能越大.

*(多选题)下列哪几点是量子力学的基本假设----------( )(A) 电子自旋(保里原理)

(B) 微观体系的一个可观测物理量对应于一个线性自轭算符(C) 描写微观粒子运动的波函数必须是正交归一化的

(D) 微观体系的力学量总是测不准的,所以满足测不准原理

*晶体与无定形体这两类固体结构的最大区别在于( )

(A) 均匀性(B) 周期性排列

(C) 各向异性(D) 有对称性

*下列分子中磁矩最大的是-----------------------------------( )

(A) Li2(B) C2

(C) C2+(D) B2

* Br

2

分子的能量最低空轨道(LUMO)是----------------( )

(A) (B)

(C) (D)

*平面分子2,4,6-三硝基苯酚存在的离域 键是( ).

* F C≡CF

*写出下列分子的休克尔行列式[用x表示,即令x=(α-E)/β,自己给原子编号]

1

23

4

5

6

10000 11001 01100 00110 00011 01001

x

x

x

x

x

x

.计算题:

1. 试计算:

(1)锂原子Li的第三电离能I3(Li).

(2)锂离子Li2+的激发态Ψ3,2,0(即[Li 2+]*:21

3

z

d态)的能量E3,2,0.

(3)锂离子Li 2+激发态Ψ3,2,0的轨道角动量的大小|M|.

[9.15] 金属钠为体心立方结构,a = 429 pm,计算:

(1) 钠的原子半径;

(2) 金属钠的理论密度;

(3) 钠原子的空间占有率;

3.已知金属铜属于面心立方(A1型)结构,其密度ρ=8.936g·cm-3,

A r(Cu)=63.54.试计算:

(1)铜的金属(原子)半径r.

(2)铜的晶胞参数a.

(3)铜原子的空间占有率η.

4.通过HMO法的演绎和计算回答:

(1) H3-分子是线形的,还是环状三角形的?

(2) H3-分子是以何种键型结合的?

5.已知Ca2+和O2-的离子半径分别为99pm和140pm,CaO晶体中O2-按立方最密堆积排列,晶体结构完全符合离子晶体

的结构规律。

(1) CaO晶体属于何型结构的离子晶体?

(2)Ca2+填入何种空隙中?

(3)晶体属何点群?

(4) 晶胞参数a =?

(5) 晶胞中正负离子个数分别是多少?

解:(1) 因其晶体结构完全符合离子晶体的结构规律,

则由(r+/r-)=99/140=0.707 ∈[0.414, 0.732] ?

CaO晶体结构属于NaCl型

(2) 正八面体空隙

(3) O h

6.CsCl结构型式的晶胞如下图所示:

(2)Cs+和Cl-的配位数各是多少?

(3)写出Cs+和Cl-的分数坐标.

(4)给出晶体的结构基元.

(5)给出晶体的点阵型式(简单立方?体心立方?面心立方?)

7.(1) p4组态与什么组态的光谱项相同?

(2) p4组态原子共有多少个光谱项?请写出其所有的光谱项;

(3) 这些光谱项中的基谱项是哪一个?写出该基谱项的所有光谱支项,并指出其中最稳定的光谱支项是哪一个?

8. (1) d2组态原子共有多少个光谱项?请写出其所有的光谱项;

(2) 确定其中的基谱项,并写出该基谱项的所有光谱支项;

(3) 在该基谱项的所有光谱支项中,最稳定的是哪一个?

流体力学习题解答

《流体力学》选择题库 第一章 绪论 1.与牛顿内摩擦定律有关的因素是: A 、压强、速度和粘度; B 、流体的粘度、切应力与角变形率; C 、切应力、温度、粘度和速度; D 、压强、粘度和角变形。 2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为: A 、牛顿流体及非牛顿流体; B 、可压缩流体与不可压缩流体; C 、均质流体与非均质流体; D 、理想流体与实际流体。 3.下面四种有关流体的质量和重量的说法,正确而严格的说法是 。 A 、流体的质量和重量不随位置而变化; B 、流体的质量和重量随位置而变化; C 、流体的质量随位置变化,而重量不变; D 、流体的质量不随位置变化,而重量随位置变化。 4.流体是 一种物质。 A 、不断膨胀直到充满容器的; B 、实际上是不可压缩的; C 、不能承受剪切力的; D 、在任一剪切力的作用下不能保持静止的。 5.流体的切应力 。 A 、当流体处于静止状态时不会产生; B 、当流体处于静止状态时,由于内聚力,可以产生; C 、仅仅取决于分子的动量交换; D 、仅仅取决于内聚力。 6.A 、静止液体的动力粘度为0; B 、静止液体的运动粘度为0; C 、静止液体受到的切应力为0; D 、静止液体受到的压应力为0。 7.理想液体的特征是 A 、粘度为常数 B 、无粘性 C 、不可压缩 D 、符合RT p ρ=。 8.水力学中,单位质量力是指作用在单位_____液体上的质量力。 A 、面积 B 、体积 C 、质量 D 、重量

9.单位质量力的量纲是 A、L*T-2 B、M*L2*T C、M*L*T(-2) D、L(-1)*T 10.单位体积液体的重量称为液体的______,其单位。 A、容重N/m2 B、容重N/M3 C、密度kg/m3 D、密度N/m3 11.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。 A、相同降低 B、相同升高 C、不同降低 D、不同升高 12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。 A、减小,升高; B、增大,减小; C、减小,不变; D、减小,减小 13.运动粘滞系数的量纲是: A、L/T2 B、L/T3 C、L2/T D、L3/T 14.动力粘滞系数的单位是: A、N*s/m B、N*s/m2 C、m2/s D、m/s 15.下列说法正确的是: A、液体不能承受拉力,也不能承受压力。 B、液体不能承受拉力,但能承受压力。 C、液体能承受拉力,但不能承受压力。 D、液体能承受拉力,也能承受压力。 第二章流体静力学 1.在重力作用下静止液体中,等压面是水平面的条件是。 A、同一种液体; B、相互连通; C、不连通; D、同一种液体,相互连通。 2.压力表的读值是 A、绝对压强; B、绝对压强与当地大气压的差值; C、绝对压强加当地大气压; D、当地大气压与绝对压强的差值。 3.相对压强是指该点的绝对压强与的差值。 A、标准大气压; B、当地大气压; C、工程大气压; D、真空压强。

结构化学课后答案第四章

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3 3I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

结构化学复习考试题

复习题一 一、单向选择题 1、 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量算符 应是(以一维运动为例) ( ) (A) mv (B) i x ??h (C) 2 22x ?-?h 2、 丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是 一致的, 因为一维势阱中粒子的能量 ( ) (A) 反比于势阱长度平方 (B) 正比于势阱长度 (C) 正比于量子数 3、 将几个简并的本征函数进行线形组合,结果 ( ) (A) 再不是原算符的本征函数 (B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变 4、N 2、O 2、F 2的键长递增是因为 ( ) (A) 核外电子数依次减少 (B) 键级依次增大 (C) 净成键电子数依次减少 5、下列哪种说法是正确的 ( ) (A) 原子轨道只能以同号重叠组成分子轨道 (B) 原子轨道以异号重叠组成非键分子轨道 (C) 原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道 6、下列哪组点群的分子可能具有偶极矩: ( ) (A) O h 、D n 、C nh (B) C i 、T d 、S 4 (C) C n 、C nv 、 7、晶体等于: ( ) (A) 晶胞+点阵 (B) 特征对称要素+结构基元 (C) 结构基元+点阵 8、 著名的绿宝石——绿柱石,属于六方晶系。这意味着 ( ) (A) 它的特征对称元素是六次对称轴 (B) 它的正当空间格子是六棱柱 (C) 它的正当空间格子是六个顶点连成的正八面体 9、布拉维格子不包含“四方底心”和 “四方面心”,是因为它们其实分别是: ( ) (A) 四方简单和四方体心 (B) 四方体心和四方简单 (C) 四方简单和立方面心 10、某晶面与晶轴x 、y 、z 轴相截, 截数分别为4、2、1,其晶面指标是 ( ) (A) (124) (B) (421) (C) (1/4,1/2,1) 11、与结构基元相对应的是: ( ) (A) 点阵点 (B) 素向量 (C) 复格子

流体力学习题答案讲解

【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。 【解】液体的密度 33 4 0.4530.90610 kg/m 510m V ρ-= ==?? 相对密度 3 3 0.906100.9061.010w ρδρ?===? 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到 4.9×105Pa 时,体积减少1L 。求水的压缩系数和弹性系数。 【解】由压缩系数公式 10-15 10.001 5.110 Pa 5(4.91098000) p dV V dP β-=-==???- 910 1 1 1.9610 Pa 5.110 p E β-= = =?? 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数 1t dV V dt β= 则 211 3600.00055(8020)6061.98 m /h t Q Q dt Q β=+=??-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。罐装时液面上压强为98000Pa 。 封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少? 【解】(1)由1 β=-=P p dV Vdp E 可得,由于压力改变而减少的体积为 6 20017640 0.257L 13.7210??=-= ==?P p VdP V dV E 由于温度变化而增加的体积,可由 1β= t t dV V dT

流体力学例题

第一章 流体的性质 例1:两平行平板间充满液体,平板移动速度0.25m/s ,单位面积上所受的作用力2Pa(N/m2>,试确定平板间液体的粘性系数μ。 例2 :一木板,重量为G ,底面积为 S 。此木板沿一个倾角为,表面涂有润滑油的斜壁下滑,如图所示。已测得润滑油的厚度为,木板匀速下滑的速度为u 。试求润滑油的动力粘度μ。 b5E2RGbCAP 例3:两圆筒,外筒固定,内筒旋转。已知:r1=0.1m ,r2=0.103m ,L=1m 。 。 求:施加在外筒的力矩M 。 例4:求旋转圆盘的力矩。如图,已知ω, r1,δ,μ。求阻力矩M 。 第二章 流体静力学

例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z0=3m, 压差计各水银面的高程分别为z1 = 0.03m, z2 = 0.18m, z3 = 0.04m, z4 = 0.20m,水银密度p1EanqFDPw ρ′=13600kg/m3,水的密度ρ=1000kg/m3 。试求水面的相对压强p0。 例2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为θ的Π形管。已知测压 计两侧斜液柱读数的差值为L=30mm ,倾角 θ=30°,试求压强差p1 –p2 。DXDiTa9E3d 例 3:用复式压差计测量两条气体管道的压差<如图所 示)。两个U 形管的工作液体为水银,密度为ρ2 ,其连接管充以酒精,密度为ρ1 。如果水银面的高度读数为z1 、 z2 、 z3、 z4 ,试求压强差pA –pB 。RTCrpUDGiT 例4:用离心铸造机铸造车轮。求A-A 面上的液体 总压力。 例5:已知:一块平板宽为 B ,长为L,倾角 ,顶端与水面平齐。求:总压力及作用点。 例7:坝的园形泄水孔,装一直径d = 1m 的 平板闸门,中心水深h = 3m ,闸门所在斜面与水平面成,闸门A 端设有铰链,B 端钢索

结构化学课后答案第二章

02 原子的结构和性质 【】氢原子光谱可见波段相邻4条谱线的波长分别为、、和,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2 21211 ( )R n n ν=- 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

《结构化学》期中考试题

2007-2008学年第二学期 《结构化学》期中考试题 一、选择题(每小题3分,共39分) [ ]1、分子轨道的含义是 A.分子中电子的空间运动轨迹B.描述分子中电子运动的状态 C.描述分子的状态函数D.描述分子中单个电子空间运动的波函数[ ]2、同核双原子分子的 轨道的特点是 A.能量最低B.其分布关于键轴呈圆柱形对称 C.无节面D.由S原子轨道组成 [ ]3、属于下列哪一点群的分子可能有旋光性() A.D∞h B.Cs C.O h D.D n [ ]4、若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者A.动量相同B.动能相同C.质量相同 [ ]5、对于厄米算符,下面哪种说法是对的 A.厄米算符中必然不包含虚数B.厄米算符的本征值必定是实数 C.厄米算符的本征函数中必然不包含虚数 [ ]6、将几个非简并的本征函数进行线形组合,结果 A.再不是原算符的本征函数B.仍是原算符的本征函数,且本征值不变C.仍是原算符的本征函数,但本征值改变 [ ]7、对s、p、d、f 原子轨道进行反演操作,可以看出它们的对称性分别是A.u, g, u, g B.g, u, g, u C.g, g, g, g [ ]8、Hund规则适用于下列哪种情况 A.求出激发组态下的能量最低谱项B.求出基组态下的基谱项 C.在基组态下为谱项的能量排序 [ ]9、用线性变分法求出的分子基态能量比起基态真实能量,只可能A.更高或相等B.更低C.相等 [ ]10、下列哪一条属于所谓的“成键三原则”之一: A.原子半径相似B.对称性匹配C.电负性相似 [ ]11、下列哪种说法是正确的 A.原子轨道只能以同号重叠组成分子轨道 B.原子轨道以异号重叠组成非键分子轨道 C.原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道 [ ]12、B2和C2中的共价键分别是 A.π1+π1,π+πB.π+π,π1+π1 C.σ+π,σ [ ]13、下列哪种说法是正确的(C*代表不对称碳原子): A.含C*的分子并非都有旋光性,不含C*的分子并非都无旋光性 B.含C*的分子必定都有旋光性,不含C*的分子必定都无旋光性 C.含C*的分子并非都有旋光性,不含C*的分子必定都无旋光性 二、简答题(41分) 1、(5分)对于边长为a的立方势箱中粒子质量为m,在能量由0到 2 2 16 8 h ma 之间有多少个能级?

流体力学习题解答

流体力学习题解答一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。 7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。 8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示 9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。 10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。 11.流体静压强的方向必然是沿着作用面的内法线方向。 12.液体静压强分布规律只适用于静止、同种、连续液体。= 13.静止非均质流体的水平面是等压面,等密面和等温面。 14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。 15.在微压计测量气体压强时,其倾角为?=30α,测得20l =cm 则h=10cm 。 16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。 17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 19.静压、动压和位压之和以z p 表示,称为总压。 20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。 21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其

结构化学基础习题及答案(结构化学总复习)

结构化学基础习题和答案 01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 71 1 1.49110cm 670.810cm νλ --= = =?? 3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν 0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10 -19 J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式

0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-? 图中直线与横坐标的交点所代表的v 即金属的临界频率0v ,由图可知, 141 0 4.3610v s -=?。因此,金属钠的脱出功为: 341410196.6010 4.36102.8810W hv J s s J ---==???=? 【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 018 1 2 341419 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=? ??? ???????-??? ?????? =?????? ? 1 34 141 2 31512 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1)3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??===???

结构化学考试试题.doc

北京大学1992 年研究生入学考试试题 考试科目:物理化学 ( 含结构化学 ) 考试时间: 2 月 16 日上午 招生专业:研究方向: 结构化学( 40 分) 1.用速度 v=1×109cms-1的电子进行衍射实验,若所用晶体粉末 MgO的面间距为 ?, 粉末样品到底片的距离为 2.5cm,求第 2 条衍射环纹的半径。(8 分) 2.判断下列轨道间沿 z 轴方向能否成键,如能成键,请在相应的位置上填上分子轨 道的名称。 p p z d xy d xz x p x p z d xy d xz (4 分) 3. 实验测得 HI 分子基本光带和第一泛音带的带心分别为 - 1 - 1 2230cm 和 4381cm ,求: (1)HI 的力常数;(2)HI 的光谱解离能。(原子量: H=1,I =)( 7 分) 4.判断下列分子和离子的形状和所属点群: SO32 SO 3 XeOF4 NO 2 NO 2 (5 分) 5. 已知 [Fe(CN) 6] 3-、[FeF 6] 3-络离子的磁矩分别为β、β(β为玻尔磁子)( Fe 原子 序数= 26), (1)分别计算两种络合物中心离子未成对电子数; (2)用图分别表示中心离子 d 轨道上电子排布情况; (3)两种络合物其配位体所形成的配位场是强场还是弱场?(3 分) 6.* 有一立方晶系 AB型离子晶体, A 离子半 555555,PLKNOPCVKJPKGJPFJH;L/’.IK 7. /9*632JKL[PKLP[JLH[PKLPJH[KLPJ[HKLPJ[OLJP[OI;I[OLP[OLPILOPKJ=[KLK’径 8. 为 167pm,B 离子半径为 220pm,按不等径球堆积的观点,请出:(4) B 的堆积方式; (5) A 占据 B 的什么空隙; (6) A 占据该类空隙的分数; (7)该晶体的结构基元; (8)该晶体所属点阵类型。(10分)金刚石、石墨及近年发现的球碳分子(例如足球烯,C60)是碳的三种主要同素异形体,请回答: (9)三者中何者可溶于有机试剂,理由是什么? (10)据推测,有一种异形体存在于星际空间,而另一种异形体在死火山口被发现,说明何者在星际空间存在,何者在火山口存在,解释原因。

流体力学典型例题及答案

1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。 A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数( )时的流动。 A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( ) A.增加 B.减小 C.不变 D.增加或减小 4.混合气体的密度可按各种气体( )的百分数来计算。 A.总体积 B.总质量 C.总比容 D.总压强 7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( ) A.定常流 B.非定常流 C.非均匀流 D.均匀流 8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。 A.运动轨迹是水平的 B.运动轨迹是曲线 C.运动轨迹是直线 D.是否绕自身轴旋转 9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行 10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( ) A.F 1=F2=F3 B.F1>F2>F3 C.F1F2 12.下列说法中,正确的说法是( ) A.理想不可压均质重力流体作定常或非定常流动时,沿流线总机械能守恒 B.理想不可压均质重力流体作定常流动时,沿流线总机械能守恒 C.理想不可压均质重力流体作非定常流动时,沿流线总机械能守恒 D.理想可压缩重力流体作非定常流动时,沿流线总机械能守恒 13.在缓变流的同一有效截面中,流体的压强分布满足( ) A.p gρ +Z=C B.p=C C. p gρ + v g C 2 2 = D. p gρ +Z+ v g C 2 2 = 14.当圆管中流体作层流流动时,动能修正系数α等于( )

(完整版)结构化学课后答案第二章

02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2212 11 ( )R n n ν=-% 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

结构化学考试题讲解学习

1首先提出能量量子化假定的科学家是: ( ) (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 1 下列算符中,哪些不是线性算符( ) A ?2 B i d dx C x D sin 2考虑电子的自旋, 氢原子n=2的简并波函数有( )种 A3 B 9 C 4 D 1 3 关于四个量子数n 、l 、m 、m s ,下列叙述正确的是: ( ) A .由实验测定的 B .解氢原子薛定谔方程得到的: C .解氢原子薛定谔方程得到n 、l 、m .由电子自旋假设引入m s D .自旋假设引入的 4 氢原子3d 状态轨道角动量沿磁场方向的分量最大值是( ) A.5h B.4h C.3h D.2h 5 氢原子ψ321状态的角动量大小是( ) A 3 η B 2 η C 1 η D 6 η 6 H 2+的H ?= 21?2- a r 1 - b r 1 +R 1, 此种形式的书写没有采用下列哪种方法: () (A) 中心力场近似 (B) 单电子近似 (C) 原子单位制 (D) 波恩-奥本海默近似 7 对于"分子轨道"的定义,下列叙述中正确的是:() (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子空间运动的轨道 (D) 原子轨道线性组合成的新轨道 8 类氢原子体系ψ432的总节面数为() A 4 B 1 C 3 D 0 9 下列分子键长次序正确的是: ( ) A.OF-> OF> OF+ B. OF > OF - > OF + C. OF +> OF> OF - D. OF > OF + > OF - 10 以Z 轴为键轴,按对称性匹配原则,下列那对原子轨道不能组成分子轨道: A.s dz2 B. s dxy C. dyz dyz D. y p y p

流体力学题及答案

C (c) 盛有不同种类溶液的连通器 D C D 水 油 B B (b) 连通器被隔断 A A (a) 连通容器 1. 等压面是水平面的条件是什么 2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面哪个不是等压面为什么 3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。 4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。求A 、B 两点的静水压强。

答:与流线正交的断面叫过流断面。 过流断面上点流速的平均值为断面平均流速。 引入断面平均流速的概念是为了在工程应用中简化计算。8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问: (1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流是均匀流还是非均匀流

(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流 (3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系 9 水流从水箱经管径分别为cm d cm d cm d 5.2,5,10321===的管道流 出,出口流速s m V /13=,如图所示。求流量及其它管道的断面平 均流速。 解:应用连续性方程 (1)流量:==33A v Q s l /10 3 -?

(2) 断面平均流速s m v /0625.01= , s m v /25.02=。 10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化 解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。 (4)流量不变则流速不变。 11. 说明总流能量方程中各项的物理意义。 12. 如图所示,从水面保持恒定不变的水池中引出一管路,水流在管路末端流入大气,管路由三段直径不等的管道组成,其过水面积分别是A 1=,A 2=,A 3=,若水池容积很大,行近流速可以忽

结构化学期末复习试题15套

习题5 一、填空题 1能量为100eV 的自由电子的德布罗依波波长为 cm 。 2、氢原子的一个主量子数为n=3的状态有 个简并态。 3、He 原子的哈密顿算符为 4、氢原子的3Px 状态的能量为 eV 。角动量为 角动量在磁场方向的分量为 ;它有 个径向节面, 个角度节面。 5、氟原子的基态光谱项为 6、与氢原子的基态能量相同的Li 2+ 的状态为 二、计算题 一维势箱基态l x l πψsin 2=,计算在2l 附近和势箱左端1/4区域内粒子出现的几率。 三、 简答题 计算环烯丙基自由基的HMO 轨道能量。写出HMO 行列式;求出轨道能级和离域能;比较它的阴离子和阳离子哪个键能大。 四、 简答题 求六水合钴(钴2价)离子的磁矩(以玻尔磁子表示)、CFSE ,预测离子颜色,已知其紫外可见光谱在1075纳米有最大吸收,求分裂能(以波数表示)。 五、 简答题 金属镍为A1型结构,原子间最近接触间距为2.482m 1010-?,计算它的晶胞参数和理论密度。 六、简答题 3CaTiO 结晶是pm a 380=的立方单位晶胞,结晶密度4.103/cm g ,相对分子质量为 135.98,求单位晶胞所含分子数,若设钛在立方单位晶胞的中心,写出各原子的分数坐标。 七、名词解释 1、原子轨道;分子轨道;杂化轨道; 2、电子填充三原则;杂化轨道三原则;LCAO-MO 三原则

习题5参考答案 一、 1.8 10225.1-?; 2.9; 3.() 12 2221222212222?r e r e r e m H +--?+?-= 。; 4.6.139 1 ?- ; 2;不确定;1;1。;. 5.2/32 P ;.6.3S ;3P ;3d ; 二、 在2/l 的几率即几率密度=;22sin 2222 l l l l l =?=?? ? ??πψ ππππ21 412sin 241sin 24/0 2 4/0-=?? ????-=??? ??=?l L l x l l l dx l x l P 三、 βα21+=E βα-==32E E β-=离域E , βπ2-=阴,E , βπ4-=阳,E ,可见阳离子键能大。 四、 ()()=+=+=B B n n μμμ2332 3.87B μ;CFSE=Dq 8- 1 7 930210107511 --=?= = ?cm cm λ ;未落在可见区,离子为无色。 五、 A1型结构,24a r = m r 210492.210÷?=-,m a 1010524.3-?= () 3 323 3331095.81002.61071.584--??=????==m kg a N a NM A ρ 六、 1、198 .1351002.61.4)108.3(23 8=????==-M N V N A ρ 2、如设Ti 为中心位置:)2 1 ,21, 21(Ti ;则Ca 应在顶角位置:Ca(0,0,0);O 在面心,)2 1,0,21)(21,21,0)(0,21,21(:O

流体力学例题

第一章 流体及其主要物理性质 例1: 已知油品的相对密度为0.85,求其重度。 解: 例2: 当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解: 例3: 已知:A =1200cm 2,V =0.5m/s μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图 及应力分布图 解:(前提条件:牛顿流体、层流运 动) 因为 τ1=τ2 所以 3 /980085.085.0m N ?=?=γδ0=+=?=dV Vd dM V M ρρρρρ d dV V -=Pa dp d dp V dV E p 84105.2105% 02.01111?=??==-==ρρβdy du μ τ=??????? -=-=?2221110 h u h u V μτμτs m h h V h u h u h u V /23.02 112212 2 11 =+= ?=-μμμμμN h u V A F 6.41 1=-==μ τ

第二章 流体静力学 例1: 如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。 解: 分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合 等压面与x 轴方向之间的夹角 例2: (1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变: 利用边界条件:r =0,z =0时,p =0 作用于顶盖上的压强: (表压) (2)装满液体容器在顶盖边缘处开口的相对平衡 压强分布规律: =+s gz ax g a tg = θPa L tg H h p A A 177552=??? ?? ?+==θγγPa L tg H h p B B 57602=??? ?? ?-==θγγC z g r p +-?=)2( 2 2ωγg r p 22 2ωγ =C z g r p +-?=)2( 2 2ω γ

结构化学考试题

1首先提出能量量子化假定的科学家是: () 9下列分子键长次序正确的是 :() (A) Ein ste in (B) Bohr (C) Schrodi nger (D) Pla nek 1下列算符中,哪些不是线性算符 () .d i C x D sin dx 2考虑电子的自旋,氢原子n=2的简并波函数有()种 A3 B 9 C 4 D 1 3关于四个量子数 n 、丨、m m ,下列叙述正确的是:() A. 由实验测定的 B. 解氢原子薛定谔方程得到的 : C. 解氢原子薛定谔方程得到 n 、丨、m 由电子自旋假设引入 m D. 自旋假设引入的 7对于”分子轨道”的定义,下列叙述中正确的是: () (A ) 分子中电子在空间运动的波函数 (B ) 分子中单个电子空间运动的波函数 (C ) 分子空间运动的轨道 (D ) 原子轨道线性组合成的新轨道 8类氢原子体系 432 的总节面数为() A 4 B 1 C 3 D 0 B.4 C.3 n 會 5氢原子 321 状态的角动量大小是 () A 3 B 2 C 1 D . 6 6 H 2+ 的 H?= 1 2- 1 2 r a 1 - + r b R 此种形式的书写没有采用下列哪种方法 (A) 中心力场近似 (B) 单电子近似 (C) 原子单位制 (D) 波恩-奥本海默近似 4氢原子3d 状态轨道角动量沿磁场方向的分量最大值是 ( ) ()

> 0F> 0F+ B. OF > OF > OF 11若以x 轴为键轴,下列何种轨道能与 p y 轨道最大重叠() 14 关于 型分子轨道的特点的描述哪个不正确: A 能量最低 B 其分布关于键轴呈圆柱形对称 C 节面 D 由S 型原子轨道组成 15 Ti 原子的基谱支项为: A. 3F 2 2 C 16通过变分法计算得到的微观体系的基态能量,总是 A. 等于基态真实能量 B. 大于基态真实能量 C. 不大于基态真实能量 D. 不小于基态真实能量 17 OF 2分子中氧原子成键采用的杂化轨道是() 2 3 (A )sp ( B )sp ( C )sp 18属下列点群的分子哪些偶极矩不为零 () A T d B D n C D nh D C 10以 Z 轴为键轴, 按对称性匹配原则, 下列那对原子轨道不 能组成分子轨 道: dz2 B. s dxy C. dyz dyz D. P y P y C. OF +> OF> OF D. OF > OF + > OF (A) s (B) d xy (C) P z (D) d xz 12氢原子的 1s 电子出现在 r=100pm 的球形界面内的概率用下面哪个表达式表示: () 13在s (A) 0 2 r 2sin drd d 1s 100 100 2 sin drd d 1s 100 2 d 1s 2 r 2 sin drd 1s 轨道上运动的一个电子的总角动量为: () (B) (C) 1h (D) 3 h 2 2 3 (D) d sp

流体力学-课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点是指:(d ) (a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c ) (a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。 1.3 单位质量力的国际单位是:(d ) (a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。 1.4 与牛顿内摩擦定律直接有关的因素是:(b ) (a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。 1.5 水的动力黏度μ随温度的升高:(b ) (a )增大;(b )减小;(c )不变;(d )不定。 1.6 流体运动黏度ν的国际单位是:(a ) (a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。 1.7 无黏性流体的特征是:(c ) (a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增大约为:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量和重量是多少? 解: 10000.0022m V ρ==?=(kg ) 29.80719.614G mg ==?=(N ) 答:2L 水的质量是2 kg ,重量是19.614N 。 1.10 体积为0.53 m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807 899.3580.5 m G g V V ρ= ===(kg/m 3) 答:该油料的密度是899.358 kg/m 3。 1.11 某液体的动力黏度为0.005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。

《流体力学》典型例题

《例题力学》典型例题 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。已知平板与斜面之间的油层厚度 δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。 解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律:0m ==∑F a ,即: gsin 0m S θτ-?= ()3 24 gsin 59.8sin 301100.1021N s m 1406010 m U S θδμ--?????==≈????? 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 解:由牛顿摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?= 克服油的粘性阻力所消耗的功率: ()()3 223 22 3 230230603.140.360.732001600.231050938.83(W) d d n d n n l P M F dl πππμωτπδ -==??=??= ???= ? ?= 例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下

盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。 解:根据牛顿黏性定律 d d 2d r r F A r r ω ωμ μ πδ δ== 2d d 2d r T F r r r ω μπδ =?= 4 2 420 d d 232d d d T T r r πμωπμωδδ===? 4 32d T πμωδ= 例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。 水 解:根据等压面的性质,采用相对压强可得: ()()()123243g g g h h h h h h ρρρ---=-水水 1234 32 h h h h h h ρρ-+-= -水

相关文档
相关文档 最新文档